

The Lunar South Pole Environment

Daniel Batcheldor, Ph.D.

Southeastern Universities Research Association
Laboratory Support Services and Operations
Kennedy Space Center

https://svs.gsfc.nasa.gov/4768

Moon Phases 2020

Including Libration and Position Angle South Up Edition

28 30 32

Time 01 Jan 2020 00:00 UT Phase 30.0% (5d 18h 47m) Diameter 1774.5 arcseconds

Distance 403898 km (31.70 Earths)
Position 23h 15m 39s, 10° 04' 57"S

Subsolar 0.045°S 114.557°E **Sub-Earth** 6.360°N 0.773°E

Pos. Angle 336.353°

Two significant risks for lunar exploration of the south pole:

- The Dust.
- The Sun Angle.

The Dust

Lane & Metzger (2015).

A Dynamically Coupled System

The Dust

Criswell (1973), Glenar et al. (2011, 2014).

Wang et al. (2018).

The Dust

NASA GSFC

The other side of Regolith... water ("volatiles").

Water mass estimates from LCROSS impactor are ~5%, equalling 10% by volume (Colaprete et al, 2010).

Water is potentially distributed in pore spaces or along grain boundaries (interstitial).

Credit: LPI/CLSE (Amy L. Fagan and David A. Kring)

The other side of Regolith... water ("volatiles").

The other side of Regolith... water ("volatiles").

Fig. 1 | Images reveal shadows on a range of spatial scales. a, LROC-NAC oblique view over the rim of the Cabeus crater near the Moon's south pole. b, Chang'e-3 close-up surface image taken by the Yutu rover some distance from the landing site. c, Apollo 14 close-up camera image of undisturbed regolith.

Hayne, Aharonson & Schörghofer (2020)

The other side of Regolith... water ("volatiles").

The Sun Angle

The Sun Angle – contrast confusion

Credit: NASA

Mazarico et al. (2011).

The Sun Angle

Glaser et al. (2017).

The Sun Angle

Lunar Imaging Instrument Development

- Lunar Environment Imaging Apparatus (LEIA)
 - Builds on recent charge injection device demonstrations.
- Compact High-contrast Imager for Lunar Exploration and Operations (CHILEO).
 - Compact version of LEIA for lunar surface technology readiness levels.

Lunar Imaging Instrument Development

ISS demonstration flight, 2017.

Lunar Imaging Instrument Development CADRE COLDArm

Courtesy NASA/JPL-Caltech.

Summary

- Complex electrostatics could increase intrinsic lunar exospheric dust density at the poles.
 - Dust causes operational issues.
 - But regolith can be a resource.
 - The sun will be permanently low on the horizon at the south pole.
 - Lots of long shadows.
 - Introduces risk.
 - Can be addressed with high contrast ratio imaging.

The Lunar South Pole Environment

Daniel Batcheldor, Ph.D.

Southeastern Universities Research Association

Laboratory Support Services and Operations

Kennedy Space Center

