

Southern Idaho Health & Air Quality II

Evaluating Atmospheric Mixing Height Estimations in the Western United States

Dean Berkowitz, Jukes Liu, Lauren Mock, Chris Wright

Idaho - Pocatello | Spring 2021

National Aeronautics and Space Administration

Motivations & Community Concerns

Wildfires are increasing in frequency and intensity.

Smoke pollution harms human health.

Prescribed burns are often vetoed due to potential smoke hazards.

There are inconsistencies in smoke forecasting across public agencies.

GOES-17 satellite view of smoke plumes from the 2020 California & Oregon wildfires

Fires & Mixing Height

Mixing height acts as a lid on smoke pollution.

Mixing height estimations inform:

- $\stackrel{\circ}{=}_{\sim}^{\circ}$ Air quality forecasts
 - Prescribed burn decisions

Estimation Methods:

Project Partners

NOAA's National Weather Service Fire Weather Program Bureau of Land Management National Interagency Fire Center National Park Service Fire Management Program Center

Determine mixing heights over wildfire smoke plumes in the Western US utilizing NASA Earth Observations

Compare with mixing heights forecasted by the National Weather Service

Icon Credit: ProSymbols and Creative Stall from The Noun Project

Study Area & Time Period

MT OR WY CO NM

400 Kilometers

Western United States

2006-2020 July-September

NASA Satellites & Sensors

CALIPSO CALIOP

Vertical and horizontal distribution of cloud and aerosol layers

Terra MODIS

Vertical water vapor gradient and smoke imagery

Aqua MODIS

Active fire boundary and smoke imagery

Suomi NPP VIIRS

Historic fire approximation

Approach

Mixing Heights from MODIS Profiles

Followed radiosonde-validated method from Feng et al. (2015)

MR gradient (g/kg/km) ---MR 10 —MR gradient 9 ---- MH estimate 8 Altitude (km) 7 6 5 4 3 2 1 -1 3 2 0 MR (g/kg) MODIS atmospheric profile over Elk

Complex fire on Aug. 13, 2013.

Advantages

- Spatial coverage
- Temporal resolution
- Temporal coverage

Limitations

- Cannot resolve below 1km
- Vertical resolution
- Missing values

Case Study

 \bigotimes

Mixing heights on Aug. 27, 2015 in fire weather zone ID101

Mixing Heights by Data Source

Comparison to NWS Forecasts

Comparison to CALIPSO

Comparison to NWS Forecasts

FWF Relative Error Across Study Area

Preliminary Conclusions

NWS fire weather forecasts **generally align** with A-SMOKRE outputs

MODIS vertical profile resolutions are **too coarse** for meaningful comparison

CIMSS mixing heights are **different** from A-SMOKRE outputs

NWS fire weather forecasts are **different** from NWS spot forecasts

Future Work

Identify additional wildfire smoke events for validation **Explore** alternative satellite products for comparison

Investigate variation between NWS FWF and FWS

Acknowledgements

DEVELOP

DEVELOP Fellow:

Brandy Nisbet-Wilcox

Past Contributors:

Ella Griffith, Ashwini Badgujar, Sean Cusick, Patrick Giltz

Science Advisors:

Keith Weber (Idaho State University GIS Training and Research Center)

Dr. Kenton Ross (NASA Langley Research Center)

Dr. Travis Toth (NASA Science Directorate)

Project Partners:

Heath Hockenberry, Robyn Heffernan (National Weather Service, Fire Weather Program) Mark Fitch (National Park Service, Fire Management Program Center) Bureau of Land Management, National Interagency Fire Center: Dave Mueller

References

- SA/LARC/SD/ASDC. (2010). CALIPSO Lidar Level 2 Vertical Feature Mask data, Validated Stage 1 V3 -01. NASA Langley Atmospheric Science Data Center DAAC, accessed 8 February 2021. Retrieved from <u>https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-VALSTAGE1-V3 -</u> 01_L2-003.01
- Borbas, E. E., S. Seemann, Z. Li, J. Li, A. Kern, & Menzel, W.P. (2016). MODIS Atmosphere Profiles Product (07_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed 8 February 2021. <u>http://dx.doi.org/10.5067/MODIS/MOD07_L2.006</u> (Terra), <u>http://dx.doi.org/10.5067/MODIS/MYD07_L2.006</u> (Aqua)
- Cooperative Institute for Meteorological Satellite Studies (2011). CALIPSO-CIMMS Surface Attached Aerosol Layer product. University of Wisconsin-Madison Space and Engineering Center, accessed 8 February 2021. <u>http://cimss.ssec.wisc.edu/calipso/</u>
- Fearon, M. G., T. J. Brown, & G. M. Curcio (2015). Establishing a national standard method for operational mixing height determination. J. Operational Meteor., 3(15), 172-189. <u>http://dx.doi.org/10.15191/nwajom.2015.0315</u>.
- Feng, X., Wu, B., & Yan, N. (2015). A Method for Deriving the Boundary Layer Mixing Height from MODIS Atmospheric Profile Data. *Atmosphere*, 6, 1346-1361. doi:10.3390/atmos6091346