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Abstract

Machine learning (ML) is now used in many areas of astrophysics, from detecting exoplanets in Kepler transit
signals to removing telescope systematics. Recent work demonstrated the potential of using ML algorithms for
atmospheric retrieval by implementing a random forest (RF) to perform retrievals in seconds that are consistent
with the traditional, computationally expensive nested-sampling retrieval method. We expand upon their approach
by presenting a new ML model, plan-net, based on an ensemble of Bayesian neural networks (BNNs) that
yields more accurate inferences than the RF for the same data set of synthetic transmission spectra. We
demonstrate that an ensemble provides greater accuracy and more robust uncertainties than a single model. In
addition to being the first to use BNNs for atmospheric retrieval, we also introduce a new loss function for BNNs
that learns correlations between the model outputs. Importantly, we show that designing ML models to explicitly
incorporate domain-specific knowledge both improves performance and provides additional insight by inferring
the covariance of the retrieved atmospheric parameters. We apply plan-net to the Hubble Space Telescope
Wide Field Camera 3 transmission spectrum for WASP-12b and retrieve an isothermal temperature and water
abundance consistent with the literature. We highlight that our method is flexible and can be expanded to higher-
resolution spectra and a larger number of atmospheric parameters.

Key words: astrobiology – methods: statistical – planets and satellites: atmospheres – planets and satellites:
composition – planets and satellites: individual (WASP-12b) – techniques: miscellaneous

1. Introduction

Over a decade ago, light emitted from an exoplanet was first
measured, paving the way for the study of exoplanetary
atmospheres (Charbonneau et al. 2005; Deming et al. 2005). In
the years since, a diverse collection of worlds has been
discovered, from rocky, Earth-like planets to massive gas
giants that reach temperatures as hot as some stars (Hasegawa
& Pudritz 2013; Batalha 2014). Edge-on planetary systems
enable the measurement of transit (when the exoplanet passes
in between the host star and the observer) and eclipse (when the
exoplanet passes behind the host star as viewed by the
observer) depths (Kreidberg 2017). Transit depths measure the
effective radius of the planet as a function of wavelength;
variations in measured radius arise from the molecules in the
atmosphere at the day–night terminator absorbing certain
wavelengths of light, with more absorption corresponding to
larger measured radii. Eclipse depths measure the ratio of the
planet’s and host star’s emission as a function of wavelength.
These depths provide insight into the composition and
temperature structure of the planet’s atmosphere.

Using measured transit or eclipse depths spanning a range of
wavelengths, an atmospheric model for the planet can be

determined with some uncertainty via atmospheric retrieval, an
inverse modeling technique (Madhusudhan 2018). Early
retrieval studies performed a parametric grid search over
millions of precalculated forward models (Madhusudhan &
Seager 2009). This method was later improved by Bayesian
techniques employing Markov chain Monte Carlo (MCMC)
and other sampling techniques (e.g., Skilling 2004; ter
Braak 2006; ter Braak & Vrugt 2008) to explore a model
parameter space by computing spectra for thousands to millions
of atmospheric models (e.g., Madhusudhan & Seager 2010;
Line et al. 2014; Waldmann et al. 2015; Oreshenko et al. 2017).
Model parameters describe the temperature–pressure profile, T
(p); the vertical abundance profiles for each molecule in the
atmospheric model; cloud parameters; and, for the transit case,
the radius of the planet. These Bayesian techniques yield a
posterior distribution that constrains the range of values that fit
the data for each model parameter. For low-resolution data,
some parameters may be only constrained to an upper/lower
limit (or not at all) due to degeneracies among low-resolution
spectra (e.g., a slightly cooler atmosphere with greater
abundances of molecules will look the same as a slightly
warmer atmosphere with lesser abundances). While high-
resolution data allows for parameters to be more accurately
determined, there is still some inherent uncertainty due to
astrophysical and instrumental noise. Accurate quantification of
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this uncertainty informs the statistical significance of the
results.

Data-driven machine learning (ML) approaches, which are
able to learn complex relationships within large data sets,
provide possible solutions to methods that can be computa-
tionally expensive, such as atmospheric retrieval. Examples
using ML can be seen across the field of astrophysics from
applying Bayesian linear regression to remove common-mode
systematics in Kepler data (Roberts et al. 2013), to automating
the process of identifying exoplanets using deep learning
(Ansdell et al. 2018; Shallue & Vanderburg 2018; Osborn et al.
2019). Furthermore, in an approach similar to our own, but in a
different application domain, Perreault Levasseur et al. (2017)
used Bayesian neural networks (BNNs) to map distant
gravitationally lensed galaxies.

Recently, the study of exoplanetary atmospheres has been
aided by ML techniques. Waldmann (2016) makes use of deep
belief networks to classify exoplanet emission spectra,
importantly showing that ML approaches can identify mole-
cular signatures in emission spectra. The first supervised ML
retrieval algorithms, HELA (Márquez-Neila et al. 2018) and
ExoGAN (Zingales & Waldmann 2018), have been developed
and show promising results. HELA uses a random forest (RF) to
classify observed spectra into some planetary models (see
Section 3.1 for more details), while ExoGAN combines a
generative adversarial network (GAN; Goodfellow et al. 2014)
with a technique called semantic image inpainting (Yeh et al.
2017) to retrieve atmospheric parameters. These methods
reduce retrieval times from hundreds of central processing unit
hours to just seconds/minutes, highlighting the large reduc-
tions in computation times offered by ML.

Here, we introduce a new ML retrieval method, plan-
net,12 which is based on an ensemble of BNNs, and apply it to
the benchmark data set of Márquez-Neila et al. (2018). BNNs
are a good choice of model for atmospheric retrievals as they
give the advantage of both providing probability distributions
over their outputs and scaling to high-dimensional data. We
directly compare our model with HELA over the same data set
and demonstrate how incorporating domain-specific knowledge
into ML models can improve results and offer insights into the
covariance of the atmospheric parameters.

In this paper we first introduce the data set in Section 2 along
with the notation. We then introduce both ML models in
Section 3, where we start with the RF followed by a detailed
explanation of our model. In Section 4 we both display and
discuss our results. Finally, in Section 5 we make conclusions
about the implications of our results and suggest further
avenues for research in this area.

2. Data Set

2.1. Description

We use the spectral data set of Márquez-Neila et al. (2018)
which consists of 100,000 synthetic Hubble Space Telescope
Wide Field Camera 3 (WFC3) transmission spectra of hot
Jupiters. These spectra were created using the formalism
detailed in Heng & Kitzmann (2017), which makes use of line-
by-line calculations for opacities (Grimm & Heng 2019). This
is based on five atmospheric parameters: an isothermal
temperature; abundances of H2O, NH3, and HCN gas; and a

gray cloud opacity, κ0. Each spectrum has 13 channels with
bandpasses matching those used in Kreidberg et al. (2015;
0.838–1.666 μm). Each channel holds the transit depth within
the corresponding bandpass. We refer the reader to their papers
for more details, particularly the “Methods” section of
Márquez-Neila et al. (2018), as this is where the boundary
conditions are described.
For each transit depth, we assume the same 50 parts per

million uncertainty as Márquez-Neila et al. (2018). We
similarly split the data set between training (80,000) and
testing (20,000). We reserve 10,000 spectra from the training
set to be the validation set, which is used to optimize model
hyperparameters and architectures. This ensures that inferences
are made on the test data only one time. We use the same real-
data test case: the WASP-12b WFC3 transit depths as analyzed
by Kreidberg et al. (2015). Two sample input spectra can be
seen in the Appendix, Figures 3(c) and 4(c).

2.2. Notation

In this paper we use the following notation to describe our
data set, . A single spectrum with 13 channels is denoted by
the vector Î s 13 and q Î 5 defines the vector of five
atmospheric parameters. Furthermore, we generalize our model
by referring to the dimension of q as D. The training and
testing data sets are denoted bytr andte, respectively, where
the test data is given by { }q= = s ,n n n

N
te 1 for N total input–

output pairs.

3. ML Models

In ML, the task of inferring a function from labeled data
comes under the area of supervised learning. In our case, the
task is a multivariate regression problem, where the objective is
to model the relationship between the input-space, s, and the
output-space, q. In addition to predicting the values of the
outputs, it is vital that the ML model also provides an
uncertainty estimation over these values. Astronomical obser-
vations inherently introduce uncertainty in measurements, and
accurately accounting for and reporting these uncertainties is a
critical part of retrieval results.
In this section we introduce the previously used RF along

with our plan-net model. In each section we explain how
each model aims to solve this multivariate regression task and
how they each deal with uncertainty. We highlight that the
plan-net model is specifically designed to deal with both the
uncertainty and the correlations between the outputs, whereas
the RF does not differ from those used in other multivariate
regression tasks.

3.1. Random Forest

Here, we briefly summarize the RF regression model used in
Márquez-Neila et al. (2018), where the details of the model are
available athttps://github.com/exoclime/HELA. The core of
their model comes from the ensemble.RandomFores-
tRegressor method in sklearn (Pedregosa et al. 2011).
An RF consists of multiple decision trees (or regression trees,
for the case of continuous data), whereby each tree makes a
prediction given an input (see Criminisi et al. 2012). Márquez-
Neila et al. (2018) showed that no more than 1000 regression
trees were required, which led to choosing that number for the
model. They set the number of nodes in each tree via a variance
threshold of 0.01. This is a metric that is related to the12 Our code is available athttps://github.com/exoml/plan-net.
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proportion of the remaining training data that is split at the
current node.

To produce the posterior plots, as shown in Figure 2(a), each
prediction from a tree corresponds to a sample from an
empirical distribution. The 1000 samples therefore correspond
to the density estimation of the atmospheric parameters.

3.2. Bayesian Neural Networks

Our model is built from BNNs, which inherit their structure
from neural networks. Although we provide details of both
techniques in the following section, we highlight their strong
relationship with multivariate linear regression, where the
objective is to learn a matrix of weights W that map an input s
to an output q. Fully connected deep neural networks extend
upon this by combining layers of linear regression with
nonlinear functions to result in a more powerful function-
approximating capability, despite still operating on the same
supervised learning task as a linear regression model.

3.2.1. A Summary

BNNs offer the powerful function-approximating capability
of deep neural networks with the additional advantage of being
able to provide distributions over their outputs (MacKay 1992;
Neal 1995). Therefore, these characteristics are well-suited to
the task of atmospheric retrieval. To enable BNNs to scale to
large architectures we employ the Monte Carlo dropout
approximation to BNNs (Gal & Ghahramani 2016). This is a
stochastic variational inference approach (Hoffman et al. 2013)
that allows BNN inference to be performed for both large
architectures and large data sets. The alternative approach
would be to implement a form of MCMC such as Hamiltonian
Monte Carlo (HMC, Neal 1995) to perform inference.
Although HMC has been shown to be successful at small
scales, it currently cannot be scaled in the same way as
stochastic variational inference approaches.

Deep neural networks consist of a hierarchy of layers, where
each layer applies a nonlinear weighted transformation of its
input. We define each layer l to have its own matrix of weights
Wl and biases bl. If h(·) is a nonlinear function, then we can
define a fully connected dense neural network with L layers and
input s as:

( ) ( ( ) )= + +wf s W h h W s b b... ... ,L l L0

where { }w = =W b,l l l
L

1 and refers to all the network weights. A
BNN takes this formulation and adds a prior ( )wp over the
weights, often taking the form of a multivariate normal
distribution. Bayesian inference in BNNs requires computing
an intractable integral to infer ( ∣ )w p tr . The Monte Carlo
dropout approximation provides a (variational) approximation
to this distribution and comes under the wider area of
variational inference (Jordan et al. 1998). Practical implemen-
tation of MC dropout requires drawing dropout masks
(Srivastava et al. 2014) from Bernoulli-distributed random
variables to set a certain proportion of weights to zero.
Applying this during the training of the network acts as a
regularizer to prevent overfitting. Dropping these weights while
making predictions at test-time results in the test-time
approximation for predictions over the outputs. For a given
input sn, we can sample the network T times to result in an
empirical distribution ( ∣ )q sp ,n tr .

Determining the proportion of weights to be dropped in each
layer pl often requires tuning over a validation set. However,
we use concrete dropout layers to automatically optimize for
these values in the training process (Gal et al. 2017).

3.2.2. The Model

Our model, plan-net, shown in Figure 1, is a deep neural
network with four dense concrete dropout layers (Gal et al.
2017). The model is implemented in Keras (Chollet et al.
2015) with a TensorFlow backend (Abadi et al. 2016). Each
layer consists of 1024 units, and we use a batch size of 512. For
training the model, we use the Adam optimization algorithm
(Kingma & Ba 2014). For deciding on the architecture, we
implemented a grid search over the number of layers and the
number of units per layer.
Our task is to accurately predict the atmospheric parameters

and provide posterior13 distributions over their values. These
parameters are expected to covary and we directly use this
domain knowledge to design our model, such that we can
represent the atmospheric parameters to be jointly distributed
by a multivariate normal distribution. Therefore, we design the
output of the BNN to consist of a lower triangular matrix L of
dimensions D×D and a mean vector m of dimension D. We
can then represent the precision matrix of a multivariate normal
via its Cholesky decomposition L = LL .
Figure 1 demonstrates the atmospheric retrieval process after

the model is trained. We implement T forward passes through
the network for a given observed spectrum sn, resulting in the
samples { ( ) ( ) }m =s L s,n t n t t

T
1. In the next step, we take the mean

Figure 1. plan-net model procedure at test time for a given spectrum Sn. T
samples are taken from the BNN and the expectations over the lower triangular
matrix and the mean are then used to parameterize the multivariate normal
distribution. q can then be drawn from this distribution to retrieve the
atmospheric parameters. Each concrete dropout layer consists of 1024 units.

13 In the ML literature, the output distribution would normally be called the
predictive distribution as we are inferring the posterior over the weights of the
network and then working with this posterior to infer a predictive distribution.
However, to remain consistent with the exoplanet literature, we avoid that here.
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over these network samples to give the expected ( )L sn and
( )m sn for a given spectrum:

( ) ( ) ( )å=
=

L s L s
T

1
, 1n

t

T

n t
1

( ) ( ) ( )åm m=
=

s s
T

1
. 2n

t

T

n t
1

The final step is to sample from the multivariate normal
distribution

( ( ) ( ( ) ( )) ) ( )q m~ - s L s L s, , 3n n n
1

to retrieve samples from the inferred atmospheric parameters,
where this distribution is parameterized by the expectation
BNN output.

3.2.3. Training

In order to train this model, we must design a loss that
ensures the network learns the correlations between the
atmospheric parameters. In order to estimate the covariance,
our loss is the negative log-likelihood of the multivariate
normal, as defined by m and L. The loss

( ) ( ) ( ) ( ) ( )åw m m m= - + - -
=

  L y LL yl, , 2 log , 4
d

D

dd
1

is defined to be implicitly dependent on the network weights w
through the lower triangular matrix L and the inferred mean m
(see Figure 1). As also mentioned in Dorta et al. (2018), we
must be careful to ensure that the diagonal elements, lii, of L are
positive such that L is positive-definite; we therefore take the
exponential of the diagonal terms to ensure this. In comparison
to previous loss functions that have been used for BNNs, such
as the squared loss and the heteroscedastic squared loss (see
Gal 2016, Chapter 4), our new loss in Equation (4) is able to
model correlations between atmospheric parameters. These
inferred correlations lead to better uncertainty estimates for the
retrieved atmospheric parameters than the previous losses.

In addition to using the Adam optimizer, we employ early
stopping, with a patience of 30 epochs, according to the
validation loss. Furthermore, we use model checkpointing to
save the model that has the best performance on the
validation set.

3.3. Ensemble

It has been shown that an ensemble of neural networks can
offer more accurate estimations of the predictive uncertainty
than a single network (Lakshminarayanan et al. 2017; Gal &

Smith 2018). The additional benefit is that an ensemble is more
robust to changes in weight initialization and the path taken
during stochastic optimization.
In this paper we use an ensemble of five plan-net models

and provide comparison to a single model. Five models were
chosen due to the empirical performance in Table 1, as larger
ensembles result in increasingly marginal improvements.
The challenge in using an ensemble is in how the outputs

from the individual models are combined. In our case, each
output is the mean and covariance of a multivariate normal
distribution. Therefore in combining these distributions
together, we can treat the overall output from the ensemble
as a Gaussian mixture model, whereby each component weight
corresponds to 1/M, where M is the number of models in the
ensemble.
To calculate the expectation of this mixture model, mens, we

take the average of the individual component means such that

åm m=
=M

1
.

m

M

mens
1

The variance of the mixture model Sens can be calculated by
employing the law of total variance:

( )å åm mS S= - +
= =M M

1 1
,

m

M

m
m

M

mens
1

ens
2

1

where the inferred covariance matrix of a single model is given
by ( )S L= =- -L Lm m m m

1 1. This combines the variance in the
component means with the expectation of the variance of the
individual models, thus taking into account how unsure each
model is and how far each model’s mean lies from the
ensemble mean. Therefore, the atmospheric parameters
retrieved via the ensemble qens are distributed according
to ( )q m S~  ,ens ens ens .

4. Results and Discussion

Table 1 displays a comparison of R2 values across the
models, where R2 corresponds to the coefficient of determina-
tion

( ( ))

( ˜ )
( )

( ) ( )

( ) ( )
å å
å å

q m

q q
= -

-

-
= =

= =

s
R 1 5n

N

d

D
n
d d

n

n

N

d

D
n
d d

2 1 1 ens

1 1

as defined in the sklearn.metrics Python package, where
the summation is over both the size of the data set N and the
output dimension D. ˜( )q d is the data mean for each atmospheric
parameter and the prediction for each data point is given by

( )( )m sd
nens . This can be viewed as a ratio between the residuals for

Table 1
Table Reports R2 Values for Each Atmospheric Parameter

T(K) Xlog H O2 logXHCN Xlog NH3 κ0 Mean

plan-net R2 0.770 0.623 0.487 0.721 0.750 0.673
Ens. 5 plan-net R2 0.770 0.629 0.491 0.723 0.751 0.673
Our Ran. Forest R2 0.746 0.608 0.466 0.700 0.736 0.651
Ran. Foresta R2 0.746 0.608 0.467 0.700 0.737 0.652

Notes. Values near 1 indicate high correlation between model prediction and the known atmospheric parameters. plan-net achieves a higher overall mean R2 as
well as being higher for each individual parameter. Bold indicates the best R2 value for each parameter.
a Reported from Márquez-Neila et al. (2018).
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the model prediction and the total sum of squares. Values close
to 1.0 are desirable as they are related to the correlation
coefficient between the predicted and true atmospheric
parameters.

Therefore, the results in Table 1 show that both of our
models, the ensemble and the individual plan-net model,
outperform the RF. Furthermore, we note the slight perfor-
mance boost that is gained from the ensemble. In order to show
that the results are reproducible, we list both our implementa-
tion of the RF and their reported results, which closely agree.

In addition to reporting the R2 values, Table 2 contains the
average covariance matrix over the test data. This table shows
the average inferred correlations, where the diagonal corre-
sponds to the variance in each atmospheric parameter and the
off-diagonals indicate correlations between the parameters. As
this is the average correlation matrix for all 20,000 test planets,
not too many conclusions can be drawn from this matrix.
However, we note the average negative correlation that appears
between T(K) and κ0 as well as T(K) and H2O. This is
consistent with intuition due to the known degeneracies in the
data. More specifically, as the observed spectral features are
caused by the temperature–pressure profile and the molecular
abundances, increasing either while keeping all other para-
meters constant leads to stronger spectral features. Conse-
quently, a simultaneous increase in temperature and a decrease
in molecular abundances (or vice versa) could lead to the same
observed spectrum. Finally, an increase in cloud opacity
decreases the intensity of the observed spectral features and
could therefore look similar to a decrease in temperature, hence
the degeneracy and the expected negative correlation between
T(K) and κ0.

By designing our model to learn these correlations, we are
able to interpret the results in a way that is not always available
when using deep learning models. Specifically, we identify
cases where both our model and the RF approach do not
recover the true values, but where our model includes the true
values in its wider posterior distributions. Figure 3 shows a
case where the RF infers narrow (highly confident) posterior
distributions that fall far from the true values, whereas our
plan-net ensemble model is (appropriately) less confident,
leading to posterior distributions that cover the true values for
the atmospheric parameters (shown by the red stars).

Given the performance over the synthetic test data set, we
further test our models on the WFC3 transmission spectrum of
WASP-12b. Figure 2 shows the posterior plots for the RF, the
single plan-net model and the plan-net ensemble. In the
case of WASP-12b, both plan-net-based models find

Table 2
Mean Inferred Normalized Correlation Matrix, (L L)−1, Across All Test Set

Atmospheric Retrievals

T(K) H2O HCN NH3 κ0

T(K) 5.43 −7.50 −3.30 −4.88 −0.498
H2O −7.50 32.6 0.454 4.47 0.566
HCN −3.30 0.454 56.7 1.37 1.95
NH3 −4.88 4.47 1.37 12.1 0.965
κ0 −0.498 0.566 1.95 0.965 3.74

Note. The diagonal values are the mean marginalized variances for each
parameter. The off-diagonals indicate correlations between these parameters;
note the expected negative correlation between T(K) and κ0 as well as T(K) and
H2O.

Figure 2. Retrieval analysis of the WFC3 transmission spectrum of WASP-
12b, where we compare the random forest with both a single plan-net and a
plan-net ensemble. The black cross denotes the mean over the samples,
where we report the results in Table 3. We note consistent results across all
models, and highlight the broader posteriors of the ensemble when comparing
to the single plan-net.
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marginalized posteriors similar to the RF for the cloud opacity
(κ0) and the abundances of HCN and NH3. For temperature,
both plan-net-based models have a distribution that is
consistent with the retrieval performed in Kreidberg et al.
(2015), while the RF favors cooler temperatures. All models
favor low (�10−7) abundances for HCN and NH3, indicating a
nondetection of these molecules. The H2O abundance predicted
by the individual plan-net model and the ensemble are more
tightly constrained than the results of Márquez-Neila et al.
(2018) or Kreidberg et al. (2015); see Table 3 for numerical
comparisons.14 Fisher & Heng (2018) found that, in general,
WFC3 transmission spectra are adequately explained by an
isothermal atmosphere (in the regions probed by transit
observation), gray clouds, and H2O only. Based on our
ensemble’s confidence in H2O abundance (and lack of
confidence in HCN and NH3 abundances), it is likely that the
model similarly learned this.

4.1. Limitations

We highlight that employing variational approximate
inference in BNNs is known to have problems, particularly
underestimating uncertainty (Blei et al. 2017). Unlike the RF,
our ensemble BNN model favors large uncertainties when the
data cannot constrain a parameter, as shown in Figures 3 and 4.
Though an ensemble of models helps to improve the
uncertainty estimation, we emphasize that accurate uncertainty
estimation requires using MCMC, nested sampling, or another
Bayesian sampling algorithm proven to obtain accurate
posterior distributions and therefore uncertainty estimations
(e.g., ter Braak & Vrugt 2008).

Nevertheless, BNNs are presently an important tool for
retrievals. They provide a reasonable estimation of parameters
orders of magnitude faster than traditional methods that require
hundreds of hours of CPU time, helping to constrain parameter
spaces. As an example, a single plan-net prediction over a
test planet takes 29.4 ms, when T=30 samples, and an
ensemble of five takes 1.5 s if they are run sequentially.15

As long as the data set used to train the model contains all
relevant molecules, BNNs can inform which molecules should
be considered in a traditional retrieval analysis based on
retrieved abundances and their uncertainties. A single plan-
net must be trained once for a certain class of planets, e.g.,

WFC3 transmission spectra of hot Jupiters. Once the model has
been trained, all inferences with that model are fast and
repeatable, for the class of planets represented in the training
set. Therefore, although training the model can be computa-
tionally expensive, this only needs to be done once. In our
example, each plan-net model takes 20 minutes to train
over the WFC3 transmission spectra. Thus, despite the
limitations of BNNs, their results are valuable and help save
compute time spent on retrieval analyses.
Our approach is a generalizable technique that is not limited

to any specific type of planet. In addition, important parameters
such as the radius of the planet should be included in future
models, as in this paper we make use of the data set of
Márquez-Neila et al. (2018), which does not include it in the
parameter space. Therefore the challenge in using BNNs comes
from ensuring that the data set contains both the parameter
space and planet types of interest.

5. Conclusions

In this paper, we have demonstrated how domain knowledge
can be used to design an ML model that both outperforms the
previous approach and provides inferred correlations between
its outputs. Furthermore, we have introduced a novel likelihood
function for BNNs which captures correlations between output
dimensions. This extends on the diagonal Gaussian likelihood
often used in the literature that does not capture these
correlations. We highlight that this is extremely easy to do
with BNNs and stochastic approximate inference, when
comparing to traditional ML techniques (e.g., Gaussian
processes), where it would involve many more approximations.
Using the data set of Márquez-Neila et al. (2018), we

independently reproduced the results of their RF. For the first
time, we have shown that ML retrieval results are reproducible
and consistent across implementations.
In addition to comparing our approach to the RF using

20,000 test planet models, we also analyzed the inferred
posteriors for WASP-12b, where we take the results of
Kreidberg et al. (2015) to be the ground truth. Our ensemble
of five plan-net models gives results consistent with the RF
of Márquez-Neila et al. (2018) and achieved distributions for
H2O abundance and temperature that agree more closely with
Kreidberg et al. (2015) and the nested sampling retrieval of
Márquez-Neila et al. (2018) than the RF. The low (<10−7)
retrieved abundances and large uncertainties of HCN and NH3

indicate a nondetection of these molecules.
Furthermore, we have found that an ensemble of BNNs

provides posterior distributions that better represent those of
traditional Bayesian atmospheric retrieval methods, compared
to both a single BNN model and the RF model. A single

Table 3
Retrieved Atmospheric Parameters for WASP-12b

T(K) Xlog H O2 log XHCN Xlog NH3 κ0

Kreidberg et al. (2015) -
+1371 343

466 - -
+2.7 1.1

1.0 L L L
Márquez-Neila et al. (2018) nested sampling -

+1105 287
545 - -

+3.0 1.9
2.0 - -

+8.5 2.9
3.8 - -

+8.4 2.9
3.1 −2.8±0.9

Our Rand. Forest -
+937 146

410 - -
+2.835 3.37

1.51 - -
+7.484 2.89

3.43 - -
+9.202 2.74

4.12 - -
+2.281 1.57

1.09

Ens. 5 plan-net 1142±412 −2.781±0.429 −8.210±12.7 −9.605±6.7 −2.601±1.23

Note. All retrievals are consistent, with our ensemble plan-net model achieving closer agreement with the temperature and H2O abundance retrieved by Kreidberg
et al. (2015). We note that Kreidberg et al. (2015) did not retrieve for log XHCN and Xlog NH3. They also used a different cloud parameterization that makes κ0 not
applicable to their model. Errors are reported for one standard deviation, where we report the median and equivalent asymmetric posterior percentiles for the random
forest and for Kreidberg et al. (2015).

14 Márquez-Neila et al. (2018) utilize a constant-opacity cloud parameteriza-
tion, while Kreidberg et al. (2015) use a cloud and haze model that assumes an
opaque gray cloud deck, which introduces degeneracies between the cloud and
haze parameters. Consequently, a direct comparison between the two models
cannot be made in Table 3.
15 Hardware: Ubuntu 18.04, 32 GB memory, CPU: Intel Core i7-8700K, GPU:
TITAN Xp.
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plan-net model can underestimate the size of the posterior
distributions due to overconfidence in their predictions, while
the RF can be overconfident in a wrong answer.

We have presented the first study that employs BNNs for
atmospheric retrievals, setting the foundation for further
research in this area. As the data available for atmospheric
retrievals expands, it will become increasingly important to
combine domain knowledge with ML models. It is equally
important that it remains possible to interpret the outputs of

these models so that inferences can be physically understood.
Our method easily scales to higher dimensionality; in future
work, we will expand our model to higher-resolution spectra
and a larger number of atmospheric parameters.

We thank Chloe Fisher for making the data set from
Márquez-Neila et al. (2018) publicly available on GitHub upon
request. Adam D. Cobb is sponsored by the AIMS CDT

Figure 3. Test planet 1: an example taken from the test set, where the random
forest is overconfident and far from the true parameter values, denoted by the
red star. In comparison, the plan-net ensemble demonstrates its uncertainty
in its predicted values by inferring broader posterior distributions that cover the
true parameters. Figure 3(c) gives the observed input spectrum, where the
binning is given by Table 3 in Kreidberg et al. (2015). Each spectral coverage
of the wavelengths is given by two grisms indicated in the legend.

Figure 4. Test planet 2: an example taken from the test set, where both models
retrieve parameters close to the true labels, as denoted by the red stars.
However, like in Figure 3, the random forest demonstrates highly confident
posteriors, where it may not be appropriate. Figure 4(c) gives the observed
input spectrum, where the binning is given by Table 3 in Kreidberg et al.
(2015). Each spectral coverage of the wavelengths is given by two grisms
indicated in the legend.
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(http://aims.robots.ox.ac.uk) and the EPSRC (https://www.
epsrc.ac.uk). F.S. gratefully acknowledges the support of
NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research (GPU No 900-1G611-2530-000). A.G.
Baydin is funded by Lawrence Berkeley National Lab and
EPSRC/MURI grant EP/N019474/1. We thank NASA FDL
(http://www.frontierdevelopmentlab.org/) and SETI (https://
www.seti.org) for making this collaboration possible.

Appendix

We include two further retrievals over test planets in
Figures 3 and 4. Figure 3 highlights a failure mode of the
random forest where it is overconfident and far from the true
parameter values. Figure 4 highlights another case where the
random forest demonstrates highly confident posteriors where
it may not be appropriate. In comparison, our plan-net
ensemble demonstrates its uncertainty in its predicted values by
inferring broader posteriors that cover the true parameters for
both test planets.
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