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Motivation

» We want to do large-scale optimizations of urban/advanced air mobility vehicles,
with acoustics.

> Noise anticipated to be a limiting factor for UAM/AAM concepts.

» Need gradient-based optimization techniques to navigate the design space
efficiently.

» First step: Can we do this for propeller noise?

Goal
Design an efficient, low-noise propeller using gradient-based optimization and

low-fidelity tools, and test in NASA LaRC's Low Speed Acoustic Wind Tunnel facility
(LSAWT).



How?

» Models:

» aerodynamics: blade element momentum theory (BEMT)
» acoustics: compact form of Farassat’s formulation 1A
» Optimization framework

»> OpenMDAO (NASA Glenn)
» SNOPT (Stanford), via pyOptSparse (U. of Michigan MDO Lab)



Propeller Aerodynamic model using CCBlade.|l

» Blade Element Momentum Theory code from Andrew Ning, BYU
> Efficient
» Incorporates blade geometry into calculation

» Two C's:

» Continuous (required for gradient-based optimization)
» Convergent (helpful for large-scale optimizations)



Propeller Acoustic model using Compact F1A

» Thickness and loading noise prediction from compact form of Farassat's
“Formulation 1A,” including Len Lopes (NASA LaRC) compact monopole
approach.

» Compact == reduces surface integrals associated with traditional acoustic analogies
to line integrals.

» Assumes surface is elongated in the “line” direction (like a propeller blade)

» Tonal acoustics only
P> Advantages

> fast
» inputs line up with BEMT outputs



OpenMDAO: gradient-based optimization made “easy”

» Python framework
» User defines Components, units of computation with inputs and outputs,
optionally organized into arbitrarily-nested Groups.

» OpenMDAO manages data passed from one Component to another, assembles
Jacobian, calls optimizer with necessary arguments, etc..



Results will be compared to a baseline design

Baseline design from Nik Zawodny (NASA LaRC).
» 24 inch diameter

3 blades

Constant 1.5 inch chord

Helical twist distribution

NACA 0012 airfoil sections throughout

» Intended RPM =~ 7110

Has been tested in LSAWT. Aerodynamic and acoustic data available.
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Problem Setup

» Objective: maximize cruise efficiency
» Design variables:

» Chord and twist along the blade

» Propeller RPM at each operating point (maybe)
» Constraints:

» thrust at each operating point equal to baseline design's value
» sideline OASPL constraint at one operating point (sweeping)
» Baseline prediction for hover: 101 dB
> Baseline prediction for cruise: 98 dB



Both single-point and two-point optimizations considered

Will show results of optimizations considering
P cruise operating point only
» with and without RPM design variable
> takeoff operating point only
» with and without RPM design variable
> takeoff+cruise

» RPM design variable at both operating points (like a fixed-pitch, RPM-controlled
propeller/rotor)



Results



Cruise-only optimization w/ fixed RPM yields very thin blade
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Cruise-only optimization w/ fixed RPM yields very thin blade

twist, deg. chord/chord_baseline
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Thin blades are nice for aero & acoustics, pose structural challenges

‘ @ 0.5" chord limit © 0.25" chord limit ‘
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Cruise-only optimization w/ RPM design var: slow blades are quieter

‘ @ Cruise only, w/ RPM desvar ‘
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Cruise-only optimization w/ RPM design var: thicken blade to meet thrust
constraints

baseline

twist, deg. Cchord/chord
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Takeoff-only optimization w/ fixed RPM: less chord, more twist % from tip

twist, deg. chord/chord_baseline
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Takeoff-only optimization w/ RPM design var: slower is quieter, again

‘ @ Takeoff only, w/ RPM desvar ‘
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Takeoff-only optimization w/ RPM design var: shift chord inboard

twist, deg. chord/chord_baseline
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Takeoff and cruise, sideline cruise acoustic constraint

‘ —baseline —w/o acoustic const. —w/ acoustic const. l
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Takeoff and cruise, sideline cruise acoustic constraint

‘ @ Takeoff+Cruise, Cruise OASPL const.
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Takeoff and cruise, sideline cruise acoustic constraint

‘ @ Takeoff+Cruise, Cruise OASPL const.
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Next Steps

» Improve takeoff performance for the two-point optimizations
P Increase complexity of acoustic metric

> A-weighting

» both operating points

»> > 1 observer location

v

Add propeller diameter to design variables

Add broadband noise model
» Longer term plans:

v

» Increase fidelity of propeller aerodynamic model
» Incorporate this toolchain into larger UAM optimization, including power generation,
vehicle aero, trajectory, thermal managment, etc..
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Thanks!

Thank you to:
» Andrew Ning, Eduardo Alvarez from BYU.
» NASA Glenn RVLT Acoustics Branch team, esp. Chris Miller.
» Nik Zawodny, Len Lopes from NASA Langley.
» Justin Gray and the Aviary Group at NASA Glenn.

23



	Title

