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A B S T R A C T

The Korea Land Data Assimilation System (KLDAS) has been established for agricultural drought (i.e. soil
moisture deficit) monitoring in South Korea, running the Noah-MP land surface model within the NASA Land
Information System (LIS) framework with the added value of local precipitation forcing dataset and soil texture
maps. KLDAS soil moisture is benchmarked against three global products: the Global Land Data Assimilation
System (GLDAS), the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System
(FLDAS), and the European Space Agency Climate Change Initiative (ESA CCI) satellite product. The evaluation
is performed using in situ measurements for 2013–2015 and one month standardized precipitation index (SPI-1)
for 1982–2016, focusing on four major river basins in South Korea. The KLDAS outperforms all benchmark
products in capturing soil moisture states and variability at a basin scale. Compared to GLDAS and FLDAS
products, the EAS CCI product is not feasible for long term agricultural monitoring due to lower data quality for
early periods (1979–1991) of soil moisture estimates. KLDAS shows that the most recent 2015 drought event
leads to highest drought areas in the Han and Geum River basins in the past 35 years. This work supports KLDAS
as an effective agricultural drought monitoring system to provide continuous regional high-resolution soil
moisture estimates in South Korea.

1. Introduction

Drought is commonly characterized by the deficits of hydrologic
budget variables (i.e. precipitation, soil moisture, groundwater, eva-
potranspiration and streamflow) from average conditions (Anderson
et al., 2013; Kumar et al., 2014). Drought can develop into a natural
disaster, depending on its severity, duration and frequency, which leads
to an increased need for drought monitoring and water resource man-
agement systems (Anderson et al., 2011, 2013). Under the East Asian
monsoonal circulation, the Korean peninsula has been experiencing a
4–6-year cycle of extreme droughts at a nationwide scale since 1960
(Kwon et al., 2016). South Korea recently faced a severe drought during
2014–2015 when the annual rainfall was less than half of the historical
average for two consecutive years, which was regarded as the worst
drought in the past 50 years (Kwon et al., 2016; Hong et al., 2016). That
drought resulted in the lowest recorded water level of most multi-
purpose dams and downstream reservoirs nearly depleted as a result of

the decreased inflow in the Han River and Geum River basins over
northern and western South Korea (Kwon et al., 2016; Hong et al.,
2016). The 2014–2015 drought also ruined ~60 km2 of agricultural
area, including ~25 km2 of rice paddies equivalent to 0.3% of total rice
paddy area (Hong et al., 2016). Currently, the need for a national-level
drought monitoring system has received considerable attention and
efforts are being made to improve the early detection of drought and
the efficiency of mitigation responses (Jang, 2018). The decision
making for drought mitigation in South Korea has been mainly sup-
ported by a dense network of rainfall data in meteorological stations
and water storage in agricultural reservoirs. The current actions and
measures in the drought system have been carried out based on a me-
teorological drought index considering precipitation deficit, water
supply and demand. However, there has been no attempt to produce
spatially distributed hydrological drought indices with the state-of-the-
art land surface models, reporting an agricultural drought (i.e. deficit in
soil moisture states) over South Korea.
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Soil moisture plays an important role in our understanding of the
interaction between the atmosphere and Earth’s surface and reflects
agricultural and hydrological drought conditions (Sheffield and Wood,
2007; Spennemann et al., 2015; Li et al., 2018). Compared to pre-
cipitation, soil moisture is more spatially heterogeneous and an ex-
cellent proxy indicator to represent local drought conditions controlled
by topography and land cover (Chaney et al., 2015). Recently, in situ
measurements and remote sensing products have provided soil
moisture estimation, which can serve as important short-term drought
(monthly to seasonal) indicators (Spennemann et al., 2015). But, long
term (> 30 years) records of soil moisture measurements in their spa-
tial and temporal coverages are not available in many parts of the world
to represent the average conditions and figure out the extremes
(Anderson et al., 2011; Spennemann et al., 2015). Remote sensing in-
struments have been important to provide spatiotemporally continuous
soil moisture for agricultural drought monitoring since the 1970 s
(Jackson et al., 2010; Pietroniro and Prowse, 2002). But, their coarse
spatial scales and limited operation period of these satellite sensors
have prevented their widespread application in drought monitoring.
For studying long term trend and variability of soil moisture, the Eur-
opean Space Agency Climate Change Initiative (ESA CCI) combined
multiple passive and active microwave soil moisture satellite products
along with a consistent climatology (Loew et al., 2013; Dorigo et al.,
2015).

Several studies have demonstrated that the use of land surface
models (LSMs) driven by observed meteorological forcing datasets
produce spatially and temporally continuous estimation of agricultural
drought across scales. At a global scale, the Global Land Data
Assimilation System (GLDAS) provides products related to soil moisture
and drought conditions in near real time from multiple LSMs and dif-
ferent meteorological forcing datasets at 1° resolution for version 1 and
0.25° resolutions for version 2 products (Rodell et al., 2004). Other
studies focused on agricultural droughts in South America (e.g.
Spennemann et al., 2015) and China (e.g. Yuan et al., 2015) from
GLDAS, the United States (e.g. Kumar et al., 2014) from the North
American Land Data Assimilation System (NLDAS; Mitchell et al.,
2004), and Africa (e.g. McNally et al., 2016) from the Famine Early
Warning Systems Network (FEWS NET) Land Data Assimilation System
(FLDAS) (McNally et al., 2017). However, few studies have attempted
to use LSMs and investigate agricultural drought over South Korea
where high resolution soil moisture data are necessary to identify de-
tailed spatial drought conditions due to complex topography and het-
erogenous soil moisture texture types (Park et al., 2017). For instance,
though GLDAS version 2 products can represent most inland areas in
South Korea with an intermediate spatial resolution (~25 km) , GLDAS
version 1 products (including simulations of multiple LSMs) and passive
microwave products (i.e. SMMR, SSM/I and TMI) with a coarse spatial
resolution (60–100 km) are limited to capture the complete coverage of
South Korea, excluding most coastal regions of the Korean Peninsula.

Model-based soil moisture has not been fully served as an agri-
cultural drought index in South Korea where rice paddy agriculture is
an important sector as a major source of livelihood similar to South and
Southeast Asian countries. Most of the agricultural drought analysis in
South Korea have been carried out using remote sensing data and re-
analysis data without a modeling framework (e.g. Ryu et al., 2019;
Yoon et al., 2020; Park et al., 2017; Sur et al., 2015). Therefore, this
study (1) establishes the Korea Land Data Assimilation System (KLDAS)
with the added value of local precipitation forcing dataset and soil
texture maps to produce soil moisture estimates and their drought es-
timates at a 1-km spatial resolution; (2) evaluates soil moisture esti-
mates and drought estimates from KLDAS against in situ measurements
for 2013–2015 and the one month standardized precipitation index
(SPI-1) for 1982–2016; (3) compares KLDAS products with two
benchmark LDAS products (GLDAS version 2 and FLDAS) and one re-
mote sensing product (ESA CCI); and (4) examines the performance of
KLDAS agricultural drought area percentages in the four major river

basins of South Korea. The focus here is to evaluate surface soil
moisture estimates due to the data availability of the remote sensing
product and in situ measurements, though agriculture drought is more
related to shortages of root zone soil moisture. This study serves to
support the use of KLDAS as an agricultural drought indicator to fa-
cilitate continuous regional high resolution soil moisture monitoring for
the analysis of droughts over South Korea. The findings of this study
serves as an important baseline and support for the upcoming KLDAS
development driven by a broad range of improved local meteorological
forcing datasets.

2. Data and methods

2.1. Study area

The study area covers the southern part of the Korean peninsula
between 33.8° N to 39° N and 124.5° E to 130° E. Climatologically, this
domain represents the Asian monsoon region, which has a wet summer
season from June to August when nearly half of the annual precipita-
tion of 1350 mm falls with summer typhoons and heavy rains (Jang,
2018; Sur et al., 2015). The country frequently experiences droughts
during crop growing seasons between April and October due to absolute
shortage of rainfall (Park et al., 2017). Over 60% of the domain consists
of mixed forest, deciduous broadleaf forest, and woody savanna
whereas cropland covers 30% mainly over the western and south-
western regions (Sur et al., 2015). The agriculture area of South Korea
is ~ 16,000 km2 (MAFRA, 2017). Agricultural reservoirs (~17,000),
groundwater pumping stations (~7,000), irrigation canals
(~120,000 km2) serve to offer water to the cropland (Ryu et al., 2019;
MAFRA, 2017). This study focuses on the four major river basins which
current national drought management framework has been mainly or-
iented to: Han River basin (~26,000 km2) over north, Geum River basin
(~10,000 km2) over west, Nakdong River basin (~24,000 km2) over
southeast, and Yeongsan River basin (~8,000 km2) over southwest of
South Korea (~100,000 km2).

2.2. Kldas

KLDAS was established using the Noah land surface model with
Multi-Parameterization, version 3.6 (Noah-MP; Cai et al., 2014) at a
0.01° spatial resolution grid with a 15-min timestep to generate daily
energy and water balance variables. The KLDAS domain covers the
Korean peninsula, including North and South Korea, between 33° N to
44° N and 124° E to 132° E. Noah-MP was selected because of its ability
to explicitly represent groundwater, dynamic vegetation phenology,
and a multilayer snowpack. In this study, we used the modified Inter-
national Geosphere Biosphere Programme 20-category landuse data
from the Moderate Resolution Imaging Spectroradiometer (MODIS;
Friedl et al., 2002), monthly climatologies of leaf area index (LAI) and
greenness fraction from the NOAA Advanced Very High Resolution
Radiometer (AVHRR; Gutman and Ignatov, 1998). For model physical
processes, we used the simple groundwater model (SIMGM) runoff and
groundwater option, monthly LAI with constant shade fraction for ve-
getation model and the Ball-Berry for canopy stomatal resistance (Niu
et al., 2007). We ran the simulation from 1980 to 2016 and reinitialized
it in 1980 for the LSM variables to reach equilibrium. Soil moisture
estimates from the first soil layer (0–10 cm) out of four soil layers were
extracted for our analysis. The choice of the soil depth was matched
with the average soil layer depth of in situ measurements used in this
study as well as GLDAS and FLDAS products.

The Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2; Reichle et al., 2017) datasets were
used to force the model. MERRA-2 is available globally at the hourly
time step and horizontal resolution of 2/3° longitude by 1/2° latitude.
Specifically, precipitation observations from 101 Automated Synoptic
Observing System (ASOS) stations of Korean Meteorological
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Administration (KMA) in South Korea and 27 Global Telecommunica-
tion System (GTS) stations in North Korea were processed into 12
hourly and 0.01° gridded data using inverse distance weighting. Loca-
tions of the ASOS stations used in this study are shown in Fig. 1a. The
combined ASOS and GTS precipitation dataset replaced the MERRA-2
precipitation fields. The elevation data from the Shuttle Radar Topo-
graphy Mission (SRTM; Rodriguez et al., 2005) was used to derive the
topography datasets of elevation, slope, and aspect. Other meteor-
ological inputs (i.e. air temperature, humidity, pressure, winds, radia-
tion) from MERRA-2 were adjusted for the elevation differences
through lapse-rate and slope-aspect correction methods (Kumar et al.,
2013) and downscaled to 0.01° gridded data. Instead of employing

global soil texture datasets, 16-category soil texture maps at a 30-meter
spatial resolution grid over South Korea, combined with 8-category soil
texture maps at a scale of 1:500,000 for the border between North and
South Korea, from the Korea Water Resources Corporation (K-water;
more details can be found in Jung et al., 2017), were rescaled into 0.01°
gridded data as inputs to the KLDAS. Over 70% of the soil type consists
of sand and loam which are more dominant than clay and silt in the
study area.

Fig. 1. Spatial distribution maps of (a) ASOS observation (OBS), (b) GPCP, and (c) CHIRPS annual precipitation (mm/year) for the period 1982–2016. (a) Black dots
indicate locations of the precipitation measurement sites. Temporal correlation coefficients (R) of (d) OBSvGPCP and (e) OBSvCHIRPS. (f) Average monthly pre-
cipitation rates of each of three precipitation datasets. Cumulative distribution function (CDF) for monthly precipitation rates from (g) April to June, (h) July to
August, and (i) September to October.
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2.3. Comparison datasets

2.3.1. Gldas
The soil moisture products from GLDAS, version 2.0 (1948–2010)

and version 2.1 (2000-present) datasets from the Noah version 3.3
model on a 0.25° gridded data were used in this study (Rodell et al.,
2004). In contrast to the same LSM used in the two versions, GLDAS-2.0
was entirely forced with the Princeton meteorological forcing data on a
1° gridded data (Sheffield et al., 2006) whereas GLDAS-2.1 was forced
with a combination of National Center for Environmental Prediction’s
Global Data Assimilation System (GDAS) atmospheric analysis fields on
a 0.2° gridded data (Derber et al., 1991) and Global Precipitation Cli-
matology Project (GPCP) precipitation field on a 1° gridded data (Adler
et al., 2003). GLDAS version 2.1 starts in January 2000, so the bias-
corrected GLDAS version 2.0 for years 1982–1999 are merged into
GLDAS version 2.1 to match the long term KLDAS outputs for
1982–2016. We used the mean and standard deviation of the two
version datasets during the overlapped years 2000–2010 to correct the
bias between the two products. The soil texture maps were derived from
5 min resolution global soil datasets with 16-category soil texture of
Food and Agriculture Organization of the United Nations (FAO; more
details can be found in Reynolds et al., 2000; Rodell et al., 2004). The
global soil texture map shows a constant class of loam in the study area.

2.3.2. Fldas
FLDAS recently released global monthly products in 0.10° resolution

from the Noah version 3.6.1 model, ranging from January 1982 to
present (McNally et al., 2017). The soil moisture estimates in the first
layer (0–10 cm) from the FLDAS products were used for this study. The
simulation was forced by a combination of the MERRA-2 data and
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS;
Funk et al., 2015) 6-hourly rainfall data. Note that compared to spatial
resolution differences amongst the three LDAS products, the FAO’s
global soil texture maps (used in GLDAS) and the MERRA-2 meteor-
ological forcing dataset (used in KLDAS) were rescaling into 0.10°
gridded data to inputs to the FLDAS.

2.3.3. EsA CCI
The ESA CCI surface soil moisture dataset version 4.2 from

November 1978 to December 2016 was used in this study (Dorigo et al.,
2015). The global product combined satellite soil moisture retrievals
from four passive (i.e. the Nimbus 7 Scanning Multi-channel Microwave
Radiometer (SMMR), the Special Sensor Microwave Imagers (SSM/I) of
the defense meteorological satellite program, the Tropical Rainfall
Measuring Mission Microwave Imager (TMI), and the Advanced Mi-
crowave Scanning Radiometer-Earth Observing System (AMSR-E)
sensor on NASA's Aqua satellite) and two active (the European Remote
Sensing Satellites 1 and 2 Active Microwave Instrument (AMI) wind
scatterometer and the Advanced Scatterometer (ASCAT) onboard the
meteorological operational platform). The active products were merged
into a combined dataset since August 1991. This long term product
enables climate studies and drought analysis, which is available daily
on a 0.25° spatial resolution on a global coverage.

2.4. Evaluation procedure

We evaluate KLDAS soil moisture estimates for the use of drought
monitoring during the crop growing seasons from April to October.
Also, we employ GLDAS, FLDAS and ESA CCI as benchmark datasets
and intercompare them with KLDAS. These benchmark products were
downscaled into 0.01° using nearest liner interpolation for our eva-
luation and comparison.

First, precipitation datasets GPCP (used to force GLDAS) and
CHIRPS (used to force FLDAS) were evaluated against the ASOS gridded
dataset (used in KLDAS) for years 1982–2016. Since precipitation is the
most important input data into the LSMs to estimate soil moisture, we

calculated their spatial distribution maps of annual rates, the average
monthly rates, and the cumulative distribution functions (CDF) for
monthly precipitation during crop growing seasons.

Second, soil moisture estimates were evaluated against 78 in situ
observations for short term 3 years, 2013–2015. There are 17 stations
used for evaluation in the Han River basin, 19 in the Geum River basin,
13 in the Nakdong River basin, and 9 in the Yeongsan River basin. Daily
soil moisture observations were obtained from the Korea
Meteorological Administration (KMA) and Rural Development
Administration (RDA) and were aggregated into monthly values for the
evaluation (more details can be found in Jung et al., 2017). At the
stations, soil moisture was measured using Time Domain Reflectometry
(TDR) at an average depth of 10 cm. Though the sensing depth of sa-
tellite data (e.g. ESA CCI) is only a few centimeters, surface soil
moisture is closely related to soil moisture in the upper 10 cm (Albergel
et al., 2008), which is the depth of the first soil layer for our selected
LSMs in this study. Considering that there are large biases between the
model and satellite soil moisture datasets (Koster et al., 2009), we
computed anomalies for all soil moisture values. The Pearson correla-
tion coefficient (R) and the root-mean-squared-error (RMSE) of the soil
moisture anomalies were calculated to investigate the similarity be-
tween the soil moisture products and ground observations.

Third, for evaluation of long term soil moisture estimates, soil
moisture datasets were converted into Standardized Soil Moisture Index
(SSMI) and were evaluated against the 1 month Standardized
Precipitation Index (SPI-1; McKee et al., 1993) using 35 years of his-
torical data measured at 101 ASOS stations for 1982–2016. In this
study, the SPI-1 was used because of limited soil moisture measure-
ments for a long period of records. The SPI on a time scale of
1–3 months gives the highest correlation with surface soil moisture
whereas deeper soil layers show better correlation with longer time
scales (Sims et al., 2002). Previous studies (Sur et al., 2015; Choi et al.,
2013) demonstrated that the short term SPI shows similar spatial and
temporal patterns as SSMI and can be used as a drought index in South
Korea. Also, the short term SPI has been used to quantify agricultural
droughts in other regions such as South America (Spennemann et al.,
2015) and china (Li et al., 2018; Yuan et al., 2015).

Finally, probability of detection (POD), false alarm rate (FAR), and
equitable threat score (ETS) were calculated to evaluate drought esti-
mates from four soil moisture products against SPI-1 drought area from
the gridded ASOS dataset (Wilks et al., 2011). Surface soil moisture is so
responsive to precipitation that the precipitation based index can be
used as independent dourght evaluation. The drought condition is de-
fined as the monthly SSMI and SPI-1 less than −0.8 (Yuan et al., 2015).
This has the highest applicability in South Korea and corresponds to
moderate drought (percentile< 20%) classified in the U.S. Drought
Monitor (USDM; Svoboda et al., 2002). Also, we calculate the yearly
drought area percentages for years 1982–2016 and compare the four
soil moisture products at a basin scale.

3. Results and discussion

3.1. Evaluation of precipitation datasets

The GPCP and CHIRPS datasets are evaluated against the observa-
tion based precipitation ASOS dataset (OBS) in Fig. 1. In terms of the
average annual precipitation rates for years 1982–2016, GPCP
(1193 mm/yr) is lower than OBS (1268 mm/yr), but shows the similar
spatial pattern as the OBS. CHIRPS shows the highest annual pre-
cipitation rates (1316 mm/yr) and represents higher rates particularly
over southern and mid-eastern regions. Both domain-averaged tem-
poral correlation coefficients of OBSvGPCP and OBSvCHIRPS are 0.95,
but their spatial distributions are different (see Fig. 1d, 1e). The cor-
relation coefficient map between ASOS and GPCP presents pointwise
local patterns with lower values in areas near to ASOS precipitation
stations (i.e. the “bulls-eye” features) due to its coarser resolution
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compared to CHIRPS. In terms of the average monthly precipitation
rates, there are larger differences during wet seasons from July to Au-
gust with almost half of the annual precipitation rates. The cumulative
distribution functions (CDF) of three precipitation products (in Fig. 1g,
1 h, 1i) are similar during spring (April to June), but shows the dis-
crepancies during late summer (July to August) and early autumn
(September to October). As a result, GLDAS forced by GPCP is likely to
underestimate soil moisture whereas FLDAS forced by CHIRPS may
overestimate soil moisture over the study area. This suggests that bias
correction of the global precipitation datasets could improve their
forced LSMs or hydrological models, particularly during wet season in
South Korea.

3.2. Evaluation of soil moisture estimates

Soil moisture estimates from KLDAS, GLDAS, FLDAS, and ESA CCI
are evaluated against 78 in situ observations between April and October
during 2013–2015 in Fig. 2. Overall, KLDAS shows the best perfor-
mance for all river basins in terms of anomaly R and anomaly RMSE
metrics. The order of the evaluation metrics from highest to lowest is
KLDAS, ESA CCI, GLDAS, and FLDAS. This supports that KLDAS at 0.01°
spatial resolution better represents in situ soil moisture measurements
than GLDAS at 0.25° resolution, FLDAS at 0.1° resolution, and ESA CCI
at 0.25° resolution with the added value of local precipitation forcing
dataset and soil texture maps. They provide more accurate and higher
resolution datasets compared to the corresponding inputs to the other
LDAS products. For example, soil texture maps from K-water accom-
modate more detailed categories of sandy loam (73%), clay loam
(14%), and silty clay loam (5%) whereas the FAO’s global soil texture
maps occupy dominantly loam (96%).

Three additional Noah-MP experiments at 0.01° spatial resolution
were carried out to separate out the effect of precipitation, soil texture,
and downscaled meteorological forcing datasets on the KLDAS soil
moisture estimates. Table 1 shows that an experiment without local
precipitation and soil texture map (i.e. Ex3) outperforms the other
LDAS soil moisture estimates by downscaling MERRA-2 meteorological
forcing datasets through lapse-rate and slope-aspect correction methods
and running the LSM at higher spatial resolution. Also, the local pre-
cipitation effect is larger than the local soil texture map when com-
paring the evaluation metric R and ubRMSE values of these

experiments. The KLDAS forced by both local precipitation and soil
texture map shows the highest domain-averaged R value whereas the
lowest domain-averaged ubRMSE value occurs in an experiment using
only local precipitation dataset.

At a basin scale, the Nakdong River basin shows the highest R and
lowest RMSE values than the other river basins except for RMSE in ESA
CCI. This is related to the fact that, compared to the Nakdong River
basin, the Han River basin is located over mixed forests and built-up
areas and shows more spatial heterogeneity in soil moisture estimates.
The Geum and Yeongsan River basins are mostly composed of cropland
(i.e. rice paddy agriculture) where irrigated areas may not be well
modeled for their regional irrigation rates. The KLDAS, GLDAS, and
FLDAS products used in this study do not consider irrigation modules in
the modeling framework to generate their hydrological variables.

3.3. Evaluation of standardized soil moisture index

Monthly SSMI maps from the four soil moisture products are eval-
uated against monthly SPI-1 from the ASOS precipitation dataset for
1982–2016 in South Korea where long term records of in situ soil
moisture measurements are limited. Fig. 3 represents the spatial dis-
tribution maps of the SSMI and SPI-1 values for a recent May 2015
drought event in South Korea. Overall, SSMI maps show dry status with
negative values in northern South Korea and relatively wet status in
southern South Korea. The SPI-1 maps from the ASOS observations,
GPCP, and CHIRPS were expected to show the similar spatial pattern of
the SSMI maps from KLDAS, GLDAS, and FLDAS, respectively. This
supports that despite the similar LSMs (used in the three LDAS pro-
ducts) and the same MERRA-2 forcing dataset (used in the two LDAS
products), changes in precipitation can serve as the main driver of the
modeled soil moisture variability. It is noteworthy that most products
show the May 2015 drought condition in the central region, but the
GLDAS and ESA CCI products present mild conditions. Compared to
GLDAS and ESA CCI, FLDAS seems to better capture the May 2015
drought with the similar spatial pattern as the KLDAS map.

Fig. 4 shows the correlation coefficients between the ASOS SPI-1
and each of the four monthly SSMIs for 1982–2016. The order of the
evaluation metric from highest to lowest is KLDAS, GLDAS, FLDAS, and
ESA CCI. KLDAS shows the best result, which is in agreement with
evaluation of soil moisture estimates in Fig. 2. But, the lowest

Fig. 2. Evaluation of soil moisture estimates from (a,e) KLDAS, (b,f) GLDAS, (c,g) FLDAS, and (d,h) ESC CCI against 78 in-situ observations for years 2013–2015.
Black values are the domain-averaged anomaly R and anomaly RMSE metrics. Red, cyan, green and blue values and lines represent evaluation metrics and borders for
each of four river basins, Han River basin over north, Geum River basin over west, Nakdong River basin over southeast, Yeongsan River basin over southwest of South
Korea, respectively.
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performance is found in ESA CCI with the second best in Fig. 2. This
indicates that though ESA CCI better captures recent soil moisture be-
havior, it is not feasible to detect historical drought conditions. This can
be related to the fact that the quality of ESA CCI product depends on the
quality of the data used in its algorithm. The ESA CCI products with
more recent satellite observations can provide improved soil moisture
estimates along with an increase of the spatio-temporal coverages. Note
that only a single passive microwave retrieval was used to produce soil
moisture estimates in the early period (1979–1991) of the ESA CCI
merged product (Dorigo et al., 2015; McNally et al., 2016). Interest-
ingly, KLDAS presents more detailed spatial patterns due to higher re-
solution soil texture maps as the model inputs. The border between
North and South Korea at latitudes 38-39° appears with a coarser spatial
scale as a result of the coarser soil texture maps and lower precipitation
sampling rates compared to the domain of South Korea. GLDAS and
EAS CCI show the lowest performance in the midwestern region, par-
ticularly with the “bulls-eye” pattern in GLDAS. This localized lower
performance is found in the Seoul metropolitan area, a location with
heterogeneous land cover. This can be also explained by the fact that
these two coarser global products are limited to capture local scale
spatiotemporal variability of hydrological variables. At a basin scale,
the Yeongsan River basin shows the highest R values in KLDAS and ESA
CCI, but the lowest values in GLDAS product, which is similar to the
results in Fig. 2.

The correlation coefficients between the ASOS SPI-1 and each of the
four monthly SSMIs are calculated by months from April to October in
Fig. 5. Overall, all soil moisture products show similar R values in both
dry and wet seasons. KLDAS shows higher R values (> 0.6) during all

crop growing seasons with lower standard deviations than the other soil
moisture products. This supports that their agricultural drought esti-
mates have little seasonal variation and bias, which can be useful to
monitor droughts during all crop growing seasons between April and
October.

3.4. Evaluation of drought estimates

The spatial maps of probability of detection (POD), false alarm rate
(FAR), and equitable threat score (ETS) for monthly agricultural
drought estimates are calculated in Fig. 6. Monthly agricultural
droughts (SSMI less than −0.8) detect ~ 50% of monthly precipitation
droughts (SPI-1 less than −0.8) over South Korea with an average POD
of 0.45–0.67 and ETS of 0.19–0.43 in the four major river basins except
for ESA CCI. The order of evaluation metrics POD and ETS from highest
to lowest is KLDAS, GLDAS, FLDAS, and ESA CCI, which follows the
same order of the SSMI evaluation in Fig. 4. It is noteworthy that
GLDAS outperforms EAS CCI products with the same spatial resolution
and shows the similar performance as FLDAS at a higher spatial re-
solution in evaluation of drought estimates. Compared to FAR, both
POD and ETS show more similar spatial patterns at a basin scale. The
order of basins from highest to lowest in evaluation of drought esti-
mates are different from the results in Figs. 2 and 4. This can be ex-
plained by the fact that the evaluations of soil moistures estimates and
their SSMI indices include the whole range of values, but this evalua-
tion of drought estimates consider only a range of the lowest values.

Time series of the drought area percentages are calculated for each
of the four river basins for 1982–2016 in Fig. 7. The drought area

Table 1
Comparison of evaluation metrics R and ubRMSE for four experiments at 0.01° spatial resolution against in-situ soil moisture observations for years 2013–2015. The
best results in each region are in boldface.

Experiments KLDAS*- rainfall (ASOS)- Soil (K-water) Ex1 - rainfall (ASOS)- Soil (FAO) Ex2 - rainfall (MERRA-2)- Soil (K-water) Ex3 - rainfall (MERRA-2)- Soil (FAO)

Evaluation metrics R ubRMSE R ubRMSE R ubRMSE R ubRMSE

Domain-avg. 0.81 0.023 0.79 0.021 0.77 0.025 0.72 0.023
Han R. 0.55 0.023 0.54 0.018 0.46 0.026 0.47 0.020
Geum R. 0.81 0.024 0.79 0.023 0.75 0.028 0.66 0.026
Nakdong R. 0.88 0.014 0.92 0.015 0.83 0.016 0.93 0.016
Yeongsan R. 0.81 0.022 0.80 0.023 0.78 0.023 0.72 0.026

*Results are shown in Fig. 2a, 2e.

Fig. 3. A recent drought event over South Korea in May 2015. (a-d) Monthly standardized soil moisture indices (SSMI), (e-g) one month standardized precipitation
indices (SPI-1).
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Fig. 4. The spatial maps of correlation coefficients between monthly standardized precipitation indices (SPI-1) and each of the four monthly standardized soil
moisture indices (SSMI) for 1982–2016.

Fig. 5. Bar graphs of the correlation coefficients between SSMI and SPI-1 by month from April to October. Error bars indicate ± 1 standard deviation.

Fig. 6. Probability of detection (POD), false alarm rate (FAR), and equitable threat score (ETS) for monthly agricultural droughts between April and October during
1982–2016.
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percentages from the four soil moisture products are evaluated against
the ASOS SPI-1 in terms of R and RMSE values. As expected, KLDAS
shows the best performance in all river basins. The order of evaluation
metrics R and RMSE from highest to lowest is the similar order as both
evaluations in Figs. 4 and 6, but FLDAS slightly outperforms GLDAS
except in the Geum River basin. Overall, KLDAS and FLDAS provide
higher R (> 0.63) and lower RMSE (< 17%) values in all four river
basins. It is interesting to note that overestimation of the agricultural
drought areas is found in the Nakdong River and Yeongsan River basins
during 1982–200 in the GLDAS products, which leads to produce lower
performance than the other Han River and Geum River basins.

All four major river basins also appear to experience periodic
droughts, related to the impact of regional monsoon circulation over
the East Asia. SSMI from KLDAS shows that these basins have wet status
with lower drought area percentages (< 20%) for years 1983–1987,
1990–1991, 1993, 1998–1999, 2002–2007, 2010–2011, 2013 and dry
status with higher drought area percentages (> 40%) for years 1982,

1988, 1994, 2001, 2015. In Fig. 7, the most recent 2015 drought event
leads to the highest drought area percentage 74% of the Han River
basin and 69% of the Geum River basin in the past 35 years for our
study period.

4. Conclusions

Regional land surface models are required to facilitate continuous
hydrological monitoring for the analysis of droughts and their char-
acteristics of spatial variation, intensity and frequency under climate
change. But, model-based soil moisture has not been fully served as an
agricultural drought index to monitor long term drought conditions in
South Korea. In this study, we describe the development of a 0.01°
resolution LDAS using the Noah-MP model with the added value of
local precipitation forcing dataset and high-resolution soil texture maps
in South Korea where rugged topography and heterogeneous land
covers make coarse resolution LSM and satellite retrieval difficult to

Fig. 7. Time series of the drought area percentages for each of four river basins, (a) Han River basin over north, (b) Geum River basin over west, (c) Nakdong River
basin over southeast, (d) Yeongsan River basin over southwest of South Korea. The values are correlation coefficient (R) and root-mean-square error (RMSE) metrics
between SPI-1 and SSMI based drought percentage areas.
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capture agricultural droughts. This study examines the potential of
KLDAS soil moisture estimates for long term drought monitoring during
crop growing seasons for 1982–2016. The KLDAS soil moisture esti-
mates are evaluated using two reference datasets: 3-year in situ soil
moisture measurements and 35-year observed precipitation-based SPI-
1. Also, we employ GLDAS, FLDAS and ESA CCI as benchmark datasets
and intercompare them with KLDAS because these soil moisture pro-
ducts have been investigated for good quality drought monitoring in
other regions. These datasets are the only available resource to provide
long term soil moisture estimates over South Korea.

KLDAS outperforms the benchmark soil moisture estimates and
their drought estimates in South Korea. For drought detectability,
KLDAS has higher POD and ETS than the other LDAS and satellite re-
trieval products in all four major river basins. The GPCP (used to force
GLDAS) and CHIRPS (used to force FLDAS) datasets are under- and
overestimated than the observation based ASOS dataset in South Korea
for 1982–2016, particularly during wet seasons. The GLDAS and ESA
CCI products show the lowest performance in the metropolitan area
with heterogeneous land covers. This work suggests that improved
precipitation, soil texture maps, and model spatial resolution are crucial
for agricultural drought estimation over South Korea. ESA CCI shows
the second best in the recent soil moisture estimates against in situ
measurements for a shorter period of time (2013–2015). But, our results
indicate that the ESA CCI products are not feasible for long term
drought monitoring over South Korea due to lower data quality for
early periods (1979–1991) of the ESA CCI merged product. From a
basin scale perspective, the Nakdong River basin in the southeast of
South Korea shows the best results in the soil moisture estimation for
2013–2015 because the mid-eastern region is high in elevation with
rugged topography and the western and southern regions are more
occupied with cropland where irrigation modules need to be con-
sidered, but were not included by any of these LDAS products.

Improved forcing datasets and additional model development can
meet the full potential of the KLDAS as agricultural drought monitoring
tools. Currently, the other ASOS meteorological forcing datasets (i.e.
wind, air temperature, pressure, humidity) than the precipitation are
being processed into a 0.01° gridded data and are set to force high re-
solution KLDAS coupled with a river routing scheme (Getirana et al.,
2012, 2017). Assimilating land surface data into LSMs can improve
poorly represented processes over irrigated and vegetation-covered
areas (Kumar et al., 2015; Jung et al., 2019), which cannot be sup-
ported by simpler models and ground observation-based SPI and SSMI
approaches. In addition to the enhanced drought monitoring system,
KLDAS is expected to provide important information on water resources
as a valuable tool for key stakeholders to manage natural resources and
develop water supply guidelines and best practices in South Korea.
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