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Comparable-mass black-hole mergers generically result in moderate to highly spinning holes,
whose spacetime curvature will significantly affect nearby matter in observable ways. We investigate
how the moderate spin of a post-merger Kerr black hole immersed in a plasma with initially uniform
density and uniform magnetic field affects potentially observable accretion rates and energy fluxes.
Varying the initial specific internal energy of the plasma over two decades, we find very little change
in steady-state mass accretion rate or Poynting luminosity, except at the lowest internal energies,
where fluxes do not exhibit steady-state behavior during the simulation timescale. Fixing the
internal energy and varying the initial fixed magnetic-field amplitude and orientation, we find that
the steady-state Poynting luminosity depends strongly on the initial field angle with respect to the
black hole spin axis, while the matter accretion rate is more stable until the field angle exceeds
∼ 45°. The proto-jet formed along the black hole spin-axis conforms to a thin, elongated cylinder
near the hole, while aligning with the asymptotic magnetic field at large distances.

I. INTRODUCTION

Black holes are the unique end-point of massive stellar
evolution in our current understanding of stellar astro-
physics, informed by Einstein’s general relativity (GR).
They are also the inevitable result of the merger of high-
mass neutron stars, as well as of black holes of all masses,
including the supermassive ones believed to reside at the
center of most galaxies. Most supermassive black holes
are expected to have significant spin through accretion
[1]; even during the course of the merger of initially non-
spinning holes, enough orbital angular momentum is re-
tained to produce a final hole with a dimensionless spin
of ∼ 0.69. This spin angular momentum produces an az-
imuthal distortion of the surrounding nearby spacetime
(“frame-dragging”), acting to concentrate magnetic fields
and potentially produce strong steady-state electromag-
netic characteristics. Spinning supermassive black holes
power active galactic nuclei (AGN) [2, 3], with a radio
jet likely powered by the black hole’s spin, mediated by

polodial magnetic field lines pinned to a surrounding ac-
cretion disk[4].

We are particularly interested in the scenario of black
holes newly formed after merger in a potentially compli-
cated gas-rich environment. Here we expect a transition
from whatever was happening through the merger toward
a new quasi-steady state centered on the newly formed
black hole. Generally the black hole may form in envi-
ronment characterized by a larger-scale magnetic field,
perhaps anchored in the poloidal component of an accre-
tion disk that had surrounded the premerger binary. For
some configurations of spinning black hole mergers, the
final black hole may be misaligned from the core axis of
the broader accretion disk and its poloidal field. It can be
particularly valuable to understand the general physics
driving jet formation in this kind of environment, which
may be robust against detailed variations in the turbu-
lent local environment of the black hole at the point of
merger. Toward this we consider here a simplified sce-
nario involving a black hole in an asymptotically uniform
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magnetic field within a structureless uniform distribution
of plasma. Though we are primarily interested in this as
a generic model for an accreting binary just after merger,
we can also recognize this as a generalization of spheri-
cal Bondi accretion with a magnetic field and a spinning
black hole.

In the context of the post-merger scenario, we build on
[5], hereafter referred to as Paper I, where we used the
tools of numerical relativity and ideal general-relativistic
magnetohydrodynamics (GRMHD) to investigate how
the merger of a comparable-mass black hole binary af-
fect a surrounding plasma. While other studies explore
circumbinary accretion disks [6–10], Paper I took a de-
liberately simplistic approach to initial conditions, in or-
der to elucidate the effects of the merger with minimal
assumptions about likely matter configurations. In par-
ticular, we explored how an equal-mass black hole bi-
nary merger affects an initially uniform density plasma
with uniform magnetic field parallel to the binary’s or-
bital angular momentum vector. A parameter survey was
performed varying the initial plasma β−1 parameter, to
measure the system’s dependence on the relative strength
of the magnetic field.

We found that the time-development of Poynting lu-
minosity, which may drive jet-like emissions, is rela-
tively insensitive to aspects of the initial configuration.
In particular, over a significant range of initial β−1,
the central magnetic field strength is effectively regu-
lated by the gas flow to yield a Poynting luminosity of
1045 − 1046ρ-13M8

2 erg s−1, with the binary black-hole
mass M scaled to M8 ≡ M/(108M�) and ambient den-
sity ρ-13 ≡ ρ/(10−13 g cm−3). We also calculated the
direct plasma synchrotron emissions processed through
geodesic ray-tracing. Despite lensing effects and dynam-
ics, we found the observed synchrotron flux varies little
leading up to merger.

Here we extend the results of Paper I, paying special
focus to the plasma dynamics near the remnant black
hole. In particular, we concentrate on the initial mag-
netic field angle relative to the remnant black hole’s spin
axis, and on the initial temperature of the plasma.

Great uncertainty still exists about the environment
immediately around supermassive black holes. Even for
Sgr A∗, the closest, most-studied black hole in the uni-
verse, the best estimates for plasma temperature, density,
and magnetic field strength vary by orders of magnitude
[11–14]. Similarly, the low-density gas around M87 also
appears to be described by a radiatively inefficient accre-
tion flow, but produces powerful radio jets on enormous
galactic scales [15–18]. Therefore we acknowledge that
the parameters used in this paper represent only a small
region of the potential astrophysical parameter space, but
we will show that these idealized conditions still provide
valuable insight into some of the fundamental questions
about the behavior of magnetized accretion flows around
supermassive black holes.

We begin by describing the numerical methods we used
in our simulations in Section II. In Section III, we pro-

vide the details of the parameter space survey, and in Sec-
tion IV, we present results from all configurations consid-
ered. Subsection IV A considers how varying the initial
specific internal energy (a proxy for temperature) affects
bulk behavior such as mass accretion rates and Poynting
luminosity. Subsection IV B considers how varying the
initial magnetic field direction affects bulk behavior such
as mass accretion rates and Poynting luminosity. In Sec-
tion IV C, we more closely investigate the nature of the
“proto-jet” region that develops in the vicinity of rotating
spacetimes, introducing several measures to help quantify
the jet features. Throughout our paper, unless otherwise
noted, we use geometrized units where G = c = 1, and
Greek (Latin) indices are space-time (space) indices.

II. METHODS

In Paper I, the aforementioned black hole binary sim-
ulations in an initially uniform plasma were carried out
using the “moving puncture” formalism [19, 20], with
a simultaneous evolution of the space-time metric and
MHD fields, using the McLachlan [21, 22] implementa-
tion of the BSSNOK equations [23–25] for the former,
and the IllinoisGRMHD [26, 27] implementation of the
conservative GRMHD equations (see e.g. [28]).

For the new simulations presented here, since we con-
sider the post-merger end-state of the system, it is more
computationally efficient to use a fixed Kerr background
with mass and spin appropriate to the spacetime after
the merger of an equal-mass, nonspinning binary with
initial ADM mass M = 1: M = 0.97, a/M = 0.69
[19, 20, 29, 30]. There are still infinitely many ways
to express such a spacetime as a metric; we choose
the horizon-penetrating “Kerr-Schild” slicing used by
[31, 32], as implemented by NRPy+ [33, 34]. This slic-
ing has the advantage of placing the horizon at a fixed
constant radial coordinate value, identical to that of
the better-known Boyer-Lindquist slicing: rhor = r+ =
M +

√
M2 − a2. It has been used for IllinoisGRMHD

evolutions of Fishbone-Moncrief initial conditions as part
of the community Event Horizon Telescope comparison
project [35] and validated within the NRPy+ infrastruc-
ture to satisfy the ADM constraints. While the numer-
ical simulations of each configuration use the Einstein
Toolkit’s Cartesian mesh-refinement driver called Carpet
[36, 37], for the purpose of post-processing data analysis
with GRMHD analysis, a suite of Python-based tools [38],
we regularly interpolate MHD fields to a spherical po-
lar grid. Additionally, avoiding the spacetime evolution
greatly reduces the computational cost of our studies.

Our primary diagnostic is again the EM (Poynting)
luminosity:

LPoynt ≡ lim
r→∞

∮
r2SrdΩ, (1)

where Sr is the radial component of the relativistic
Poynting vector, expressed in terms of the fluid four-
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velocity ua and magnetic four-vector ba:

Si ≡ αT iEM,0 = α

(
b2uiu0 +

1

2
b2gi0 − bib0

)
. (2)

Rather than rely on the EinsteinToolkit Multipole
thorn’s output of the spherical harmonic (l,m) compo-
nents of LPoynt, as we did in [5], we output the 3D
MHD field data onto the aforementioned spherical co-
ordinate mesh with uniform sampling in each of the co-
ordinate directions (r, θ, φ) and perform the analysis in
post-processing. This output procedure used first-order
Lagrange polynomial interpolation, as supplied by the
EinsteinToolkit.

We apply the same post-processing suite to estimate
the rate of accretion of fluid into the black hole as well
(while in [5] we used the Outflow code module in the
Einstein Toolkit). In particular, we calculate the flux of
fluid across the event horizon S via:

Ṁ = −
∮
S

√
γαD

(
vi − βi

α

)
dσi, (3)

where D ≡ ραu0 is the Lorentz-weighted fluid density,
and σi is the ordinary (flat-space) directed surface ele-
ment of the horizon.

Armed with these, the Poynting efficiency ηEM can be
computed from

ηEM ≡
LPoynt

Ṁ
. (4)

III. NEW ILLINOISGRMHD RUNS

Our investigations began with a canonical case, ‘KS’,
of a single Kerr black hole in Kerr-Schild coordinates
surrounded by plasma with uniform density and pres-
sure, initially satisfying a polytropic equation of state
P = κρΓ, with Γ = 4/3, appropriate for a radiation-
pressure-dominated gas. The plasma is threaded by a
uniform-magnitude magnetic field oriented parallel to

the hole’s spin axis (k̂). The initial fluid density, pres-
sure, and magnetic field strength are the same as those
used in Paper I’s canonical configuration, yielding a
fluid that is everywhere magnetically sub-dominant, with
β−1 = Pmag/Pgas = 0.025. The canonical configuration’s
pressure is dominated by the radiation Prad = (a/3)T 4,
implying a temperature of T = 2.906 × 105K. Work-
ing from this canonical case, we carried out two suites of
simulations at moderate resolutions.

In the first suite, we kept the magnetic field oriented
parallel to the spin axis, but varied the initial polytropic
coefficient κ in the uniform plasma, and thus the uniform
specific internal energy ε, and hence the gas temperature
of the plasma. These configurations are presented in Ta-
ble I.

In the second suite, we kept the initial canonical tem-
perature fixed, and varied the angle θB between the initial

TABLE I. Initial field configurations for the canonical case
and temperature-varied simulations. vAlf is the Alfvén speed
(Eq. B2); cs is the fluid sound speed (Eq. B1); the tempera-
ture T is deduced assuming a radiation-dominated gas.

Name ρ0 p0 b0 σ0 ε0 vAlf cs T

×105ρ
1/4
−13K

KS 1 0.2 0.1 0.005 0.60 0.0743 0.385 2.91

KS k2e-2 ” 0.02 ” ” 0.06 0.0958 0.157 1.63

KS k4e-2 ” 0.04 ” ” 0.12 0.0925 0.214 1.94

KS k6e-2 ” 0.06 ” ” 0.18 0.0894 0.254 2.15

KS k9e-2 ” 0.09 ” ” 0.27 0.0854 0.297 2.38

KS k3e-1 ” 0.3 ” ” 0.90 0.0673 0.426 3.22

KS k4e-1 ” 0.4 ” ” 1.20 0.0619 0.453 3.46

KS k6e-1 ” 0.6 ” ” 1.80 0.0542 0.485 3.82

KS k9e-1 ” 0.9 ” ” 2.70 0.0466 0.511 4.23

KS k2e0 ” 2.0 ” ” 6.00 0.0333 0.544 5.17

global magnetic field and the black hole spin. The angles
chosen were 15°, 30°, 40°, 45°, 50°, 60°, 70°, 75°, 80°, and
90°.

The basic IllinoisGRMHD simulations were carried out
with a set of 10 nested fixed refinement levels, centered
at the origin. Each level was cubical, with dimensions
Ln ∈ {1024.00M, 624.64M, 312.32M, 145.92M, 52.48M,
26.24M, 13.12M, 6.56M, 3.80M, 2.38M}. The grid spac-
ing of the largest, coarsest grid (L0 = 1024M) was dx0 =
20.48M ; each subsequent level of refinement used twice
the resolution of the one before, with dx9 = M/25 =
0.04M for the finest level. The entire mesh was offset by
half the finest grid spacing (dx9/2) in each direction, to
avoid placing the curvature singularity r = 0 on a grid
point.

For analysis, the fields representing fluid density ρ,
fluid pressure p, fluid three-velocity vi, and magnetic field
Bi were interpolated onto an evenly spaced spherical-
polar grid of size r ∈ [0.35M, 150M ], θ ∈ [0, π], and
φ ∈ [0, 2π], with Nr = 450, Nθ = 50, Nφ = 50;
hence ∆r ≈ M/3, ∆θ ≈ π/50, ∆φ ≈ 2π/50. The
interpolation method used was a simple first-order La-
grange polynomial interpolation scheme, supplied by
EinsteinToolkit’s Carpet mesh-refinement driver [39].

IV. RESULTS

A. Dependence on plasma temperature

In Paper I, we investigated the dependence of the
Poynting luminosity on initial density and magnetic field
strength while holding fixed the initial specific internal
energy ε0. As noted then, the luminosity should satisfy
the scaling relation

LPoynt(t) = ρ0M
2F (t/M ; ε0, σ0), (5)

where σ0 ≡ b20/(2ρ0) is the initial ratio of magnetic to
rest-mass energy density, and F (t/M ; ε0, σ0) is a dimen-
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sionless function of time. Paper I primarily addressed
the σ0 dependence of F (t), while leaving ε0 fixed.

Here we investigate the variation in infall rate and
Poynting luminosity with ε0, which serves as a proxy for
the initial plasma temperature T0. For a Gamma-law
gas,

p = (Γ− 1)ρε⇒ ε =
p

(Γ− 1)ρ
=

3p

ρ
,

where we have assumed Γ = 4/3. The set of configura-
tions are presented in Table I. In analogy to our varying
of magnetic field strength in Paper I, here we vary the
polytropic constant κ over two orders of magnitude; as
a result the initial gas pressure P0 and specific internal
energy ε0 also vary over two orders of magnitude, while
the temperature varies by roughly a factor of three.

In Fig. 1 we show the Poynting luminosity LPoynt dur-
ing the evolution of each of the initial temperature con-
figurations listed in Table I. We see that the luminosity
generally takes longer to settle down with higher ε0, due
to the lower Alfvén speed in these cases. After settling,
however, the late-stage luminosity shows little variation
with ε0, except for the case of the very lowest ε0. This
case shows extremely high luminosity, which shows no
sign of settling down over the simulation time.

FIG. 1. Poynting luminosity as a function of time for the tem-
perature configurations listed in Table I. Dotted lines indicate
data from a higher-resolution run.

To complement the Poynting luminosity, in Fig. 2 we
show the accretion rate over time of the same configu-
rations. Again, the lowest-temperature case, ε0 = 0.06,
shows the least stable behavior.

The settling-down time for these configurations also
depends on temperature, being later for the higher-
temperature cases. To investigate the steady state for
each configuration, we use a time-average value for each
configuration, from a common starting time of t =
2, 000M until the end of the available data. In Fig. 3,
we show the resulting Poynting luminosity LPoynt (top

FIG. 2. Accretion rate |Ṁ | as a function of time for the
temperature configurations listed in Table I. Color labels are
the same as for Fig. 1.

panel), accretion rate Ṁ (middle panel), and resulting
efficiency ηEM (Eq. 4) (bottom panel). For each config-
uration, the “error bars” shown are simply the standard
deviation over the time window.

It is noticeable that both the Poynting luminosity
LPoynt and mass accretion rate Ṁ are highest for the
lowest values of κ, and hence fluid temperature, though
subject to greater variations in time. There also appears
to be a shallow local minimum in LPoynt around κ = 0.1,

and in Ṁ around κ = 0.5; the combination of these yields
a minimum in efficiency ηEM around κ = 0.3, close to our
canonical case. However, as this is a shallow minimum,
the efficiency is around 20% over most of our temperature
range.

B. Dependence on magnetic field orientation

Here we investigate the effect of varying the angle θB

between the Kerr spin vector ~a and the initial orienta-

tion of the uniform magnetic field ~B. In practice, we fix

the former — ~a = ak̂ — and vary the latter. However
we demonstrate in Appendix C that we achieve equiva-
lent results when fixing the field direction and varying ~a
instead.

In Fig. 4 we show the late-time state of the magnetic
field integral curves passing near the central black hole,
for the KS B45deg configuration. The black hole has not
only twisted and concentrated the field, but has tilted
it toward the spin axis (z direction), but only out to a
radius r <∼ 30M .

In Fig. 5 we show the time-development of the Poynt-
ing luminosity LPoynt during the evolution of each of the
initial magnetic-field orientations θB. It is clear that the
“post-settling” luminosity has a strong dependence on
θB.
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FIG. 3. Steady-state Poynting luminosity LPoynt (top panel),

accretion rate Ṁ (middle panel), and resulting efficiency ηEM

(bottom panel) for the temperature studies, as a function of
the temperature proxy κ. Plotted points are time-averages
from t = 2, 000M onwards, with “error bars” given by the
standard deviation over the same time interval.

FIG. 4. B-field stream lines in the vicinity of the BH
(spinning in the k̂ direction) at time t ≈ 2, 000M for a
magnetic field initially uniform in strength, and everywhere
pointing along î + k̂, 45° off the BH spin direction (config-
uration KS B45deg). Grey shells indicate coordinate radii
R ∈ {30M, 50M, 70M, 90M}.

FIG. 5. Poynting luminosity as a function of time for the B-
field angle configurations. Thick and thin lines indicate higher
and lower resolution for the same physical configuration.

Looking at the late-time (t >∼ 1, 500M) behavior of
the systems, in Fig. 6 we plot LPoynt as a function of
initial inclination angle θB. We also show a fit (dashed
red line) of these LPoynt data points to a functional form
quadratic in the cosine of θB, similar to that seen by [40]
in the force-free limit. Our results seem to show a flatter
behavior at low and high θB, captured better by a hy-
perbolic tangent dependence on θB (solid blue line), but
cannot rule out the cos2 θB scaling. It is entirely possible
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FIG. 6. Steady-state (t > 1, 500M) Poynting luminosity
as a function of field alignment angle θB. The luminosity
is calculated as a “late-time average” value in each case —
the average value for all t > 1, 500M . Error bars show the
RMS deviation from the time-average values, beginning at
t = 1, 500M . The solid (blue) and dashed (red) curves are
best-fit results from assuming a hyperbolic tangent or cosine-
squared dependence on θB, respectively.

that the inclusion of MHD and matter (as opposed to the
force-free scenario) introduces additional physics scaling
that lead to a steeper, more step-function-like behavior.

As we can see in Fig. 4, even at late times, the mag-
netic field lines are only oriented toward the BH spin
axis relatively close to the hole itself, remaining substan-
tially along its initial direction further out. We can try to
quantify the transition region from the BH’s “sphere of
influence” by examining the Poynting luminosity over a
set of extraction spheres. In Fig. 7, we show the integrand
in Eq. 1 — essentially the Poynting vector, weighted
by the local area measure — as a function of (θ, φ) for
R ∈ {20M, 30M, 40M, 50M} for the KS B45deg config-
uration. We see that the angular location (i.e. “point
in the sky”) of peak contribution moves with extraction
radius; we also see that the tube seems to contract in
angle. We will attempt to quantify these observations in
Sec. IV C.

In Fig. 8, we show the rate of mass loss into the Kerr
horizon, Ṁ (Eq. 3) during the evolution of each of the ini-
tial magnetic-field orientations θB. Again, the accretion
rates for different θB show little variation until t ≈ 300M .
Even at late times, the different configurations’ Ṁ devi-
ate by only around 50%, with the highest rates associ-
ated with the greatest deviation of the initial magnetic
field angle. As with the Poynting luminosity, we can
produce a time-averaged accretion for the steady state
(t > 1, 500M) of each configuration. This is presented in
Fig. 9. Viewed in this way, we see that the steady-state
accretion rate is relatively constant for 0° ≤ θB

<∼ 40°,
dropping off steeply for larger θB.

In Fig. 10, we plot the resulting efficiency (Eq. 4).

FIG. 7. Local integral contribution to Eq. 1 as a function of
(θ, φ) for extraction at R = 20M , 30M , 40M , and 50M for the
KS B45deg configuration. The solid (dashed) white contours
in the northern hemisphere show the regions enclosing 50%
(90%) of the contribution to the total Poynting luminosity.
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FIG. 8. Accretion rate |Ṁ | as a function of time for the B-
field angle configurations.

FIG. 9. Steady-state (t > 1, 500M) accretion rate as a func-
tion of field alignment angle θB. Error bars show the RMS
deviation from the time-average, beginning at t = 1, 500M .

Dominated by the field orientation, it shows levels of
∼ 25% for small θB, dropping an order of magnitude
for θB

>∼ 40°.

C. Features of Proto-Jet

In studies of black-hole neutron star mergers, [41] iden-
tify an “incipient, magnetized jet” as an “unbound, col-
limated, mildly relativistic outflow (Lorentz factor of
∼ 1.2), which is at least partially magnetically domi-
nated”. Informally, we identify a “proto-jet” as a mag-
netically dominated region showing concentrated twist-
ing of magnetic field lines, and strong localized Poynting
flux. [42–44] We use the term “proto-jet” here, because
while it shows intense winding of magnetic fields in a tra-

FIG. 10. Steady-state (t > 1, 500M) Poynting efficiency ηEM

(Eq. 4) as a function of field alignment angle θB.

ditional jet-like funnel region, the net fluid flow in this
region is inward, with low Lorentz factor. In this sub-
section, we attempt to clarify this definition by study-
ing more carefully the nature of the magnetic fields and
Poynting vector at late times.

Beam size. To evaluate the Poynting luminosity at a
radius R, we integrate the Poynting vector over a co-
ordinate sphere at that radius (Eq. 1). Figure 7 shows
the distribution of the integrand (that is, the Poynting
vector weighted by the local angular Jacobian) over the
sphere, with contours showing regions containing 10%,
50%, and 90% of the Poynting flux. We estimate the size
of the proto-jet by calculating the solid angle subtended
by the 50% contours. At late times, we can plot this
solid angle as a function of extraction radius. In Fig. 11,
we show the width of the beam in the northern hemi-
sphere as measured from the 50% contours for each of
the configurations. We see that the solid angular width
is smaller for the larger field initial inclination angles θB.
Moreover, the width generally decreases with radius, es-
pecially for configurations with θB

>∼ 15° (upper panel).
For extraction radii R ∈ {20M, 40M}, the falloff in an-
gular width is approximately 1/R2 – fast enough to keep
the jet’s absolute cross-sectional area roughly constant,
or “pencil-like” (lower panel)

Beam shape. As can be seen from Fig. 7, the cross-
sectional shape of the beam deviates strongly from circu-
lar when the magnetic field is misaligned with the black
hole spin. We present in Fig. 12 the beam shape as repre-
sented by the 50% contour for a range of field alignments,
measured at R = 30M .

For an aligned field, the beam cross-section is annu-
lar at all extraction radii, as the magnetic field drops to
zero on the axis due to symmetry. Here we see that the
beam shape becomes steadily less annular with increas-
ing θB. Simultaneously, the overall luminosity decreases,
and the beam weakens, becoming harder to distinguish
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FIG. 11. Upper panel: Solid angle subtended by 50% contour
of Sr in the northern hemisphere at t = 2, 000M as a function
of extraction radius R. Lower panel: 50 percentile “area” of
jet, formed by multiplying upper-panel widths by R2. The
inset shows the near-leveling off of the area until R ∼ 40M
for intermediate configuration angles.:w

from the rest of the sphere. For this reason, we omit the
corresponding plots for θB > 60°.

Beam position. We present in Fig. 13 the positions of
the center of the proto-jet for each configuration, show-
ing how it varies with extraction radius. To avoid high-
frequency variations, at each extraction radius R, we de-
composed the Poynting vector over the sphere into (real)
spherical harmonics up to ` = 2:

SrR(θ, φ) ≡
2∑
`=0

S`mY
m
` (θ, φ). (6)

The center positions are then the maxima of this
smoothed functional form. While the jet positions are
properly given as a pair of angles (θ, φ), we find it easier
to display as a pair of Cartesian-like projected coordi-

FIG. 12. Local integral contribution to Eq. 1 as a function
of (θ, φ) for extraction at 30M , for magnetic-field alignments
θB ∈ {15°, 30°, 45°, 60°}. The solid (dashed) white contours
in the northern hemisphere show the regions enclosing 50%
(90%) of the contribution to the total Poynting luminosity.
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nates X ≡ sin θ cosφ, Y ≡ sin θ sinφ, so that the hole’s
spin direction lies unambiguously at the origin in each
panel.

From the figure, we can see that all configurations have
jet directions that approach the asymptotic initial mag-
netic field direction at large R (denoted by × in the
figure). As we move inward along each configuration’s
curve, we see twisting of the jet direction around the
origin (that is, the BH spin axis). For initial inclina-
tion angles θB between 0° (i.e. parallel to the spin axis)
and ∼ 60°, the jet direction approaches the spin axis for
small R. For larger θB, the jet’s direction stops short of
the pole.

The azimuthal (Y -direction) offset at finite R appears
to be a result of frame-dragging in the background space-
time, as is the jet itself. There is no precise transi-
tion radius where the jet direction switches from being
aligned predominantly with the hole’s spin to its asymp-
totic direction, but the transition appears to occur within
R ∼ 20M . This is consistent with the observations of
[45], in their studies of jet twisting in tilted accretion
tori.

FIG. 13. Pseudo-jet center positions for the B15, B30, B45,
B60, and B75 configurations, in the Kerr hole’s “northern”
hemisphere, as determined by the maxima of the harmonically
smoothed Poynting vector function (Eq. 6) at t = 2, 000M .
Each dashed line connects the positions for all configurations,
determined at a certain extraction radius R. The × symbols
show the initial direction of the asymptotic magnetic field for
each configuration.

Jet Strength. We noted at the start of this subsection
that our “proto-jet” has not yet been demonstrated to
produce ultra-relativistic particle speeds. In particular,
as in Paper I, fluid inflow in the jet region is both sub-
relativistic and inward-pointing. While analyzing the af-
termath of a BHNS merger, [41] encounter a similar sit-
uation; they point out, however, that strong magnetic
dominance in the asymptotic jet region is expected to

lead to much higher Lorentz factors: Γ ∼ b2/2ρ [46].
In our case, the peak energy ratio drops to below ∼ 5

outside a few horizon radii, implying that actual rela-
tivistic jet conditions may not be reached for the fluid
particles present. This can be misleading, as the MHD
fluid is ion-dominated, and unlikely to be the source of
significant high-energy EM emission. If a mechanism is
present to seed the magnetically pressure-dominated re-
gion with electrons or electron-positron pairs, these can
be expected to experience much greater accelerations,
leading perhaps to jet-like electromagnetic emission.

V. DISCUSSION

In this paper, we have extended the work of [5] (Pa-
per I), focusing on the steady-state behavior of plasma
around a post-merger Kerr black hole. While Paper I fea-
tured merging equal-mass nonspinning black-hole binary
systems, with a spacetime dynamically simulated via the
moving puncture formalism, here we concentrated on the
end-state of such a merger, a single spinning Kerr black
hole with mass Mfinal = 0.97M , and dimensionless spin
a/Mfinal = 0.69. Since the spacetime is quiescent after
merger, we used a fixed Kerr-Schild metric representa-
tion of the spacetime to reduce the computational load,
and simplify post-simulation analysis. Nevertheless, the
initial MHD fields are fully dynamical, and our canonical
MHD configuration is that of Table I of Paper I. We have
concentrated on the Poynting luminosity LPoynt, mass ac-

cretion rate Ṁ , and resulting “Poynting efficiency” ηEM

of different initial plasma configurations.
First we investigated the dependence of LPoynt and Ṁ

on the specific internal energy of the plasma for fixed
fluid density. We find that higher-temperature configu-
rations take longer to settle down to a steady state, due
to the lower Alfvén speed in these cases. After reaching
a steady state, it is noticeable that both the Poynting
luminosity LPoynt and mass accretion rate Ṁ are highest
for the lowest temperatures, though subject to greater
variations in time. There also appear to be shallow lo-
cal minima in both steady-state LPoynt and Ṁ around
moderate temperatures; the combination of these yields
a Poynting efficiency ηEM of around 20% over most of
our temperature range, with a shallow minimum close to
our canonical configuration.

Returning to the canonical configuration, we also stud-
ied the result of varying the angle θB between the asymp-
totic magnetic field and the Kerr hole’s spin direction.
We found that LPoynt falls swiftly with θB, consistent
with expectations from force-free MHD. We find the mass
accretion rate is less sensitive to θB until around 40°,
dropping steeply thereafter.

We note here that the cos2 θB dependence noted for
Force-Free MHD [40] was only confirmed in the low-spin
limit (a/M = 0.1), and even then, imperfectly so. We
emphasize that the steeper behavior seen in this paper is
empirical, and while we suggested a hyperbolic tangent
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as a “smooth step function” that better captures the be-
havior seen, we do not propose that this functional form
has any particular theoretical support. We will note that
(as seen in Paper I), the accompanying plasma in our
Ideal GRMHD simulations induce a greater amplification
of magnetic field – and hence the Poynting luminosity –
than is seen in pure force-free simulations. If this ampli-
fication itself is stronger for aligned-field situations, then
this will cause a sharper dropoff with alignment angle
than might be expected for force-free.

Looking at the mass-accretion rate in Fig 9 further
emphasizes this two-regime picture, where nearly aligned
fields yield generally low mass-accretion, high Poynting
luminosity, and consequently high efficiency (Fig 10),
while significantly misaligned fields show the opposite
behavior. The transition between these two regimes ap-
pears to be around θB = 45°.

Finally, we investigated the form of the “proto-jet”
formed by the spacetime dragging of plasma and mag-
netic field lines. We showed how the jet width varies
with radius, and how the jet direction moves continu-
ously from aligning with the black-hole spin axis for small
R(<∼ 5M) to adopting the direction of the asymptotic
magnetic field for R >∼ 30M .

Having summarized the main results of our investiga-
tions, we may ask what implications these have for the
astrophysical question of electromagnetic counterparts of
black-hole mergers. As noted above, we see little varia-
tion in either mass-accretion rate or Poynting luminosity
over a broad range of specific internal energies around
our canonical value. We do see a strong dependence
on the angle θB between the black hole’s spin and the
global magnetic field, with luminosity dropping quickly
as the misalignment angle increases. Additionally, while
the proto-jet is aligned with the black hole spin in the
strong-gravity region (within a few Schwarzschild radii of
the horizon), it soon relaxes to lie parallel to the initial
asymptotic magnetic field direction. Expectations of jet
alignment are ambiguous in the absence of surrounding
matter: should they align with the hole’s spin or with the
asymptotic magnetic field [40, 47]? Our results indicate
a transition between the two states, with the hole’s spin’s
influence declining rapidly with distance. Assuming that
the asymptotic magnetic field is seeded by the plasma,
our result here agrees qualitatively with GMRHD explo-
rations by [48] of tilted-disk simulations of highly spin-
ning black holes, where the jet aligns with the black hole
spin at r = 4M , but with the disk’s angular momentum
at r = 40M .

This latter observation raises the question of what we
should assume for the shape, strength, and orientation of
the external magnetic field. This is a complicated ques-
tion, beyond the scope of this paper, which we have ne-
glected in favor of a survey over orientations, regardless
of cause.

In astrophysical units, the steady-state luminosity for
our canonical case is consistent with the “peak” lumi-
nosity of Paper I, but drops steeply as the angle θB be-

tween spin and asymptotic magnetic field increases, to
about 10% of its maximum. The rate of drop-off in θB

is consistent with, the cos(θB)2 expectations from force-
free models, or with a slightly steeper step-function. We
can combine the results of Paper I with the θB depen-
dence seen in Fig. 6 to obtain a more general expression
for the steady-state Poynting luminosity at arbitrary spin
inclination angle θB to the asymptotic magnetic field di-
rection:

LPoynt,steady ≈ 1046ρ-13M
2
8 H(θB)erg s−1, (7)

where H(θB) is a function that captures the smooth step-
like behavior observed in Fig. 6.

In performing the studies presented here, we have ful-
filled some of the additional investigations outlined in
the discussion of Paper I, focusing on the bulk behavior
of MHD fields around the post-merger Kerr black hole.
Since the work here was performed on a post-merger
stationary Kerr background spacetime, a full radiation
transport treatment of the resulting MHD fields using,
e.g. the Pandurata code [49] could not be expected to
produce novel results including an EM signature of the
merger process, and we did not attempt it here.

Meanwhile, other extensions of Paper I are being car-
ried out in parallel to this work, looking at the effect
of significant spins on the pre-merger black holes [50].
With these in place, we anticipate turning our attention
to rotationally supported matter distributions and mag-
netic field configurations, and to more realistic inclusion
of radiation transport with the fully dynamical merging
binary metric, using new developments in Pandurata.

During review of this paper, we became aware of com-
plementary angular studies being carried out using the
Athena++ code [51], using a higher central black-hole spin
and a Γ = 5/3 nonrelativistic plasma, at a lower temper-
ature than our canonical case. While broad conclusions
from that work are consistent with ours here, the differ-
ent conditions do give rise to some significant differences,
including a maximum jet power at intermediate angles
θB, rather than the monotonic decline we observe with
increasing θB. These differences suggest a richer param-
eter space still waits to be explored in future work.
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Appendix A: Kerr-Schild Background

The form of the background Kerr metric used for
the evolutions is one frequently called “Kerr-Schild” by
accretion-disk theorists [32]:

ds2 =−
(

1− 2Mr

ρ2

)
dt2 +

4Mr

ρ2
dt dr − 4ar2 sin2 θ

ρ2
dt dφ

+

(
1 +

2Mr

ρ2

)
dr2 − 2a

(
1 +

2Mr

ρ2

)
sin2 θ dr dφ

+ ρ2dθ2 +
A sin2 θ

ρ2
dφ2, (A1)

where ∆ ≡ r2 − (2Mr) + a2, ρ2 ≡ r2 + a2 cos2 θ,
and A ≡ ((r2 + a2)2) − a2∆ sin2 θ. To be used in the
EinsteinToolkit, this metric must be decomposed into
its “3+1” form – lapse function α, shift vector βi, and
three-metric γij , as well as the associated extrinsic curva-
ture Kij –, and transformed into a Cartesian coordinate
basis. An explicit listing of these “3+1” fields for the
Kerr-Schild metric (still in a spherical-polar coordinate
basis) can be found in the appendix of [52].

As the radial and polar coordinates here are unchanged
from that of the original Boyer-Lindquist form, the hori-
zon is still a coordinate sphere defined by ∆(r) = 0:

r+ = M +
√
M2 − a2.

Appendix B: Diagnostics

The sound speed cs of the initial fluid configuration can
be calculated as [53]:

c2s =
∂p

∂ρ
=

1

h

(
χ+

p

ρ2
κ

)
,

where χ ≡
(
∂p
∂ρ

)
ε
, κ ≡

(
∂p
∂ε

)
ρ
.

For an ideal fluid, χ = (Γ− 1)ε, κ = (Γ− 1)ρ, and the
above simplifies to

c2s =
Γ(Γ− 1)ε

1 + Γε
=

4ε

9 + 12ε
, (B1)

for the Γ = 4/3 fluid we use here. For our canonical case,
ε0 = 0.6, and cs ≈ 0.385.

We will also be interested in quantities that may help
us predict when magneto-rotational instability (MRI) is
important. To this end, we calculate the Alfvén speed

vAlf =

√
b2

ρ(1 + ε) + p+ b2
, (B2)

where ρ is the baryonic density, ε the specific internal
energy (thus ρε is the internal energy density), p is the
fluid pressure, and b2 is the magnetic energy density.

It may be useful to compare our results with the Bondi
accretion rate, even though the latter is strictly defined
for hydrodynamic fluids, and on a Schwarzschild back-
ground. From Chapter 14 and Appendix G of [54], we
find that for a polytrope with Γ < 5/3, the Bondi accre-
tion rate is

ṀBondi ≈ 4πλsM
2ρ∞a

−3
∞ , (B3)

where ρ∞ ≡ mn∞ is the rest-mass energy density eval-
uated infinitely far away from the black hole, a∞ is the
asymptotic sound speed, and the constant λs is

λs ≡
(

1

2

) Γ+1
2(Γ−1)

(
5− 3Γ

4

)− 5−3Γ
2(Γ−1)

For the Γ = 4/3 plasma we use in these studies,

λs = 1/
√

2 ≈ 0.7071. Moreover, for our canonical plasma
configuration, ρ∞ = 1, p∞ = κρΓ

∞ = 0.2, and a∞ = cs.
Then the Bondi accretion rate is (with M = 1):

ṀBondi,canonical ≈ 4π
1√
2
c−3
s ≈ 156.

Appendix C: Robustness of Numerical Results

1. Puncture or Fixed Kerr?

For these investigations, we assumed a fixed Kerr back-
ground in the Kerr-Schild slicing of Sec. A. In princi-
ple, we should allow the black-hole background to re-
act to the influx of matter, which should increase the
black hole’s mass while decreasing its (dimensionless)
spin, as the fluid is initially at rest in the zero-angular-
momentum (ZAMO) frame. To do this we would have to
used puncture-like initial data and enabled feedback in
the evolutions.

However, for massive (M ∼ 108M�) black holes in a
low-density (∼ 10−13g cm−3)) plasma, the infalling mass
and angular momentum is entirely negligible.
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To justify this, we performed an evolution of our canon-
ical system using the quasi-isotropic Kerr metric [55] with
the same Kerr parameters (M = 0.97, χ = 0.69). This
metric can be evolved with the standard puncture for-
malism. With matter feedback enabled (by setting the
IllinoisGRMHD parameter update Tmunu to true), the
total matter content of the domain (and hence the MHD
fluid density ρ) is coupled to the black hole mass M .
WithM = 1 in code units, we chose ρ0 = 10−6. With this
initial code-units density, the horizon mass of the black
hole increased by ∼ 20% over the course of 1000M of
evolution. Dropping to ρ0 = 10−8 and scaling b0 accord-
ingly decreased the accretion rate by a factor of ∼ 100,
indicating that the accretion roughly scales linearly with
the fluid density.

A code-units density of ρ0 really means ρ0M/M3.
The length unit appearing in the denominator is ∼
1.5(M/M�)km; thus the density in physical units will
be ρ0M/(3.375 · (M/M�)3)km−3. For our canonical to-
tal mass M = 108M�, this becomes

ρ = ρ0
108M�

3.375 · 1024
km−3 ≈ 50ρ0g · cm−3

Thus our choice of ρ0 = 10−6 in code units is equivalent

to a physical density of ∼ 5 × 10−5g · cm−3. As this is
more than seven orders of magnitude greater than our as-
sumed canonical plasma density (10−13g cm−3), we con-
clude that for all configurations considered in the main
text, the black hole mass could increase by no more than
one part in 106, even with feedback switched on.

2. Varying B or a direction?

As mentioned in Section IV B, we investigate the θB-

dependence of our results by keeping ~a ≡ ak̂, and set-

ting ~B = B cos θB. for one representative case, how-
ever, we instead chose the spin vector to be oriented as

~a = a sinπ/4̂i+ a cosπ/4k̂, with ~B = Bk̂.

In Fig. 14, we show the Poynting luminosity LPoynt

for two configurations with θB = 75°, with either ~a or ~B
fixed along the z axis. We can see that the two curves
track exactly until after the peak, where small differences
begin to set in.

In this figure we also demonstrate how the luminosity
changes with resolution, and with field orientation in the
equatorial plane.
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