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Motivation

I We want to do large-scale optimizations of urban/advanced air mobility vehicles,
with acoustics.
I Noise anticipated to be a limiting factor for UAM/AAM concepts.

I Need gradient-based optimization techniques to navigate the design space
efficiently.

I First step: Can we do this for propeller noise?

Goal
Design an efficient, low-noise propeller using gradient-based optimization and
low-fidelity tools, and test in NASA LaRC’s Low Speed Acoustic Wind Tunnel facility
(LSAWT).
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How?

I Models:
I aerodynamics: blade element momentum theory (BEMT)
I acoustics: compact form of Farassat’s formulation 1A

I Optimization framework
I OpenMDAO (NASA Glenn)
I SNOPT (Stanford), via pyOptSparse (U. of Michigan MDO Lab)
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Propeller Aerodynamic model using CCBlade.jl

I Blade Element Momentum Theory code from Andrew Ning, BYU
I Efficient
I Incorporates blade geometry into calculation

I Two C’s:
I Continuous (required for gradient-based optimization)
I Convergent (helpful for large-scale optimizations)
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Propeller Acoustic model using Compact F1A

I Thickness and loading noise prediction from compact form of Farassat’s
“Formulation 1A,” including Len Lopes (NASA LaRC) compact monopole
approach.
I Compact == reduces surface integrals associated with traditional acoustic analogies

to line integrals.

I Assumes surface is elongated in the “line” direction (like a propeller blade)

I Tonal acoustics only
I Advantages

I fast
I inputs line up with BEMT outputs
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OpenMDAO: gradient-based optimization made “easy”

I Python framework

I User defines Components, units of computation with inputs and outputs,
optionally organized into arbitrarily-nested Groups.

I OpenMDAO manages data passed from one Component to another, assembles
Jacobian, calls optimizer with necessary arguments, etc..
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Results will be compared to a baseline design

Baseline design from Nik Zawodny (NASA LaRC).

I 24 inch diameter

I 3 blades

I Constant 1.5 inch chord

I Helical twist distribution

I NACA 0012 airfoil sections throughout

I Intended RPM ≈ 7110

Has been tested in LSAWT. Aerodynamic and acoustic data available.
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Problem Setup

I Objective: maximize cruise efficiency
I Design variables:

I Chord and twist along the blade
I Propeller RPM at each operating point (maybe)

I Constraints:
I thrust at each operating point equal to baseline design’s value
I sideline OASPL constraint at one operating point (sweeping)

I Baseline prediction for hover: 101 dB
I Baseline prediction for cruise: 98 dB
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Both single-point and two-point optimizations considered

Will show results of optimizations considering
I cruise operating point only

I with and without RPM design variable

I takeoff operating point only
I with and without RPM design variable

I takeoff+cruise
I RPM design variable at both operating points (like a fixed-pitch, RPM-controlled

propeller/rotor)

9



Results
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Cruise-only optimization w/ fixed RPM yields very thin blade
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Cruise-only optimization w/ fixed RPM yields very thin blade
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Thin blades are nice for aero & acoustics, pose structural challenges
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Cruise-only optimization w/ RPM design var: slow blades are quieter
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Cruise-only optimization w/ RPM design var: thicken blade to meet thrust
constraints
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Takeoff-only optimization w/ fixed RPM: less chord, more twist 1
3 from tip
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Takeoff-only optimization w/ RPM design var: slower is quieter, again
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Takeoff-only optimization w/ RPM design var: shift chord inboard
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Takeoff and cruise, sideline cruise acoustic constraint
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Takeoff and cruise, sideline cruise acoustic constraint
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Takeoff and cruise, sideline cruise acoustic constraint
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Next Steps

I Improve takeoff performance for the two-point optimizations
I Increase complexity of acoustic metric

I A-weighting
I both operating points
I > 1 observer location

I Add propeller diameter to design variables

I Add broadband noise model
I Longer term plans:

I Increase fidelity of propeller aerodynamic model
I Incorporate this toolchain into larger UAM optimization, including power generation,

vehicle aero, trajectory, thermal managment, etc..
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Thanks!

Thank you to:

I Andrew Ning, Eduardo Alvarez from BYU.

I NASA Glenn RVLT Acoustics Branch team, esp. Chris Miller.

I Nik Zawodny, Len Lopes from NASA Langley.

I Justin Gray and the Aviary Group at NASA Glenn.
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