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Abstract

We report the discovery of an exoplanet from the analysis of the gravitational microlensing event OGLE-2015-
BLG-1649 that challenges the core accretion model of planet formation and appears to support the disk instability
model. The planet/host-star mass ratio is q=7.2×10−3 and the projected separation normalized to the angular
Einstein radius is s=0.9. We conducted high-resolution follow-up observations using the Infrared Camera and
Spectrograph (IRCS) camera on the Subaru telescope and are able to place an upper limit on the lens flux. From
these measurements we are able to exclude all host stars greater than or equal in mass to a G-type dwarf. We
conducted a Bayesian analysis with these new flux constraints included as priors resulting in estimates of
the masses of the host star and planet. These are ML=0.34±0.19Me and = -

+M M2.5p 1.4
1.5

Jup, respectively. The
distance to the system is = -

+D 4.23 kpcL 1.64
1.51 . The projected star–planet separation is =^ -

+a 2.07 au0.77
0.65 . The

estimated relative lens-source proper motion, ∼7.1mas yr−1, is fairly high and thus the lens can be better
constrained if additional follow-up observations are conducted several years after the event.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Exoplanet astronomy (486)

1. Introduction

More than 4000 exoplanets have been confirmed since the
discovery of the first exoplanet orbiting a main-sequence star,
51 Pegasi b, in 1995 (Mayor & Queloz 1995). A great portion
of these planets were discovered using the radial-velocity
(Butler et al. 2006) and the transit methods (Borucki et al.
2011). While these methods are most sensitive to giant planets
in close orbits, the Kepler mission (Borucki et al. 2010), using
the transit technique, demonstrated sensitivity to planets as
small as Mercury with semimajor axes of about 1 au. A
consequence of the limited sensitivity range of these dominant
techniques is that the relative number of known exoplanets
with wide separation is small, thus our knowledge about such
planets is still poor. This paucity of detections is especially
marked for the population of planets beyond the snow line (Ida
& Lin 2004; Laughlin et al. 2004; Kennedy et al. 2006),
usually defined as the distance from the host star in a stellar
nebula at which water may condense into solid ice grains.

Detecting exoplanets using gravitational microlensing was
proposed by Liebes (1964) and Mao & Paczyński (1991)
though it was described in notebooks and private communica-
tions as early as 1915 by Albert Einstein as a means to test his
theoretical work regarding the deflection of light by mass.
When a background source star is closely aligned with a
foreground lens star, the gravity of the lens bends the light from
the source star to create unresolved images of the source,
yielding an apparent magnification of the source star bright-
ness. The relative motion of the lens and source stars result in a
light curve with brightness changing as a function of time. If
the lens star has a planetary companion lying close to one of the
source images, the gravity of the planet perturbs the image,
producing an anomaly in the observed light curve. Microlen-
sing is sensitive to planets (Bennett & Rhie 1996) orbiting faint
and/or distant stars and exhibits unique sensitivity to planets
with orbital radii of 1–6 au, just outside the snow line, with
masses down to that of Mercury.

The results of the statistical analysis of planets discovered
from the MOA-II microlensing survey conducted during the
2007–2012 period suggest that cold exo-Neptunes are the most
common type of planets beyond the snow line (Suzuki et al.
2016, 2018). These studies used the planet–host mass ratio,
the primary observable in all planetary microlensing events,

to determine the exoplanet frequency. Other information is
needed to obtain the actual masses of the system bodies from
these measurements. A statistically robust sample of masses of
planets beyond the snow line is important because it may
permit more meaningful results to be drawn from a
demographic understanding of exoplanets. In particular, such
measurements hold the potential to provide a crucial calibration
of planet formation theory.
Obtaining such a robust sample of planet masses beyond

the snow line is made particularly challenging due primarily to
the difficulty in determining the masses of lens stars ML and the
distances to the lens systems DL for general microlensing events.
If we measure both the angular Einstein radius, θE, and the
microlensing parallax, πE, the mass and distance of the lens star
may be uniquely determined (Gould 1992; Gaudi et al. 2008;
Muraki et al. 2011). The angular Einstein radius is defined as
θE≡(4GM/c2Drel)

1/2, where M is the mass of the lens system,
º -- - -D D Drel

1
L

1
S

1, and DS is the distance to the source star. The
microlensing parallax, measured from two separated locations in
the observer’s plane, is defined as πE≡au/(θEDrel). The angular
Einstein radius may be directly measured for events in which the
caustic crossing features in the lensing light curve are resolved.
Here the term caustic refers to a closed locus of points in the
magnification pattern created by the lensing system for which
magnification formally approaches infinity. Using these techni-
ques, we are able to obtain two different mass–distance relations
from θE and πE thereby permitting us to resolve the degeneracy
naturally arising in the mass ratio. The measurement of
microlensing parallax is, however, relatively rare for events
observed using only ground-based telescopes due to the short
baselines between observatories, diurnal phase differences at
observatory sites, and deleterious observing conditions that may
frustrate these time-critical measurements.
Without the measurement of the microlensing parallax, one

can still obtain an additional mass–distance relation from the
lens flux using a mass–luminosity relation. Because the source
stars are located in crowded stellar fields of the Galactic bulge,
it is difficult to resolve the lens from nearby blended stars.
However, the contamination of the flux by blended stars can be
greatly reduced if the flux is measured in high-resolution
images obtained using ground-based telescopes equipped with
an adaptive optics (AO) system or space telescopes (Batista
et al. 2014, 2015; Bennett et al. 2015). However, even in
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high-resolution images, the ambient stars or a companion to the
source or lens star can be blended with the lens or the lens and
source (Bhattacharya et al. 2017; Koshimoto et al. 2017). In the
case where the lens and the source are not separated sufficiently
to be resolved, we can measure the excess flux fexcess, which
is defined as fexcess≡ftarget−fS, where ftarget is the target
flux obtained from high-resolution images, and fS is the source
flux obtained from the light-curve fitting. Koshimoto et al.
(2017, 2019) developed a method to evaluate the probability
distributions of fluxes of the contaminants and the lens in the
excess flux. If the contamination probability is sufficiently
small, the excess flux can be regarded as the lens flux, and we
can uniquely measure the lens mass,ML, and the distance to the
lens system, DL, from any combinations of θE, πE, and the
lens flux.

In this paper, we report the discovery of a planet found from
the analysis of the microlensing event OGLE-2015-BLG-1649.
We estimate the lens mass from the angular Einstein radius
together with the excess flux measurement in the high-
resolution images obtained from follow-up observations using
the Subaru telescope with an AO system. We describe the
observations by the microlensing survey and follow-up teams
in Section 2. Section 3 explains our data reduction procedure.
The light-curve modeling is described in Section 4. Section 5
presents the source star radius estimate. In Section 6, we
present the Subaru observations and our analysis. We evaluate
the excess flux in Section 7. Section 8 shows the Bayesian
analysis we used to estimate the posterior probability density
distribution of the lens properties with the consideration of
contamination probabilities to the lens flux. Finally, our
discussion and conclusions are given in Section 9.

2. Observations

On 2015 July 18, HJD−2450000≡HJD′=7221, the
microlensing event OGLE-2015-BLG-1649 was discovered
and alerted by the Optical Gravitational Lensing Experiment
(OGLE; Udalski et al. 2015) Early Warning System (EWS).
The source star of the event is located at (α, δ)(2000)=
(18h04m49 21, −32°37′58 90), which correspond to Galactic
coordinates: (l, b)=(−1°.124, −5°.422). The Microlensing
Observations in Astrophysics (MOA; Bond et al. 2001; Sumi
et al. 2003) collaboration independently found the event, which
was named as MOA-2015-BLG-404, and alerted the discovery
on 2015 July 30.

In the fourth phase of their survey, the OGLE collaboration is
observing the Galactic bulge using the 1.3 m Warsaw telescope
located at Las Campanas Observatory in Chile (Udalski et al.
2015). The observations by OGLE were carried out in the
I band and occasionally in the V band. In the following analysis,
we use the V-band data only for independent color measurement
of the source.

The MOA collaboration is also conducting a microlensing
exoplanet search toward the Galactic bulge, using the 1.8 m
MOA-II telescope at Mt. John Observatory (MJO) in New
Zealand. MOA conducts an efficient, nightly, high-cadence
survey using a wide 2.2 deg2 field of view (FOV) with a
10k×8k pixel mosaic CCD camera, MOA-cam3 (Sako et al.
2008). The observations by MOA were mainly with a custom
broad R+I-band filter called MOA-Red and with a V-band
filter called MOA-V. MOA also conducted follow-up observa-
tions using the 61 cm Boller & Chivens (B&C) telescope at
MJO with simultaneous g-, r-, i-band imaging.

The MOA collaboration noticed an anomaly, which
appeared to be a caustic entry, on 2015 August 11, HJD′=
7246.1, and issued an alert, prompting follow-up observations.
The RoboNet collaboration (Tsapras et al. 2009) conducted
follow-up observations in the I band using the Las Cumbres
Observatory Global Telescope (LCOGT) Network 1.0 m
telescopes sited at CTIO/Chile, SAAO/South Africa, and
Siding Spring/Australia (Brown et al. 2013). In addition, the
Microlensing Network for the Detection of Small Terrestrial
Exoplanets (MiNDSTEp) conducted follow-up observations
using the 1.54 m Danish Telescope at the European Southern
Observatory in La Silla, Chile (Dominik et al. 2010). The
MiNDSTEp data were collected using an EMCCD camera with
a long-pass filter idk resembling an extended SDSS-i + SDSS-z
filter with a low-wavelength cutoff at 6500Å (Skottfelt et al.
2015; Evans et al. 2016).
The light curves for these data sets are shown in Figure 1.

The number of data points are also shown in Table 1.
We conducted high-resolution imaging observations to

constrain the lens flux 40 days after detection of the anomaly
using the Subaru telescope. We describe the details of the
Subaru observations and the analysis in Section 6.

3. Data Reduction

The OGLE and MOA data are reduced with the OGLE
Difference Image Analysis (DIA) photometry pipeline (Udalski
2003) and MOA’s implementation of a DIA pipeline (Bond
et al. 2001), respectively. The RoboNet and MiNDSTEp data
are reduced using DanDIA (Bramich 2008; Bramich et al.
2013). The DIA method has an advantage for the photometry of
stars located in crowded fields such as the Galactic bulge field.
It also produces better photometric light curves, because it is
more efficient in dealing with the effect of blending compared
to traditional point-spread function (PSF) photometry.
It is known that the nominal error bars calculated by the

pipelines are incorrectly estimated in such crowded stellar
fields for various reasons. We employ a standard empirical
error bar normalization process (Yee et al. 2012) intended to
estimate proper uncertainties for the lensing parameters in the
light-curve modeling. This process, described below, does not
affect the lensing parameters. We renormalize the photometric
uncertainty using the formula

s s¢ = +k e , 1i i
2

min
2 ( )

in which s¢i is the renormalized uncertainty in magnitude, while
σi is uncertainty of the ith original data point obtained from
DIA. The variables k and emin are renormalizing parameters.
For preliminary modeling, we search for the best-fit lensing
parameters using σi. We then construct a cumulative χ2

distribution as a function of lensing magnification. The emin

value is chosen so that the slope of the distribution is 1. The k
value is chosen so that χ2/dof;1. In Table 1, we list the so-
derived error bar renormalization parameters.

4. Light-curve Modeling

The caustic entry of this event is well observed by MOA.
(See Figure 1.) Unfortunately, while MOA was unable to
observe the caustic exit, LCOGT data sample the critical
caustic approach feature at HJD′=7249.5.
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There are five microlensing parameters for a point-source
point-lens (PSPL) model: the time of the closest lens-source
approach t0, the Einstein radius crossing timescale tE, the impact
parameter in units of the Einstein radius u0, the source flux fS,
and the blend flux fB. There are three more parameters for a
point-source binary-lens model: the planet–host mass ratio q, the
projected planet–host separation in units of the Einstein radius
s and the angle between the trajectory of the source, and the

planet–host axis α. In the case where the finite size of the source
is considered (finite source effect), we include a source size in
units of the Einstein radius ρ≡θ*/θE, where θ* is the angular
source radius, and θE is the angular Einstein radius of the lens. If
microlensing parallax due to Earth’s orbital motion is detected
during the event, the north, πE,N, and east, πE,E, components of
the microlensing parallax vector, pE, are added. If effects from
both finite source size and microlensing parallax are detected, we
can uniquely determine the lens mass and the distance (Muraki
et al. 2011; Street et al. 2019).
We conduct light-curve modeling using the Markov Chain

Monte Carlo algorithm of Verde et al. (2003). For the
computation of finite source magnification, we use the image-
centered ray-shooting method (Bennett & Rhie 1996; Bennett
2010) implemented by Sumi et al. (2010). The overall shape
of the lensing light curve is parameterized by (q, s, α). We
conduct a grid search for these parameters, starting from 9680
grid points, while we search for the remaining parameters using
a downhill simplex method. Subsequently, we search for the
best model among the leading 100 candidate models from the
initial grid search by allowing all parameters to vary. In
microlensing event OGLE-2015-BLG-1649, we detect a finite
source effect and use linear limb-darkening coefficients for a
solar type star in the initial grid search and subsequent runs.
Once a candidate model is found, we further refine it with
updated linear limb-darkening coefficients based on source
color to obtain the best-fit model. The stellar effective
temperature Teff, computed from the source color presented in

Figure 1. Light-curve data of event OGLE-2015-BLG-1649 with the best-fit model. The best-fit model is indicated by the red line. The bottom panel show the details
of the planetary signal and the residual from the best-fit model. The data points taken by the B&C telescope are not shown for display purposes but models have been
fitted to these data, as well as the data from all other sources.

Table 1
Data Sets for OGLE-2015-BLG-1649 and the Error Correction Parameters

Data Set Band k emin uλ

Number
of Data

MOA R+I 1.236825 0 0.53645 2668
V 1.031747 0.038893 0.6556 184

OGLE I 1.270605 0 0.4953 870
B&C g 0.728458 0 0.7276 125

r 0.857322 0 0.6004 129
i 0.760140 0 0.5152 125

LCOGT
CTIO

I 1.031747 0 0.4953 56

LCOGT
SAAO A

I 1.206830 0 0.4953 12

LCOGT
SAAO C

I 1.128980 0 0.4953 15

LCOGT
SSO B

I 1.454571 0 0.4953 10

Danish idk 0.491530 0 0.4543 86
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Section 5, is Teff=5777±571K (González Hernández &
Bonifacio 2009). We assume Teff∼5750K, a surface gravity
of =glog 4.5 (g is in a unit of cm s−2), the microturbulent
velocity as vt=1 km s−1, and a metalicity of =M Hlog 0[ ] .
We use the corresponding limb-darkening coefficients from the
ATLAS stellar atmosphere models of Claret & Bloemen
(2011), where the limb-darkening coefficients, uλ, for these
data sets are shown in Table 1.

In Table 2 and Figure 1, we present the lensing parameters
and the model of the best-fit solution, respectively. In Figure 2,
we also present the lens system configuration in which the
source trajectory with respect to the binary-lens caustic is
shown. We find that the best-fit model has a planetary mass
ratio of q=(7.2± 0.2)×10−3 and a projected separation of
s=0.902±0.001.

Our analysis suggests that the proper motion of the source
star causes it to cross the lensing system’s caustic with the
caustic entry and one crossing well sampled by the MOA data.
Because the infinitesimally thin caustic effectively resolves the
source star, inclusion of the finite source effect improves the fit
byΔ χ2=597.3. In contrast, the inclusion of the microlensing
parallax effect improves the fit by only Δ χ2=5.4, i.e., less
than 2σ. We therefore adopt the best model, including the finite
source effect while excluding parallax, in the subsequent
analysis.

5. Color–Magnitude Diagram and Source Radius

In this section, we estimate the angular Einstein radius
θE=θ*/ρ from the combination of ρ and θ*, where the
normalized source radius is measured from the light-curve
modeling and the angular source radius is estimated from the
color and brightness of the source. We obtain the source color
and magnitude by fitting the light curve to the MOA-Red band
and MOA-V band data. Figure 3 shows the OGLE-III (V− I, I)
color–magnitude diagram (CMD) of stars within 2′ around the
source (Szymański et al. 2011). It also shows the deep CMD of
Baade’s window observed by the Hubble Space Telescope (HST;
Holtzman et al. 1998). The HST CMD is aligned to the ground-
based CMD considering the distance, reddening, and extinction
to the OGLE-2015-BLG-1649 field using red clump giants
(RCG) as standard candles (Bennett et al. 2008). We convert the
best fit MOA-Red and MOA-V source magnitude to the standard
Cousins I and Johnson V magnitudes by cross-referencing
stars in the MOA field with stars in the OGLE-III photometry
map (Szymański et al. 2011) within 2′ of the event. We

find the source color and magnitude to be (V− I, I)S,OGLE=
(1.51± 0.03, 19.43± 0.02). We independently measure the
source color using OGLE-I and V light curves and we found
(V− I)S,OGLE= 1.52±0.09, which is consistent with above
value. We use (V− I)S,OGLE=1.51±0.03 in the following
analysis. The centroid of RCG color and magnitude in the CMD
are (V− I, I)RCG=(1.88± 0.03, 15.73± 0.06) as shown in
Figure 3. Comparing these values to the expected extinction-free
RCG color and magnitude at this field of (V− I, I)RCG,0=
(1.06± 0.07, 14.51± 0.04) (Bensby et al. 2013; Nataf et al.
2013), we get the reddening and extinction to the source

Table 2
Best-fit Parameters and 1σ Errors

Parameter Units Value Error (1σ)

t0 HJD-2450,000 7241.170 0.033
tE days 28.312 0.339
u0 10−1 1.146 0.028
q 10−3 7.227 0.212
s L 0.902 0.001
α radians 3.080 0.007
ρ 10−3 1.265 0.055
θ* μas 0.703 0.062
θE mas 0.556 0.055
μrel mas yr−1 7.138 0.674
d.o.f. L 4251 L
χ2 L 4256.214 L

Figure 2. Caustic geometries for the best-fit model indicated by the red curve.
The blue line shows the source trajectory with respect to the lens system. The
blue circle indicates the source star size. The origin of the coordinate system
corresponds to the barycenter of the lens system. The planet is located at (s, 0).

Figure 3. Color–magnitude diagram (CMD) of OGLE-III stars within 2′ of
OGLE-2015-BLG-1649 (black dots). The green dots show the HST CMD
(Holtzman et al. 1998). The red point indicates the centroid of the red clump
giants, and the blue point indicates the source color and magnitude.
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of (E(V− I), AI)= (0.82± 0.08, 1.22± 0.07). Therefore, we
estimate the extinction-free source color and magnitude as
(V− I, I)S,0=(0.69± 0.08, 18.21± 0.07). By using the
empirical formula, log(2θ*)= 0.5014+0.4197(V− I)−0.2I
(Boyajian et al. 2014; Fukui et al. 2015), we estimate the angular
source radius to be

q m=  as0.70 0.06 . 2* ( )

From this q* and other fitting parameters, we calculate the
angular Einstein radius θE and the lens-source relative proper
motion μrel=θE/tE, as

q = 0.57 0.06 mas 3E ( )

m =  -7.14 0.67 mas yr . 4rel
1 ( )

6. Infrared Camera and Spectrograph AO Images

We conducted high-resolution imaging follow-up observa-
tions of OGLE-2015-BLG-1649 using the Infrared Camera and
Spectrograph (IRCS; Kobayashi et al. 2000) with the AOs
system AO188 (Hayano et al. 2010) mounted on the 8.2 m
Subaru Telescope on 2015 September 18 at 5:17–6:05 UT
(HJD′= 7283.7). We employed the high-resolution mode of
IRCS, which delivers a pixel scale of 20.6 mas/pixel and a
21″×21″ FOV. For AO correction, we use a bright star
located close to the source star. We obtained 15 exposures in
the H and K′ bands with 24 s exposures with a five-point

dithering and 15 J band with 30 s exposures with a five-point
dithering. The AO-corrected seeing was 0 37, 0 22, and 0 19
for the J, H, and K′ images, respectively.
Image reductions are carried out in a standard manner,

including flat-fielding and sky-subtraction. We then combine
all single-exposure images to form deep stacked images in each
passband. The stacked images are further aligned with the
Visible and Infrared Survey Telescope for Astronomy (VISTA)
Variables in the Via Lactea (VVV; Minniti et al. 2010) images
for astrometric calibration. We estimate the flux of OGLE-
2015-BLG-1649 using aperture photometry. We conduct
calibration in a photometric ladder manner: we first calibrate
the photometry of IRCS stacked images against the VVV data,
and then scale to the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006) photometric system. We find that the
brightness of the event at the time of the AO observation is

= J 18.467 0.189, 5target ( )

= H 17.870 0.217, 6target ( )

¢ = K 17.667 0.127. 7target ( )

7. Excess Flux

The measured angular Einstein radius provides a mass–
distance relation, i.e., q= -M G c D4 2 1

E
2

rel( ) . A second mass–
distance relation may be estimated in the case where the lens

Figure 4. Posterior probability distributions of the lens mass ML, the distance to the lens system DL, total magnitude of contamination Hexcess, magnitude of the lens
star HL, magnitude of source companion HSC, magnitude of ambient star Hamb, and magnitude of lens companion HLC. The dark and light blue regions indicate the
68% and 95% confidence intervals, respectively. The vertical blue lines indicate the median values of each of the distributions. These distributions have not been
constrained by the excess brightness limit.
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flux is detected. If both relations can be measured, the lens
mass can be uniquely determined. High-resolution imaging
with IRCS/Subaru gives us the combined flux from the lens,
source, and other blended stars. If we can obtain the source flux
from light-curve fitting, the total flux from the lens and blend
can be calculated by subtracting the source brightness from the
combined flux (Equations (5)–(7)). We do not have light-curve
data in the J, H, and K bands. Therefore, we derive the source
magnitude in the H band as HS,0=17.57±0.12 by convert-
ing (V− I, I)S,0=(0.69± 0.08, 18.21± 0.07) with the color–
color relation by Kenyon & Hartmann (1995). We use the
CMD of VVV to derive the extinction value in the H band, AH.
We subsequently compare the centroid of RCG on the CMD
and the intrinsic position of RCG derived by Nataf et al. (2016)
resulting in an extinction value of AH=0.41±0.12.

The magnification at the time of the Subaru observation is
A=1.128 according to the best-fit model. The apparent
H-band magnitude of the source at the time is expected to be
HS,AOtime=17.84±0.15 in the 2MASS system (Janczak
et al. 2010; Carpenter 2001). This suggests that the H-band flux
observed by Subaru mainly comes from the slightly magnified
source. We can place the 1σ upper limit of the excess
brightness of Hexcess>19.11. Using a similar process, we
obtain 1σ upper limits of excess brightness Jexcess>20.18 and
Kexcess>19.21.

8. Lens Properties through Bayesian Analysis

To estimate the properties of the lens system, we consider
the probability of possible sources of contamination (unrelated
ambient stars, a companion to the source star, and a companion
to the lens star) in the estimated excess H-band flux, Hexcess

(Batista et al. 2014; Fukui et al. 2015; Koshimoto et al. 2017).
Following the method of Koshimoto et al. (2017), we
determine the posterior probability distributions of these
sources for the origin of the excess flux. We use the Galactic
model of Han & Gould (1995) as our prior distribution and the
measured θE and tE to constrain the posterior probability
distributions of lens parameters. Figure 4 shows the posterior
probability distributions of the lens massML, the distance to the
lens system DL, total magnitude of contamination Hexcess,
magnitude of the lens star HL, magnitude of ambient star Hamb,
magnitude of source companion HSC, and magnitude of lens
companion HLC.

Figure 5. Posterior probability distributions narrowed by the additional constraint of the excess brightness limit. The panel in the upper left suggests that the host star
is almost certainly less massive than a G dwarf.

Table 3
Lens Properties Calculated from the Posterior Probability Distribution with and

without the Subaru AO Data

Without the Subaru Data With the Subaru Data

Parameter Units Median 1σ Range Median 1σ Range

HL mag 19.68 18.07–20.79 20.52 19.85–21.25
ML Me 0.56 0.26–0.87 0.34 0.15–0.53
Mp MJup 4.27 1.96–6.61 2.54 1.15–4.02
DL kpc 5.20 3.50–6.34 4.23 2.59–5.74
a⊥ au 2.57 1.77–3.14 2.07 1.30–2.72
a3d au 3.13 2.04–4.89 2.56 1.56–4.03
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With the upper limit on lens brightness, we can make the
posterior probability distribution much narrower. We use
the probability distributions in Figure 4 to extract combinations
of the parameters that satisfy the 1σ upper limit of
Hexcess>19.11. Figure 5 shows the posterior probability
distributions with the additional constraint of the excess
brightness limit. Table 3 shows the median and 1σ range of
HL, ML, DL, the values of the planet mass Mp, the projected
separation a⊥, and the 3D star–planet separation a3d for the
posterior probability distribution with and without the excess
brightness limit. The intrinsic orbital separation a3d is estimated
assuming a uniform orientation of the planets, i.e.,

= ´ ^a a3 23d ( ) . More details can be found in Koshimoto
et al. (2017).

While our Bayesian treatment of these data do not exclude
the probability of a G-dwarf host (Figure 4, upper left),
examination of the posterior distribution obtained with the
constraint of the excess brightness limit (Figure 5) allows us to
assert that the host star is almost certainly less massive. These
results are consistent with similarly derived distributions for the
J and K bands.

The posterior distribution with an excess brightness limit
shows that the most likely lens brightness is HL=20.52. Since
the uncertainty of the source star magnitude in the H band is
relatively large, we would have failed to detect the excess flux
even if the seeing conditions were better during the Subaru
observations. Consequently, the lens and source stars must be
spatially resolved to measure the H-band lens flux. For this
reason, this event is one of the high-priority candidates for
follow-up observations with high-resolution imaging because
of the high relative proper motion and relative faintness of the
source star.

9. Discussion and Conclusion

We have here described the discovery of a planetary system,
OGLE-2015-BLG-1649L, composed of a giant planet with

= -
+M M2.5p 1.4

1.5
Jup and an M or late K-dwarf host with

ML=0.34±0.19Me. Our analysis suggests that it is likely
that the brightness values of possible sources of contamination
are, in the aggregate, fainter than the brightness of the lens star.
This suggests that the color-dependent centroid shift is likely to
be caused by the lens itself. We estimate that the color-
dependent centroid shift for this event will be dx∼2.1 mas in
2019 using the relation dx=dt×( fH− fV)×μrel, in which
fH=0.09 and fV=0.01 are the fraction of the lens + source
flux that is due to the lens in the H and V bands, respectively
(Bennett et al. 2007; Hirao et al. 2016). Although our Subaru
AO observations were carried out when the source star was still
magnified, we can yet obtain the source magnitude in the H
band directly if additional Subaru observations are conducted
in the near future. Considering the high relative proper motion,
image elongation could be also measured with high-resolution
observations in a few years time (Bhattacharya et al. 2018). For
these reasons, this planetary microlensing event should be one
of the highest priorities for future observation using a high-
resolution instrument.

To derive the cold planet frequency as a function of physical
parameters, such as, host star mass, Galactocentric distance,
and planet mass function, it is manifestly desirable to use planet
mass data that has been tightly constrained. IRCS AO
observations permitted an estimate of an upper limit on the

excess flux. This, in turn, provided a significantly tighter
constraint on the lens flux than using the blending flux alone.
While the planetary parameters we have estimated here depend
greatly on the prior distribution, our Bayesian analysis permits
us exclude lens models in which the host star is a G dwarf or
a more massive star with relatively high credibility. In this
study, we successfully demonstrated that we can reduce the
uncertainty in host star mass using an upper limit on the lens
flux from AO images. Collecting AO imaged microlensing
event data will be important for studying the planet mass
function before the Wide Field Infrared Survey Telescope
(WFIRST; Penny et al. 2019) era.
Finally, according to the standard core accretion model

(Safronov 1972; Hayashi et al. 1985; Lissauer 1993), gas giant
planets should seldom form around low-mass stars. By
contrast, the disk instability model (Boss 1997) suggests no
such restriction. Taken together with other gas giant/low-mass
dwarf planetary systems that have been discovered (e.g.,
Koshimoto et al. 2017), OGLE-2015-BLG-1649Lb poses a
challenge the former and appears to support the latter.
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