

Studying human-system interaction with the UTM system

Lynne Martin and the AOL HF Team:

Joey Mercer, Jeffrey Homola, Faisal Omar, Lauren Claudatos, Cynthia Wolter, Yasmin Arbab, Madison Goodyear, Michele Cencetti, Vimmy Gujral, Kim Jobe, and Abhay Borade

UAS Traffic Management (UTM)

Technical Capability Level (TCL) and risk association

Increasing risk Increasing capability

TCL and HSI considerations

Increasing capability
Increasing complexity of interactions

TCL1

TCL2

TCL3

TCL4

More complex interface

Many functions

Crew member

Pre-plan own flight

Simple interface

Few functions

Developer-user

Pre-plan whole area

HSI = Human-System Interaction

Simple questions & observations

Demonstration parameters

	Flight demonstration details					
	Test 1	Test 2	Test 3	Test 4	Test 5	
Technical Capability Level (TCL)	TCL1	TCL2	TCL2	TCL3	TCL4	
Date	2015-16	2016	2017	2018	2019	
Locations	1	1	7	7	5	
Flying organizations	8	11	18	17	18	
Vehicles	10	7	27	28	21	
Flight days	8	5	17	50	20	
UAS Service Supplier (USS)	3	8	7	9	7	
Scenarios	3	4	17	20	5	

Demonstration parameters

	Flight demonstration details					
	Test 1	Test 2	Test 3	Test 4	Test 5	
Technical Capability Level (TCL)	TCL1	TCL2	TCL2	TCL3	TCL4	
Date	2015-16	2016	2017	2018	2019	
Locations	1	1	7	7	5	
Flying organizations	8	11	18	17	18	
Vehicles	10	7	27	28	21	
Flight days	8	5	17	50	20	
UAS Service Supplier (USS)	3	8	7	9	7	
Scenarios	3	4	17	20	5	

HF data collected across the UTM project

	Flight demonstration level and year					
	Test 1	Test 2	Test 3	Test 4	Test 5	
Technical Capability Level	TCL1	TCL2	TCL2	TCL3	TCL4	
Date	2015-16	2016	2017	2018	2019	
	Data collected					
Participant surveys	N/A	72	141	274	149	
Interviews & debriefs	N/A	5	18	22	19	
Hours of debrief	N/A	Approx. 5 hours	Approx. 9 hours	Approx. 8.5 hours	Approx. 9 hours	
Flight sessions observed	N/A	24	34	50	75 8	

Flight test demonstrations – Summary

- Successful demonstration that UTM is a viable method for communication and coordination between sUAS operations
- Successful HSI demonstration of:
 - Data exchange through the system, bringing information from one party to another for situation awareness

- sUAS enacting contingency maneuvers, showing alerting and demonstrating, and what information would be needed for real time decision making
- Complex operations, e.g., multiple, altitude-stratified operations, that gave us a window into the types of procedures crews needed to have in place

General HSI findings – Information quantity

- In earlier tests
 - Details missing in UTM information that made it more difficult for crews to establish SA
- In later tests
 - USS interfaces matured and much more detailed information was available for broader SA
 - Information need to be clear and timely

Flight test demonstration

General HSI findings – Increasing complexity

In later tests

- Clutter
- More complex environments required more information to be presented
- Too many messages for crew to read
- Message labels not informative for crew

General HSI findings - Standardization

- Unfamiliar terminology
 - Information was hard for some users to interpret
- Measurement consistency
 - Use of different units required crews to manually resolve issues
- Undefined procedures
 - UAS an infant industry no standard approaches to guide the users
 - Too little time for users to make complex contingency decisions

UTM as a human-automation system

- While the end-state of the system is fully automated,
 the interim nearer-term states will still require manual interaction
- Challenges for near-term usage :
 - Designing displays that are easily understandable in a TCL4 environment
 - E.g., Messages that are filtered by criticality
 - Creating UTM training for users
- Challenges for mid-term usage :
 - Automating functions in a manner that keeps remaining manual tasks as coherent activities

Moving to UAM – Urban Air Mobility

Do UTM HSI findings translate?

- Yes and no!
- No: UAM is more complex
 - E.g., will require changes in the way airspace is used
 - E.g., PF-PNF team are probably distributed, many more different types of user
 - E.g., many more airworthiness & certification requirements
- Yes: Users have the same basic needs
 - E.g., Interfaces need to be easily usable
 - Understandable displays (to foster SA)
 - Straightforward in-flight input sequences (to reduce distraction)
 - E.g., Function allocation is important
 - Procedures with clear flows & task allocation

Operations

- Urban operations in all weather conditions
- Aircraft Performance
 - Diverse aircraft concepts

- Automated Systems
 - Full authority envelope protection, auto takeoff, auto land

Reduced skill, expertise and proficiency

- Command and Control
- ¶ Interaction
 - Inceptors, Displays, Interfaces

Thank you!

Lynne.Martin@nasa.gov

Back up

- Successful demonstration that UTM is a viable method for communication and coordination between sUAS operations
- But also to provide enough information to operators for them to have awareness and coordinate actions
- Future work should spotlight human-automation system interaction to scope nearer-term evolutions of the UTM system

General HSI findings – Using information

In earlier tests

 Less information (& more external planning) in UTM made crew decision making more straightforward

In later tests

 USS interfaces matured and more detailed information was available but it was needed more quickly

Simplified Piloting Requirements for AAM

- Operations
 - Urban operations in all weather conditions

Diverse aircraft concepts

Automated Systems

 Full authority envelope protection, auto takeoff, auto land

Reduced skill, expertise and proficiency

Command and Control Interaction

• Inceptors, Displays, Interfaces

