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Abstract 

There is high demand and a growing expectation for predictions of environmental conditions that 

go beyond 0-14 day weather forecasts with outlooks extending to one or more seasons and 

beyond. This is driven by the needs of the energy, water management, and agriculture sectors, to 

name a few. There is an increasing realization that, unlike weather forecasts, prediction skill on 

longer timescales can leverage specific climate phenomena or conditions for a predictable signal 

above the weather noise. Currently, it is understood that these conditions are intermittent in time 

and have spatially heterogeneous impacts on skill, hence providing strategic windows of 

opportunity for skillful forecasts. Research points to such windows of opportunity, including El 

Niño or La Niña events, active periods of the Madden-Julian Oscillation, disruptions of the 

stratospheric polar vortex, when certain large-scale atmospheric regimes are in place, or when 

persistent anomalies occur in the ocean or land surface. Gains could be obtained by increasingly 

developing prediction tools and metrics that strategically target these specific windows of 

opportunity. Across the globe, re-evaluating forecasts in this manner could find value in 

forecasts previously discarded as not skillful. Users’ expectations for prediction skill could be 

more adequately met, as they are better aware of when and where to expect skill and if the 

prediction is actionable. Given that there is still untapped potential, in terms of process 

understanding and prediction methodologies, it is safe to expect that in the future forecast 

opportunities will expand. Process research and the development of innovative methodologies 

will aid such progress. 

Capsule Summary 
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Research points to strategic windows of opportunity for skillful forecasts on subseasonal, 

seasonal, and longer timescales with benefits to users when forecasts are increasingly geared 

accordingly.  

Body Text 

There is high demand for predictions of meteorological conditions that extend beyond 2 weeks. 

Outlooks at subseasonal to seasonal (S2S) and seasonal to decadal (S2D) timescales are met with 

growing expectations, driven by the needs of the energy, water management, agriculture, and 

emergency sectors, among others. Across the globe, users desire forecasts out to several weeks 

with the skill of a 5-day weather forecast. In the U.S. expectations have been set by a recent 

report by the National Academies of Sciences, Engineering and Medicine (NASEM hereafter; 

NASEM 2016) which suggested that S2S forecasts would, in 10 years, be used like weather 

forecasts are today. Accordingly, a U.S. public law1 now includes a mandate for concerted 

efforts to develop S2S forecast products which provides fresh impetus and new focus to the 

endeavor. More broadly, decades of past research results provide the scientific basis to guide 

forecast development and inform future research needs for S2S/S2D forecasts. This includes 

research under the auspices of the World Climate Research Programme (WCRP) and the World 

Weather Research Programme (WWRP); programs like CLIVAR and GEWEX; a 

WCRP/WWRP jointly organized S2S Prediction Project now in its second 5-year phase (Vitart 

et al. 2017; WMO 2018); and the NOAA Climate Program Office S2S Prediction Task Force 

(Mariotti et al. 2019). Research indicates that skillful S2S/S2D forecasts can leverage the 

existence of particular initial or climate conditions for predictability beyond the predictable 

weather range of 1-14 days.  The skill of weather predictions is flow dependent (Frame et al. 

 
1 Weather Research and Forecasting Innovation Act of 2017. Public Law No: 115-25 
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2013; Ferranti et al. 2015). The fluctuations in skill increase as the forecast ranges get longer. As 

such, S2S/S2D skill is increasingly intermittent and can be best exploited by an approach to 

forecasting, product development, and evaluation that strategically targets such windows of 

opportunity. The idea of windows of opportunity is analogous to the fact that there is an annual 

cycle in weather forecast skill (i.e., winter forecasts generally tend to have more skill than 

summer forecasts, although this depends on the timescale, lead time, and prediction system; e.g. 

Beverley et al. 2019). This same idea applies to S2S/S2D forecasts but other intermittent sources 

of skill are considered such as, for example, the Madden-Julian Oscillation (MJO) and the El 

Niño-Southern Oscillation (ENSO). Such an approach, also recommended by the above 

mentioned NASEM report, would more adequately address users’ expectations for skillful 

forecasts and actionable information. 

Currently, much of the production and evaluation of S2S/S2D forecasts still reflects the 

heritage of weather forecasting. Forecasts are provided for predefined lead times and for specific 

regions of interest, depending on an organization’s mission requirements. The assessment of 

mean forecast skill is accomplished by comparing observations to retrospective forecasts for a 

historical period (i.e., hindcasts; typically over the preceding 2-3 decades). While this makes 

sense for weather forecasts, for which there is always a certain level of predictability tied to the 

initial conditions, the case is different for longer-lead forecasts. Here, predictability crucially 

relies on both initial conditions and slowly evolving coupled interactions among the Earth’s 

components that can serve to constrain the chaotic evolution of the atmosphere. Such crucial 

coupled processes are often intermittent and have regionally dependent impacts (e.g., Vitart 

2017; Lovejoy 2018). Whether they are at play, how non-linear and non-stationary they might 

be, and how they interact with each other, determines whether potential skill exists beyond the 2-
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week weather predictability limit, i.e., whether a forecast opportunity exists. Having forecast 

tools that strategically target such windows is key for making the most of such opportunities.  

 

1. Processes That Provide Forecast Opportunities  

The intermittency of opportunities for skillful long-lead predictions is already evident from long-

lead weather forecasts, with those initiated from some atmospheric flow configurations being 

more skillful than others. Intrinsic predictability levels of different atmospheric states can be 

estimated from forecast ensembles2. In reliable and well calibrated3 prediction systems, the 

spread among ensemble members quantifies forecast uncertainty and the underlying 

predictability. At times when the forecast uncertainties are relatively small we deduce that the 

atmosphere is more predictable; higher predictability means a window of opportunity for more 

skillful forecasts. If we can identify processes and conditions that lead to these predictable 

conditions, we can potentially provide more useful S2S and S2D forecasts.  

 

Mid-latitude Atmospheric Processes Mid-latitude atmospheric processes can lead to 

circulation patterns or weather regimes that affect predictability. For example, studies of flow-

dependent verification based on Euro-Atlantic mid-latitude weather regimes indicate that 

European blocking is the regime associated with the least accurate medium range weather 

forecasts over Europe, while the negative phase of the North Atlantic Oscillation (NAO) leads to 

the most skillful predictions (Ferranti et al. 2015). In another example, forecasts for Europe made 

 
2A forecast ensemble consists of several multiple independent forecasts (ensemble members) with perturbed initial 
conditions and/or perturbed model physics.  
3 In a reliable ensemble, forecast probabilities match the observed frequencies. An ensemble system can be made 
more reliable through statistical calibration, which aims to relabel the forecast probabilities, so that they match the 
observed frequencies.  
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when the westerly jet across the Atlantic is displaced to the north (Atlantic Ridge) tend to be less 

accurate (Frame et al. 2013). The physical processes that can reduce forecast skill are generally 

associated with atmospheric instabilities and weather regime transitions. At longer ranges, 

weather regimes play an increasingly important role. Their low frequency, large spatial scale, 

and sensitivity to tropical and stratospheric conditions point to processes that can matter for 

subseasonal predictions and beyond. For example, a persistent winter ridging was associated 

with California drought during 2013-2016, even though the underlying causes have not been 

robustly established (e.g. Teng and Branstator 2017; Swain et al. 2017). 

Quasi-stationary Rossby waves during boreal summer can also condition the skill of 

subseasonal predictions and impact the predictability of boreal summer climate extremes 

including heat waves, flooding events, and short-term droughts. Recent examples of such 

linkages include the 2003 European heat wave, the 2010 Russian heat wave, and the 2012 flash 

drought in the U.S. Great Plains (e.g., Schubert et al. 2011; Wang et al. 2014). Similar 

mechanisms are also at play in the Southern Hemisphere during its summer and similarly impact 

extremes such as the 2009 Australian heat wave (Parker et al. 2014). These waves often manifest 

as nearly circumglobal teleconnections in which the summer jets act as wave guides (e.g., Ding 

and Wang 2005; Beverley et al. 2019), sometimes resulting in a synchronization of extremes 

over distant parts of the globe. While such waves appear to be mainly forced by sub-monthly 

vorticity transients with limited predictability (Schubert et al. 2011), there is mounting evidence 

that tropical processes (e.g., Newman and Sardeshmukh 1998; Watson et al. 2016), land forcing 

(e.g., Koster et al. 2014), or even internal atmospheric resonance processes (Kornhuber et al. 

2017), can amplify and sustain these planetary waves. Such processes could increase the 

predictability of associated extremes, such as heat waves over the U.S. and other continental 
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regions, well beyond 2 weeks. Taking full advantage of the potentially enhanced predictability 

associated with quasi-stationary Rossby waves at sub-seasonal and longer timescales requires 

better understanding of their growth and persistence along with improved simulation and 

prediction of associated processes. 

 

Tropical Processes Tropical processes involving interactions within the atmosphere, and 

between the atmosphere and the ocean, provide a primary source of predictability on subseasonal 

timescales and beyond. Regions of organized deep convection in the tropics excite large-scale 

atmospheric teleconnection patterns through a variety of mechanisms: the linear dispersion of 

Rossby waves (e.g., Hoskins and Karoly 1981), modification of the background flow and Rossby 

wave breaking (e.g., Moore et al. 2010), and planetary wave propagation into the stratosphere 

(e.g., Smith and Kushner 2012; Plumb 2010). The potential for S2S predictability from tropical 

sources lies in the “slow” and predictable evolution of large-scale tropical convection patterns, 

the 1-2 week timescale for the extratropical atmosphere to respond fully to tropical convective 

heating (e.g., Matthews et al. 2004), and the several weeks for stratospheric-tropospheric 

interactions to occur. 

The MJO (Madden and Julian 1994), when active, is a tropical phenomenon that provides 

a major source of predictability on subseasonal timescales. During an MJO event, regions of 

large-scale convection propagate eastward along the equator on a 30-60 day timeframe 

(Matthews 2008), generating Rossby waves along the way that propagate poleward, producing a 

delayed response in the extratropics 1-2 weeks later. The MJO impacts over North America, in 

particular, are strongest and most consistent for MJO phases having an east-west dipole of 

convective heating in the Indian and western Pacific Oceans (Ting and Sardeshmukh 1993; Lin 
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et al. 2010; Tseng et al. 2018) and may, when modulated by ENSO (Arcodia et al. 2019), 

potentially persist up to five weeks (Riddle et al. 2013). More broadly, the MJO impacts S2S 

predictability across the Tropics, including the Maritime Continent, and the Indian, Australian, 

and West African Monsoon regions (e.g., Wheeler et al. 2009; Ventrice 2011; Taraphdar et al. 

2018); and parts of China (e.g., Song et al. 2019). Especially promising is that current dynamical 

models now exhibit significant MJO skill beyond 30 days (Vitart 2017). Recent studies 

(Benedetti and Vitart 2018) show that there may be additional predictability associated with the 

MJO effect on atmospheric aerosols. While the MJO creates opportunities for skillful S2S 

forecasts, important caveats exist. In particular, it is now clear that not all phases of the MJO 

provide equal forecast opportunities, and only specific regions of the world are affected during 

certain times of the year (e.g., Garfinkel and Schwartz 2017).  There is also evidence that the 

MJO effects are modulated by other climate phenomena (see below), and that models still exhibit 

significant weaknesses in their representation of the MJO and its teleconnections. 

ENSO, a tropically coupled ocean-atmosphere climate phenomenon, is another leading 

source of predictability. Once active, its effects are felt on the S2S to multi-annual timescales 

(DiNezio et al. 2017). During warm ENSO events, also known as El Niño, the eastern tropical 

Pacific is anomalously warm, while the eastern Indian Ocean and western tropical Pacific are 

anomalously cold. Opposite conditions exist during cold ENSO events, known as La Niña. These 

conditions evolve over the course of months to years and tend to be quite predictable, depending 

on the phase of ENSO (e.g., Zheng et al. 2016). Studies have shown additional predictability of 

El Niño events following large volcanic eruptions due to the ocean-dynamics thermostat 

mechanism described by Clement et al. (1996) and Eddebbar et al. (2019). Sea surface 

temperature anomalies associated with ENSO induce patterns of organized anomalous tropical 
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convection from which emanate global teleconnections via Rossby wave propagation, mid-

latitude jet alterations, and other mechanisms. ENSO predictability influences forecast skill from 

months to years, e.g., influencing MJO teleconnections on subseasonal timescales (e.g., Leroy et 

al. 2008), while modulating the mid-latitude background flow on seasonal and longer timescales. 

ENSO-related predictability stems from the duration, strength, and location of specific ENSO 

events and the lags of remote teleconnections. ENSO impacts, and therefore ENSO-related 

predictability, are regionally and seasonally dependent, particularly outside the tropics. 

It is particularly promising that current climate prediction systems are now able to predict 

the development of an ENSO event with some skill out to at least a year ahead depending on the 

initial conditions (Barnston et al. 2017). On the other hand, the ability of models to predict the 

details (e.g., spatial structure and amplitude of the SST anomalies) and exact timing of individual 

ENSO manifestations including the associated global teleconnections, is still limited at those 

forecast leads (e.g., Kim et al. 2012; Wang et al. 2009). As such, we are still far from taking full 

advantage of ENSO-related predictability.  

 

Interplay of Troposphere-Stratosphere Processes Tropical processes providing opportunities 

for S2S/S2D predictability extend to interactions with the stratosphere. Specifically, the 

stratospheric Quasi-Biennial Oscillation (QBO; Baldwin et al. 2001) can modulate the 

predictability of the wintertime MJO and its teleconnections (e.g., Marshall et al. 2016; Zhang 

and Zhang 2018) as well as ENSO teleconnections (Garfinkel and Hartmann 2010). The QBO 

oscillates at a longer timescale than the MJO, around 28 months, with alternating easterly and 

westerly equatorial wind states that develop in the upper stratosphere and propagate downwards 

until dissipating at the tropical tropopause. The modulation of mid-latitude S2S extremes by the 
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MJO depends on QBO phase. This effect has been demonstrated in the context of U.S. West 

Coast atmospheric rivers (ARs; Baggett et al. 2017). Times when the QBO and MJO are both 

active provide windows of opportunity for improved forecasts of S2S extremes. Skillful 

empirical forecasts using only the MJO and QBO to forecast S2S extremes have already been 

realized (e.g., Mundhenk et al. 2018; Nardi et al. 2019). 

Stratospheric processes associated with the winter stratospheric polar vortex also provide 

opportunities for enhanced S2S predictability. The polar vortex describes the climatological  

circumpolar stratospheric westerly winds that circle the pole in wintertime (Waugh et al. 2017). 

About once every other year the Northern Hemisphere polar vortex is disrupted by tropospheric 

wave forcing and also by internal resonance of stratospheric waves (Birner and Albers 2017). 

When this happens, it can either be displaced off of the pole or split into two smaller vortices, 

and the stratosphere rapidly warms in a few days in an event called a “sudden stratospheric 

warming” (SSW; e.g., Butler et al. 2017). The anomalous winds and temperatures then slowly 

descend to the tropopause via wave-mean flow interactions and ultimately influence the 

tropospheric jet stream over a period of weeks to months (Baldwin and Dunkerton 2001). 

Typically, these impacts manifest as an increase in synoptic cyclone tracks over Europe and a 

decrease over the Russian Arctic, a tendency for colder-than-normal temperatures over Eurasia 

and the eastern United States, wetter conditions over Southern Europe, and warmer temperatures 

over eastern Canada and subtropical Asia and Africa (see Fig. 1). In the Southern Hemisphere, 

stratospheric polar vortex variations have an impact on Australian hot and dry extremes (Lim et 

al. 2019). Deterministic predictability of SSW events is limited to 10-20 days (e.g., Karpechko 

2018). Probabilistic SSW prediction likely depends on the state of the MJO, QBO, and ENSO, 

among other factors (e.g., Domeisen et al. 2019a).  ENSO, for example, can modulate both the 
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strength of the polar vortex via its stratospheric teleconnection, and the impact of SSWs on 

surface weather over the North Atlantic via its tropospheric teleconnection (Domeisen et al. 

2019b). 

Once a SSW has occurred, the associated extreme stratospheric conditions can constrain 

the evolution of the atmosphere through wave-mean flow interactions. Since recovery to 

climatological conditions after a SSW occurs on radiative timescales (several weeks in mid-

winter) the impacts of SSWs are long-lived, potentially allowing increased surface predictive 

skill 3-6 weeks after an event (Sigmond et al. 2013). When the anomalous stratospheric 

conditions are simulated in a numerical weather prediction model, the extended period of 

anomalous wave-mean flow interactions can also shift a forecast away from climatology (Scaife 

et al. 2016) and into weather regime states with enhanced predictability (e.g., Charlton-Perez et 

al. 2018). Other types of extreme stratospheric variability, such as vortex intensification, may 

also provide opportunities for predictability (Tripathi et al. 2015). 

 

Land-Atmosphere Interactions The land surface responds to sustained anomalies in the 

atmosphere on S2S time scales and can thus amplify and sustain anomalies to enhance 

predictability (Koster and Suarez 2001; Dirmeyer et al. 2018). Positive land-atmosphere 

feedback processes may exacerbate associated extremes (Koster et al. 2014) and enhance the 

persistence of major droughts (e.g., Vautard et al. 2007) and heat waves (e.g., Ford and Quiring 

2014). Beyond these extremes, the land surface plays a role in S2S climate variations. In fact, 

any time and place that three specific conditions are met, the process chain for land-atmosphere 

feedbacks offers an opportunity for enhanced predictability (e.g., Dirmeyer et al. 2015). The first 

condition is sensitivity of the atmosphere to land surface state variations via changes in surface 
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fluxes; the second is sufficient magnitude of variability in land surface states to drive a 

significant atmospheric response. These first two conditions are both in force in the so-called 

“hot spot” regions of land-atmosphere coupling such as the Great Plains of North America, the 

Sahel of Africa, the Indus River basin, much of Australia, southern Africa, and the Pampas of 

South America (Koster et al. 2001). The third necessary condition for land-driven predictability 

on S2S time scales is memory or persistence of land surface anomalies. The greatest memory 

tends more toward arid regions, but memory can also persist and deliver anomalies across 

seasons when coupling emerges (e.g., Guo et al. 2011). Effects may be non-local, as the same 

circulation systems that can initiate anomalies in the land surface can serve to advect their effects 

downwind to other locations (Koster et al. 2014; Koster et al. 2016). When these three factors are 

combined and accounted for in the forecast models, there is opportunity for improved S2S 

prediction skill stemming from land-atmosphere interactions (e.g., Koster et al. 2011; Dirmeyer 

et al. 2018). 

 

Mid-to-High Latitude Ocean-Atmosphere Interactions In addition to ENSO and MJO related 

ocean-atmosphere processes, other oceanic dynamics and feedbacks outside the Tropics more 

broadly provide opportunities for enhanced S2S predictability. For instance, Arctic sea-ice 

anomalies have been linked with high-to-mid latitude atmospheric anomalies (e.g., Alexander et 

al. 2004) and enhanced predictive skill (He et al. 2018). During years with low seasonal sea ice 

concentrations (when there's more heat loss from more exposed open water), the north-south 

differences in atmospheric temperatures across the Barents Sea are reduced. These conditions 

have been linked to wintertime cyclones travelling further south into western Europe, instead of 

their tendency to move eastwards towards Siberia, as well as more frequent cold winter extremes 
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at middle latitudes (Petoukhov and Semenov 2010; Inoue et al. 2012; Mori et al. 2014). There is 

evidence for predictive skill for high‐latitude climate due to midsummer sea ice extent anomalies 

(He et al. 2018). Predictability associated with sea-ice processes, derives both from lead-lag 

relationships between the sea-ice anomalies and the high-to-mid latitude response, and also from 

our increasing capability to predict sea-ice anomalies themselves a season ahead (e.g., Stroeve et 

al. 2014). 

In another example, oceanic processes associated with western boundary currents, such 

as the Kuroshio and the Gulf Stream currents, are being explored as sources of atmospheric 

predictability (e.g., Smirnov et al. 2015). Such currents, bringing warm water from the Tropics 

poleward, are associated with sharp oceanic temperature gradients. At the exit of such currents, 

are mesoscale eddies which carry anomalous warm SST as they propagate out of the formation 

region. Hence the evolution of currents and eddies in areas of sharp temperature gradients is 

associated with ocean-atmosphere heat flux anomalies that can potentially affect the weather on 

S2S timescales (Chelton and Xie 2010; Jia et al. 2019). For example, Haarsma et al. (2019) 

showed that resolving oceanic mesoscale features (eddies and fronts) near the North Atlantic 

storm-track translates into enhanced seasonal prediction skill compared to forecast systems that 

do not resolve oceanic mesoscale features. 

 

Beyond S2S While our primary focus here is on the S2S prediction problem, the windows of 

opportunity framework similarly applies to longer timescales. There is of course no clear spectral 

gap between variability at S2S time scales and the variability at decadal and longer time scales. 

In fact, while some phenomena already discussed for S2S, such as the MJO,  have spectral peaks 

at subseasonal timescales, several others have substantial impacts beyond one season (e.g., 
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ENSO or QBO). There are other processes that operate on multi-year and even multi-decadal 

time scales that are particularly relevant to prediction at these longer time scales. Processes that 

involve slow ocean dynamics or long-lived atmospheric constituents, which affect S2S forecasts, 

can also lead to enhanced predictability on longer timescales, provided we can adequately 

capture underpinning processes in forecast models. As an example, the Atlantic Meridional 

Overturning Circulation (AMOC) evolves on multi-decadal timescales, and may provide 

potential predictability if it can be adequately simulated in prediction systems (e.g., Zhang and 

Zhang 2015). Also, particular Atlantic conditions may be especially conducive to higher 

prediction skill. For example, when the Atlantic Ocean heat transport around 50°N is strong at 

the initialization of a hindcast, SST skill in the northeast Atlantic at lead years 2–9 is 

significantly increased (Borchert 2019). Also, when focusing on decadal hindcast skill in the 

North Atlantic subpolar gyre, skill is higher during strong multi-year trends, especially during 

the warming period of the 1990s, and lower in the absence of such trends (Brune et al. 2018).  

The sudden injection of aerosols into the troposphere and stratosphere by a major 

volcanic eruption can alter climate for years (e.g., McCormick et al. 1992), while also 

influencing shorter term weather (Reale et al. 2011; Reale et al. 2014). While volcanic eruptions 

are not predictable, once they occur and their impact is captured in the initial conditions, they can 

enhance predictability across a variety of timescales (Benedetti and Vitart 2018). In addition, 

anthropogenic aerosols may also present a source of decadal predictability (Bellucci et al. 2017). 

Similarly, long-term increases in greenhouse gas concentrations and associated warming trends 

are a major source of predictability for surface air temperature and other surface meteorological 

variables, affecting the skill of climate forecasts at S2S timescales and beyond (e.g., Luo et al. 

2011; Boer et al. 2013). For instance, Arctic sea-ice anomalies due to polar amplification of 
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long-term surface temperature increase have been linked to changes mid-latitude weather (e.g., 

Cohen et al. 2014; Zhang et al. 2012). More broadly, there is a growing body of research 

examining the effects of climate variability and change on the predictability of extremes across 

the globe (e.g. Herring et al. 2019).  

 

2. From Windows of Opportunities to Forecast Tools 

Knowing which processes (e.g., atmospheric circulation, climate patterns, ocean dynamics, etc.) 

offer predictability is relevant for forecast interpretation as well as the development of new 

forecast tools. In fact, this knowledge must be reflected in our forecast models if we are to use 

them to identify opportunities for enhanced skill.  

 

A Priori Identification of Forecast Opportunities Providing an objective measure of the 

expected forecast accuracy is very valuable (e.g., Kalnay and Dalcher 1987; Molteni and Palmer 

1991). There are several examples of flow-dependent verification based on weather regimes. 

This approach has been applied to Euro-Atlantic weather regimes, as discussed above (Ferranti et 

al. 2015). Also, Vigaud et al. (2018a) used daily wintertime 500 hPa geopotential height fields to 

classify four weather regimes over the Pacific-North American sector that can be used to identify 

windows of high forecast opportunity in the midlatitudes by highlighting persistent episodes in 

real time and in the forecasts. A prototype system has been set up at IRI to do this on a daily 

basis using the NOAA CFSv2 model. Forecast characteristics are plotted according to target day 

and lead time, permitting the visualization of a large number of forecast runs in a way that 

emphasizes forecast timing and consistency from one forecast to another (Tippett et al. 2012; 

Carbin et al. 2016). Similarly, cluster analysis of daily circulation/convection types and related 
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modes of subseasonal predictability, has also been applied over South Asia (Moron et al. 2012), 

the Maritime Continent (Moron et al. 2015), West Africa (Vigaud and Giannini 2018), the 

Caribbean (Vigaud and Robertson 2017), and South America (Muñoz et al. 2015; 2016; Doss-

Gollin et al. 2018). 

Tools are being developed to predict the skill of climate forecasts during windows of 

opportunity. Because of the fundamentally nonlinear and chaotic nature of the atmosphere, 

inherent nonlinear interactions act so rapidly that much of their effects are unpredictable on S2S 

time scales and beyond. What predictability remains can be well-approximated by much simpler 

linear dynamics and a residual random “noise” (e.g., Hasselman 1976; Penland and 

Sardeshmukh 1995). This approximation, empirically determined using the “linear inverse 

model” (LIM) technique (Penland and Sardeshmukh 1995), generates S2S forecasts about as 

skillful as those from operational dynamical models at both NCEP and ECMWF (e.g., Newman 

et al. 2003; Albers and Newman 2019). The LIM technique also allows identification of high 

skill cases or forecasts of opportunity ahead of time (Albers and Newman 2019; see example in 

Fig. 2). Such higher skill depends upon the similarity of the forecast initialization to patterns 

leading to the most rapidly amplifying anomalies within the LIM. For example, Newman et al. 

(2003) found that Week 3 forecast skill of the 250 hPa extratropical stream function was largely 

related to how strongly the initialization matched varying combinations of only three patterns, 

which together represented ENSO, the MJO, and the Pacific North American (PNA) 

teleconnection pattern. 

 

North American Week 3-4 Temperature and Precipitation The combined influence of ENSO 

and the MJO significantly impacts the wintertime general circulation over North America for 
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lead times up to at least 4 weeks. Based on these relationships, probabilistic 2-m temperature and 

precipitation forecasts over North America are now generated solely on the basis of the 

climatological linear trend associated with each variable along with their statistical relationships 

with the initial state of the MJO and ENSO (Johnson et al. 2014). Such forecasts, now used as 

part of the NOAA operational forecast suite (experimentally for precipitation), exhibit substantial 

skill for some regions and some initial states of the MJO and ENSO out to a lead time of 

approximately 4 weeks. The highest temperature forecast skill tends to follow MJO phases 2-3 

and 6-7 owing to the strong extratropical response to the dipole convective heating anomalies 

associated with these phases (Lin et al. 2010; Tseng et al. 2018), although the precise MJO 

phases and regions with maximum skill are sensitive to the state of ENSO (Johnson et al. 2014).   

 

Risk of Severe Cold Spells Over Europe Forecast skill of the NAO has been shown to be 

conditioned on the presence of an MJO or SSW in the initial conditions (e.g., Sigmond et al. 

2013; Tripathi et al. 2015; Ferranti et al. 2018). By inferring surface weather through large-scale 

flow patterns, forecasters try to identify the spatial extent of temperature anomalies that are 

predictable at subseasonal time scales. For example, reliable subseasonal forecasts of the NAO 

and blocking are used to assess the risk of severe cold spells over Europe (Ferranti et al. 2018). 

Current S2S models can deliver skillful forecasts for some large-scale patterns 2 weeks ahead, 

and longer in certain cases. This suggests that subseasonal predictions have the potential to 

support early warnings of severe cold events over Europe. The success of predicting weeks 

ahead the changes in large-scale flow leading to cold spells depends on the type of regime 

transitions. For example, the ECMWF ensemble provides reliable probabilities of cold spells 

associated with the establishment of Greenland blocking (NAO-) well beyond one week (e.g., 
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Ferranti et al. 2018). The predictive skill of such events can be significantly enhanced during 

MJO activity via tropical–extratropical teleconnections. Using the ensemble spread rate of 

change4 with lead time as a measure of predictability, it is possible to show that the NAO− 

circulation regime exhibits a higher level of inherent predictability than the European blocking 

regime (Ferranti et al. 2018).  

 

Atmospheric Rivers and Extreme Weather Activity As previously discussed, two modes of 

tropical variability offer windows of opportunity to forecast aspects of North America’s extreme 

weather at subseasonal lead times. Specifically, the MJO has been shown to modulate springtime 

hail and tornado activity (Thompson and Roundy 2013; Barrett and Gensini 2013), along with 

west coast snowpack (Guan et al. 2010), while the MJO and QBO have been shown to modulate 

wintertime AR frequencies (Baggett et al. 2017). Baggett et al. (2018) developed an empirical 

model using the current state of the MJO to forecast hail and tornado activity over the U.S. 

Plains and found skillful forecasts of opportunity out to 5 weeks. A similar empirical model was 

developed by Mundhenk et al. (2018) that utilized both the states of the MJO and QBO to predict 

AR activity along the U.S. West Coast. This empirical model also produced skillful forecasts 

with lead times out to 5 weeks for specific combinations of MJO and QBO phases (see Fig. 3 for 

an example of derived forecast tools following Nardi et al. (2019)). Dynamical models, by 

comparison, show skillful forecasts only out to ~2 weeks for similar variables (e.g., Carbin et al. 

2016).  

 

 
4 The ensemble spread, of a well-constructed ensemble prediction system, is an indicator of forecast uncertainties 
and the rate at which the spread grows is an estimate of predictability. As the ensemble spread grows rapidly with 
lead time, so does the forecast uncertainty, indicating reduced predictability. Conversely, as the ensemble spread 
grows slowly with lead time, so does the uncertainty, implying a smaller reduction in predictability.  
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Atmospheric Rivers and Western U.S. Water Availability The California Department of 

Water Resources and its research partners are exploring opportunities for skillful S2S forecasts 

to aid in the management of western U.S. water availability and related hazards under extreme 

conditions. Efforts have mainly targeted wintertime ARs as a major source of freshwater input 

and on ridging as a dominant way ARs are restricted. Relationships between weekly AR 

occurrence, ridging, and certain phases of ENSO, the Arctic Oscillation, the PNA, and the MJO 

(DeFlorio et al. 2018; Guirguis et al. 2018) have formed the basis for predictability 

considerations. An experimental prediction framework is being developed to predict weekly AR 

frequency (DeFlorio et al. 2018; DeFlorio et al. 2019) based on hindcast and forecast information 

from the S2S Prediction Project (Vitart et al. 2017). Results indicate conditional useful skill 1-3 

weeks ahead. Forecast tools under development focus on ridging types and persistence, as they 

relate to distinct characteristics and opportunities for enhanced predictability and skill; they also 

examine the integrated water vapor transport in a given week associated with ARs over the U.S. 

West Coast. Guirguis et al. (2018) identified circulation anomaly patterns associated with AR 

activity along the North American West Coast and showed how seasonal variation in the 

prevalence of these weather types is associated with interannual variability in AR landfalls. Such 

knowledge is providing the basis for new experimental tools built on historical analogs. 

 

Climate Extremes: Operational centers currently produce forecasts for extremes or hazards on 

weather timescales, such as severe weather or heat extremes. Generally, such operational 

forecasts have not been extended into climate timescales.  Examples of climate extremes include 

monthly or seasonal temperatures or accumulated precipitation amounts that have occurred 

infrequently in the climate record, which may be defined using the tails of the observed 
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distribution. These extremes can be the result of internal variability and can also be modulated by 

forcings such as increasing greenhouse gases. An example of a forecast of opportunity for 

climate extremes is that of flooding probabilities in Peru conditioned on ENSO states, given the 

heavy rains that typically accompany El Niño events. These forecasts of opportunity are now 

informing the development of potential early action plans. At seasonal forecast leads, these early 

action plans would be triggered with a high degree of confidence if several forecast criteria are 

met, such as El Niño SST anomalies (Niño region “1+2”) exceeding 3°C or ensemble 

probabilities for precipitation above the 90th percentile exceeding 40% (Bazo et al. 2018).  

Interestingly, some studies have identified that subseasonal and seasonal climate models can 

more skillfully predict events with greater anomalies than events with anomalies closer to the 

mean (Becker et al. 2013; Becker et al. 2018). These results suggest that useful outlooks for 

extreme events could be developed. 

 

3. Challenges and Benefits 

While experimental tools that build on windows of opportunity are being developed, such an 

approach is not without challenges. At the outset, it is a question of culture. Recognizing that a 

forecast tool has scientific standing and practical value even if it provides information only when 

the opportunity arises is not customary. On the user side, both forecast centers and forecast users 

are accustomed to expecting forecasts on time, all the time. Adapting to an approach that 

provides probabilistic forecasts with information only in certain conditions requires a significant 

mindset shift. In seasonal forecasting, the approach to skill-intermittency has been to issue 

probabilistic forecasts calibrated in order to yield climatological probabilities in the absence of a 

forecast signal (Mason et al. 1999). This approach provides users with a forecast “all the time” 
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which can be acted upon when and where the probabilities deviate from climatology, provided 

the forecasts are well calibrated to issue reliable probabilities (e.g., for tercile categories or 

exceedance/non-exceedance of user-defined thresholds; Barnston and Tippett 2014). This 

approach has recently been applied to subseasonal forecasts of precipitation and temperature 

(e.g., Vigaud et al. 2017a; Vigaud et al. 2019), and discussed in the context of monsoonal 

climates (Vigaud et al. 2017b; Robertson et al. 2019), and East Africa/West Asia (Vigaud et al. 

2018b). On subseasonal timescales, the NOAA Climate Prediction Center generates probabilistic 

forecasts following similar approaches for the calibration of dynamical model output (Unger et 

al. 2009; Strazzo et al. 2019). However, for subseasonal forecasts of particular meteorological 

variables such as precipitation, calibrated probabilities will often deviate very little from 

climatology, dependent on the region, season, and lead time. Furthermore, such methods of 

calibration may underestimate reliable probabilities of forecasts during periods of enhanced 

predictability. These could potentially be targeted more purposefully as part of a forecast of 

opportunity framework approach. 

Moving towards opportunity-based forecast approaches may not always be practically 

achievable. Even when predictive linkages between processes and meteorological outcomes have 

been theoretically established, it is another matter to build forecast tools that exploit such 

relationships. Among other things, this requires a large enough sample of past events to build 

statistically sound relationships as the basis of the new prediction tools. Building forecasts of 

opportunity automatically decreases the sample size as only a particular subset of days are being 

considered as training data. Sample size issues become particularly challenging for forecasts of 

events that happen rarely.  
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Advancing an opportunity-based forecast approach requires both foundational and 

applied research. This includes furthering our understanding of the processes that can lead to 

opportunities for enhanced predictability and forecast skill. In turn, this requires having robust 

observations as the basis of research, including key surface variables such as ocean mixed layer 

depth, sea ice thickness, snow water equivalent, soil moisture, etc. (NASEM 2016; 2018) along 

with improved long-term reanalysis products that are consistent across the Earth’s climate 

system. Research outcomes could point to new predictability sources to help alleviate over-

reliance on well-established processes such as ENSO, which have limited relevance and 

applicability. Research is also needed to further develop prediction systems and statistical 

methodologies that build on observations, process understanding, and models for new 

opportunity-based forecasts. There is also the need to develop evaluation diagnostics and metrics 

that optimally evaluate such forecasts to inform the development of opportunity-based prediction 

tools. 

Lastly, but importantly, communication strategies need to be tackled. Given the 

intermittency in the occurrence of forecast windows of opportunity, their format may differ from 

typical weather forecasts made by operational centers. However, there are already examples of 

this approach in weather forecasting, where predictions of the risk of weather hazards are issued 

only when that risk is enhanced using the “watch” and “warning” progression. Another possible 

format is currently in operations at the Climate Prediction Center.  Probabilistic hazard maps of 

extreme temperature, wind, and precipitation are issued for a lead time of 2 weeks. Rather than 

pinpointing exact locations and times as typical weather advisories and warnings do, these maps 

subsume broad regions over several days where and when probabilities of hazardous weather are 

elevated. Forecasts of opportunity necessitate a different kind of response from users, who must 
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understand the uncertainty associated with the forecast event. The development of capacity in 

forecasts of opportunity should be accomplished through the collaboration with potential users to 

ensure that forecast information is actionable (White et al. 2017).  

Despite the challenges, the potential benefits of exploring opportunity-based forecast 

approaches are tantalizing, especially considering the current alternative of having forecasts with 

limited skill beyond weather timescales (Malloy and Kirtman 2019). Applying a window of 

opportunity approach to the examination of observational data and forecast system output could 

reveal new useful relationships and skill when and where it was thought there was none. This in 

turn could open the door to a new set of forecast products. With an approach that explicitly 

builds on specific opportunities, communication, and dissemination tools, users’ expectations 

could be more adequately met, as they are better aware of when and where to expect skill and if 

the prediction is actionable.  

Given that there is still untapped potential, it is safe to expect that in the future the range 

of forecast opportunities will expand beyond what is currently available. There is much that is 

unknown. For example, it is conceivable that predictive processes exist that have not yet been 

detected based on observations or are not fully understood. Moreover, these processes may not 

yet be well captured in our models and prediction systems that have limited resolution and 

parameterized physics. There are experimental statistical forecasts tools with consistent forecast 

skill in certain situations and for certain quantities at a level not yet achieved in our dynamical 

models based on current process understanding (e.g., for western AR activity, Mundhenk et al. 

2018). This is not surprising and, most importantly, it is also suggestive that further dynamical 

models’ skill improvement is to be expected and purposefully sought after. For example, there is 

much variability in the ocean beyond ENSO that we are still trying to understand, simulate, and 
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exploit for prediction purposes. Indeed, there are recent studies pointing to coupled processes 

both in the Tropics (e.g., the MJO, the diurnal cycle, and monsoons ) and mid-to-high latitudes 

(e.g., sea-ice, mesoscale frontal interactions) as important to modulate intraseasonal variability 

(e.g., Taraphdar et al. 2018; Li et al. 2018; Alexander et al. 2004; Smirnov et al. 2015; DeMott et 

al. 2015; Chelton and Xie 2010; Jia et al. 2019). This is even more true when considering the 

broader set of Earth system components and interactions that could lead to enhanced 

predictability. It is logical to build opportunity-based forecasts considering the processes that we 

understand create favorable conditions for enhanced forecast skill and improve our dynamical 

prediction systems so they optimally represent them. However, empirical models or dynamical 

models based on forecast output models (i.e., hybrid models) have already shown promise (e.g., 

Dobrynin et al. 2018) and may continue to be a synergetic innovative way forward for exploring 

predictability potential, until underpinning mechanisms can be more fully understood and better 

simulated by dynamical forecasts systems.  

 

Acknowledgements 

The authors wish to thank the Editor and the anonymous reviewers for their careful review of the 

manuscript and their insightful comments which have significantly improved it. Several of the 

authors’ contributions were supported by NOAA grants as part of the NOAA Modeling, 

Analysis, Predictions and Projections (MAPP) S2S Prediction Task Force (Barnes: 

NA16OAR4310064, Dirmeyer: NA16OAR4310072 and NA16OAR4310095, Kirtman: 

NA15OAR4320064, NA16OAR4310141, NA16OAR4310149, Robertson: NA16OAR4310145). 

Barnes was also supported by the NOAA Climate Test Bed program (NA18OAR4310296). 

Johnson was supported by NOAA through NA14OAR4320106 and NA18OAR4320123. 



25 
 

Robertson was also supported by NOAA Climate Test Bed grant NA18OAR4310295, and by 

NA16NWS4680014 and NA18NWS4680067. Schubert’s was supported by NASA MAP 

funding WBS 802678.02.17.01.33. The views expressed in the manuscript are those of the 

authors, not of the State of California, NOAA,NASA or other Federal agencies. 

Mariotti A. dedicates this paper to Prof. Roberto Benzi in recognition of his early mentorship and 

teachings of predictability theory. 

 

References 

Albers, J. R., and M. Newman, 2019: A Priori Identification of Skillful Extratropical 

Subseasonal Forecasts. Geophys Res Lett, 46, 12527-12536, 

https://doi.org/10.1029/2019gl085270. 

Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The 

Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter. J 

Climate, 17, 890–905, https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2. 

Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2019: Interference between MJO and 

ENSO Teleconnection Signals Impacts US Rainfall. J Climate (submitted). 

Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing 

atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys Res Lett, 44, 7528-

7536, https://doi.org/10.1002/2017gl074434. 

Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: 

Skillful Subseasonal Forecasts of Weekly Tornado and Hail Activity Using the Madden‐Julian 



26 
 

Oscillation. Journal of Geophysical Research: Atmospheres, 123, 

https://doi.org/10.1029/2018jd029059. 

Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather 

regimes. Science, 294, 581-584, https://doi.org/10.1126/science.1063315. 

Barnston, A. G., and M. K. Tippett, 2014: Climate information, outlooks, and understanding–

where does the IRI stand? Earth Perspectives, 1, https://doi.org/10.1186/2194-6434-1-20. 

Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2017: Deterministic skill 

of ENSO predictions from the North American Multimodel Ensemble. Clim Dynam, 53, 7215-

7234, https://doi.org/10.1007/s00382-017-3603-3. 

Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April-May tornado 

day likelihood by phase of the Madden-Julian Oscillation. Geophys Res Lett, 40, 2790-2795, 

https://doi.org/10.1002/grl.50522. 

Bazo, J., R. Singh, M. Destrooper, and E. C. de Perez, 2019: Pilot experiences in using seamless 

forecasts for early action: The “Ready-Set-Go” approach in the Red Cross. Sub-seasonal to 

Seasonal Prediction, A. Robertston and F. Vitart, Elsevier, Inc., 387-398. 

Becker, E. J., H. van den Dool, and M. Peña, 2013: Short-Term Climate Extremes: Prediction 

Skill and Predictability. J Climate, 26, 512-531, https://doi.org/10.1175/jcli-d-12-00177.1. 

Becker, E.J., and H. van den Dool, 2018. Short-term climate extremes: probabilistic forecasts 

from a multi-model ensemble. Climate Prediction S&T Digest, 42nd NOAA Climate Diagnostics 



27 
 

Prediction Workshop Special Issue. Norman, OK, USA, NOAA, 46-48, 

https://doi.org/10.7289/V5/CDPW-NWS-42nd-2018. 

Bellucci, A., A. Mariotti, and S. Gualdi, 2017: The Role of Forcings in the Twentieth-Century 

North Atlantic Multidecadal Variability: The 1940–75 North Atlantic Cooling Case Study. J 

Climate, 30, 7317-7337, https://doi.org/10.1175/jcli-d-16-0301.1. 

Benedetti, A., and F. Vitart, 2018: Can the Direct Effect of Aerosols Improve Subseasonal 

Predictability? Mon Weather Rev, 146, 3481-3498, https://doi.org/10.1175/mwr-d-17-0282.1. 

Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, and A. Weisheimer, 2019: The 

northern hemisphere circumglobal teleconnection in a seasonal forecast model and its 

relationship to European summer forecast skill. Clim Dynam, 52, 3759-3771, 

https://doi.org/10.1007/s00382-018-4371-4. 

Birner, T., and J. R. Albers, 2017: Sudden Stratospheric Warmings and Anomalous Upward 

Wave Activity Flux. Sola, 13A, 8-12, https://doi.org/10.2151/sola.13A-002. 

Boer, G. J., V. V. Kharin, and W. J. Merryfield, 2013: Decadal predictability and forecast skill. 

Clim Dynam, 41, 1817-1833, https://doi.org/10.1007/s00382-013-1705-0. 

Borchert, L. F., A. Düsterhus, S. Brune, W. A. Müller, and J. Baehr, 2019: Forecast‐Oriented 

Assessment of Decadal Hindcast Skill for North Atlantic SST. Geophys Res Lett, 46, 11444-

11454, https://doi.org/10.1029/2019gl084758. 



28 
 

Brune, S., A. Düsterhus, H. Pohlmann, W. A. Müller, and J. Baehr, 2018: Time dependency of 

the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Clim 

Dynam, 51, 1947-1970, https://doi.org/10.1007/s00382-017-3991-4. 

Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric 

warming compendium. Earth System Science Data, 9, 63-76, https://doi.org/10.5194/essd-9-63-

2017. 

Carbin, G. W., M. K. Tippett, S. P. Lillo, and H. E. Brooks, 2016: Visualizing Long-Range 

Severe Thunderstorm Environment Guidance from CFSv2. Bulletin of the American 

Meteorological Society, 97, 1021-1031, https://doi.org/10.1175/bams-d-14-00136.1. 

Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state 

on North Atlantic weather regimes. Q J Roy Meteor Soc, 144, 1140-1151, 

https://doi.org/10.1002/qj.3280. 

Chelton, D., and S.-P. Xie, 2010: Coupled Ocean-Atmosphere Interaction at Oceanic 

Mesoscales. Oceanography, 23, 52-69, https://doi.org/10.5670/oceanog.2010.05. 

Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An Ocean Dynamical 

Thermostat. J Climate, 9, 2190-2196, https://doi.org/10.1175/1520-

0442(1996)009<2190:Aodt>2.0.Co;2. 

Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. 

Nat Geosci, 7, 627-637, https://doi.org/10.1038/ngeo2234. 



29 
 

DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M. Ralph, and F. Vitart, 2018: Global 

Assessment of Atmospheric River Prediction Skill. J Hydrometeorol, 19, 409-426, 

https://doi.org/10.1175/jhm-d-17-0135.1. 

DeFlorio, M. J., and Coauthors, 2019: Experimental Subseasonal‐to‐Seasonal (S2S) Forecasting 

of Atmospheric Rivers Over the Western United States. Journal of Geophysical Research: 

Atmospheres, 124, 11242-11265, https://doi.org/10.1029/2019jd031200. 

DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere‐ocean coupled 

processes in the Madden‐Julian oscillation. Rev Geophys, 53, 1099-1154, 

https://doi.org/10.1002/2014rg000478. 

DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña 

events in a coupled general circulation model. Clim Dynam, 49, 4237-4261, 

https://doi.org/10.1007/s00382-017-3575-3. 

Ding, Q., and B. Wang, 2005: Circumglobal Teleconnection in the Northern Hemisphere 

Summer. J Climate, 18, 3483-3505, https://doi.org/10.1175/jcli3473.1. 

Dirmeyer, P. A., G. Balsamo, and C. D. Peters-Lidard, 2015: Land-Atmosphere Interactions and 

the Water Cycle. Seamless Prediction of the Earth System: from Minutes to Months, G. Brunet, 

S. Jones, and P. M. Ruti, World Meteorological Organization, Geneva, Switzerland, 145–154. 

Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018: On the Harvest of Predictability From Land 

States in a Global Forecast Model. Journal of Geophysical Research: Atmospheres, 123, 

https://doi.org/10.1029/2018jd029103. 



30 
 

Dobrynin, M., and Coauthors, 2018: Improved Teleconnection-Based Dynamical Seasonal 

Predictions of Boreal Winter. Geophys Res Lett, 45, 3605-3614, 

https://doi.org/10.1002/2018gl077209. 

Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019a: The Teleconnection of El Niño 

Southern Oscillation to the Stratosphere. Rev Geophys, 57, 5-47, 

https://doi.org/10.1029/2019jd030923. 

Domeisen, D. I. V., and Coauthors, 2019b: The role of the stratosphere in subseasonal to 

seasonal prediction Part II: Predictability arising from stratosphere ‐ troposphere coupling. 

Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2018rg000596. 

Doss-Gollin, J., Á. G. Muñoz, S. J. Mason, and M. Pastén, 2018: Heavy Rainfall in Paraguay 

during the 2015/16 Austral Summer: Causes and Subseasonal-to-Seasonal Predictive Skill. J 

Climate, 31, 6669-6685, https://doi.org/10.1175/jcli-d-17-0805.1. 

Eddebbar, Y. A., K. B. Rodgers, M. C. Long, A. C. Subramanian, S.-P. Xie, and R. F. Keeling, 

2019: El Niño–Like Physical and Biogeochemical Ocean Response to Tropical Eruptions. J 

Climate, 32, 2627-2649, https://doi.org/10.1175/jcli-d-18-0458.1. 

Ferranti, L., S. Corti, and M. Janousek, 2015: Flow-dependent verification of the ECMWF 

ensemble over the Euro-Atlantic sector. Q J Roy Meteor Soc, 141, 916-924, 

https://doi.org/10.1002/qj.2411. 

Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we 

predict changes in large-scale flow leading to severe cold conditions over Europe? Q J Roy 

Meteor Soc, 144, 1788-1802, https://doi.org/10.1002/qj.3341. 



31 
 

Ford, T. W., and S. M. Quiring, 2014: In situ soil moisture coupled with extreme temperatures: 

A study based on the Oklahoma Mesonet. Geophys Res Lett, 41, 4727-4734, 

https://doi.org/10.1002/2014gl060949. 

Frame, T. H. A., J. Methven, S. L. Gray, and M. H. P. Ambaum, 2013: Flow-dependent 

predictability of the North Atlantic jet. Geophys Res Lett, 40, 2411-2416, 

https://doi.org/10.1002/grl.50454. 

Garfinkel, C. I., and D. L. Hartmann, 2010: Influence of the quasi-biennial oscillation on the 

North Pacific and El Niño teleconnections. Journal of Geophysical Research, 115, 

https://doi.org/10.1029/2010jd014181. 

Garfinkel, C. I., and C. Schwartz, 2017: MJO-Related Tropical Convection Anomalies Lead to 

More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models. Geophys Res 

Lett, 44, 10054-10062, https://doi.org/10.1002/2017GL074470. 

Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall 

events linked to atmospheric rivers and surface air temperature via satellite measurements. 

Geophys Res Lett, 37, https://doi.org/10.1029/2010gl044696. 

Guirguis, K., A. Gershunov, R. E. S. Clemesha, T. Shulgina, A. C. Subramanian, and F. M. 

Ralph, 2018: Circulation Drivers of Atmospheric Rivers at the North American West Coast. 

Geophys Res Lett, 45, https://doi.org/10.1029/2018gl079249. 

Guo, Z., P. A. Dirmeyer, and T. DelSole, 2011: Land surface impacts on subseasonal and 

seasonal predictability. Geophys Res Lett, 38, https://doi.org/10.1029/2011gl049945. 



32 
 

Haarsma, R. J., J. Garcia-Serrano, C. Prodhomme, O. Bellprat, P. Davini, and S. Drijfhout, 2019: 

Sensitivity of winter North Atlantic-European climate to resolved atmosphere and ocean 

dynamics. Sci Rep, 9, 13358, https://doi.org/10.1038/s41598-019-49865-9. 

Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473-485, 

https://doi.org/10.1111/j.2153-3490.1976.tb00696.x. 

He, S., E. M. Knudsen, D. W. J. Thompson, and T. Furevik, 2018: Evidence for Predictive Skill 

of High-Latitude Climate Due to Midsummer Sea Ice Extent Anomalies. Geophys Res Lett, 45, 

9114-9122, https://doi.org/10.1029/2018gl078281. 

Herring, S.C., N. Christidis, A. Hoell, M.P. Hoerling, and P.A. Stott, 2019: Explaining Extreme 

Events of 2017 from a Climate Perspective. Bull. Amer. Meteor. Soc., 100, S1–S117, 

https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2017.1 

Hoskins, B. J., and D. J. Karoly, 1981: The Steady Linear Response of a Spherical Atmosphere 

to Thermal and Orographic Forcing. J Atmos Sci, 38, 1179-1196, https://doi.org/10.1175/1520-

0469(1981)038<1179:Tslroa>2.0.Co;2. 

Inoue, J., M. E. Hori, and K. Takaya, 2012: The Role of Barents Sea Ice in the Wintertime 

Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. J Climate, 25, 2561-

2568, https://doi.org/10.1175/jcli-d-11-00449.1. 

Jia, Y., P. Chang, I. Szunyogh, R. Saravanan, and J. T. Bacmeister, 2019: A Modeling Strategy 

for the Investigation of the Effect of Mesoscale SST Variability on Atmospheric Dynamics. 

Geophys Res Lett, 46, 3982-3989, https://doi.org/10.1029/2019gl081960. 



33 
 

Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful 

Wintertime North American Temperature Forecasts out to 4 Weeks Based on the State of ENSO 

and the MJO*. Weather Forecast, 29, 23-38, https://doi.org/10.1175/waf-d-13-00102.1. 

Kalnay, E. and A. Dalcher, 1987: Forecasting forecast skill. Mon. Weather Rev. 115, 349-356, 

https://doi.org/10.1175/1520-0493(1987)115<0349:FFS>2.0.CO;2. 

Karpechko, A. Y., 2018: Predictability of Sudden Stratospheric Warmings in the ECMWF 

Extended-Range Forecast System. Mon Weather Rev, 146, 1063-1075, 

https://doi.org/10.1175/mwr-d-17-0317.1. 

Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 

and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dynam, 39, 

2957-2973, https://doi.org/10.1007/s00382-012-1364-6. 

Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Evidence for wave 

resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal 

summer. Clim Dynam, 49, 1961-1979, https://doi.org/10.1007/s00382-016-3399-6. 

Koster, R. D., and M. J. Suarez, 2001: Soil Moisture Memory in Climate Models. J 

Hydrometeorol, 2, 558-570, https://doi.org/10.1175/1525-

7541(2001)002<0558:Smmicm>2.0.Co;2. 

Koster, R. D., S. P. Mahanama, T. J. Yamada, G. Balsamo, A. A. Berg, M. Boisserie, P. A. 

Dirmeyer, F. J. Doblas-Reyes, G. Drewitt, C. T. Gordon, Z. Guo, J. Jeong, W. Lee, Z. Li, L. Luo, 

S. Malyshev, W. J. Merryfield, S. I. Seneviratne, T. Stanelle, B. J. van den Hurk, F. Vitart, and 

E.F. Wood, 2011: The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil 



34 
 

Moisture Contributions to Subseasonal Forecast Skill. J Hydrometeor., 12, 805–822, 

https://doi.org/10.1175/2011JHM1365.1. 

Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A Mechanism for Land–Atmosphere 

Feedback Involving Planetary Wave Structures. J Climate, 27, 9290-9301, 

https://doi.org/10.1175/jcli-d-14-00315.1. 

Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of Local Soil Moisture 

Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during 

Boreal Summer: A Comprehensive Analysis over North America. J Climate, 29, 7345–7364, 

https://doi.org/10.1175/JCLI-D-16-0192.1. 

Leroy, A., and M. C. Wheeler, 2008: Statistical Prediction of Weekly Tropical Cyclone Activity 

in the Southern Hemisphere. Mon Weather Rev, 136, 3637-3654, 

https://doi.org/10.1175/2008mwr2426.1. 

Li, H., and R. L. Sriver, 2018: Tropical Cyclone Activity in the High‐Resolution Community 

Earth System Model and the Impact of Ocean Coupling. J Adv Model Earth Sy, 10, 165-186, 

https://doi.org/10.1002/2017ms001199. 

Lim, E.-P., H. H. Hendon, G. Boschat, D. Hudson, D. W. J. Thompson, A. J. Dowdy, and J. M. 

Arblaster, 2019: Australian hot and dry extremes induced by weakenings of the stratospheric 

polar vortex. Nat Geosci, 12, 896-901, https://doi.org/10.1038/s41561-019-0456-x. 

Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian Oscillation on Wintertime 

Precipitation in Canada. Mon Weather Rev, 138, 3822-3839, 

https://doi.org/10.1175/2010mwr3363.1. 



35 
 

Lovejoy, S., 2018: Spectra, intermittency, and extremes of weather, macroweather and climate. 

Sci Rep, 8, 12697, https://doi.org/10.1038/s41598-018-30829-4. 

Luo, J.-J., S. K. Behera, Y. Masumoto, and T. Yamagata, 2011: Impact of Global Ocean Surface 

Warming on Seasonal-to-Interannual Climate Prediction. J Climate, 24, 1626-1646, 

https://doi.org/10.1175/2010jcli3645.1. 

Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-Day Tropical Oscillation—A 

Review. Mon Weather Rev, 122, 814-837, https://doi.org/10.1175/1520-

0493(1994)122<0814:Ootdto>2.0.Co;2. 

Malloy, K. M., and B. P. Kirtman, 2019: Predictability of mid-summer Great Plains low-level jet 

and associated precipitation. Weather Forecast, https://doi.org/10.1175/waf-d-19-0103.1. 

Mariotti, A., and Coauthors, 2019: Bridging the Weather-to-Climate Prediction Gap. Eos, 100, 

https://doi.org/10.1029/2019eo115819. 

Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2016: Impact of the quasi-biennial 

oscillation on predictability of the Madden–Julian oscillation. Clim Dynam, 49, 1365-1377, 

https://doi.org/10.1007/s00382-016-3392-0. 

Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI 

Seasonal Climate Prediction System and the 1997/98 El Niño Event. Bulletin of the American 

Meteorological Society, 80, 1853-1873, https://doi.org/10.1175/1520-

0477(1999)080<1853:Tiscps>2.0.Co;2. 



36 
 

Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Q J Roy 

Meteor Soc, 134, 439-453, https://doi.org/10.1002/qj.224. 

Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating 

in the Madden–Julian oscillation during the northern winter. Q J Roy Meteor Soc, 130, 1991-

2011, https://doi.org/10.1256/qj.02.123. 

McCormick, M. P., and R. E. Veiga, 1992: SAGE II measurements of early Pinatubo aerosols. 

Geophys Res Lett, 19, 155-158, https://doi.org/10.1029/91gl02790. 

Molteni, F., and T. N. Palmer, 1991: A Real-Time Scheme for the Prediction of Forecast Skill. 

Mon Weather Rev, 119, 1088-1097, https://doi.org/10.1175/1520-

0493(1991)119<1088:Artsft>2.0.Co;2. 

Moore, R. W., O. Martius, and T. Spengler, 2010: The Modulation of the Subtropical and 

Extratropical Atmosphere in the Pacific Basin in Response to the Madden–Julian Oscillation. 

Mon Weather Rev, 138, 2761-2779, https://doi.org/10.1175/2010mwr3194.1. 

Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice 

influence on the frequent Eurasian cold winters in past decades. Nat Geosci, 7, 869-873, 

https://doi.org/10.1038/ngeo2277. 

Moron, V., A. W. Robertson, and M. Ghil, 2012: Impact of the modulated annual cycle and 

intraseasonal oscillation on daily-to-interannual rainfall variability across monsoonal India. Clim 

Dynam, 38, 2409-2435, https://doi.org/10.1007/s00382-011-1253-4. 



37 
 

Moron, V., A. W. Robertson, J.-H. Qian, and M. Ghil, 2015: Weather types across the Maritime 

Continent: from the diurnal cycle to interannual variations. Frontiers in Environmental Science, 

2, https://doi.org/10.3389/fenvs.2014.00065. 

Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical 

subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian 

oscillation and quasi-biennial oscillation. npj Climate and Atmospheric Science, 1, 

https://doi.org/10.1038/s41612-017-0008-2. 

Muñoz, Á. G., L. Goddard, A. W. Robertson, Y. Kushnir, and W. Baethgen, 2015: Cross–Time 

Scale Interactions and Rainfall Extreme Events in Southeastern South America for the Austral 

Summer. Part I: Potential Predictors. J Climate, 28, 7894-7913, https://doi.org/10.1175/jcli-d-14-

00693.1. 

Muñoz, Á. G., L. Goddard, S. J. Mason, and A. W. Robertson, 2016: Cross–Time Scale 

Interactions and Rainfall Extreme Events in Southeastern South America for the Austral 

Summer. Part II: Predictive Skill. J Climate, 29, 5915-5934, https://doi.org/10.1175/jcli-d-15-

0699.1. 

Nardi, K. M., C. F. Baggett, E. A. Barnes, E. D. Maloney, C. F. Baggett, D. S. Harnos, and L. M. 

Ciasto, 2019: Skillful all-season S2S prediction of U.S. precipitation using the MJO and QBO. 

Weather and Forecasting (submitted). 

National Academies of Sciences, Engineering, and Medicine, 2016: Next Generation Earth 

System Prediction: Strategies for Subseasonal to Seasonal Forecasts. Washington, DC: The 

National Academies Press. https://doi.org/10.17226/21873. 



38 
 

National Academies of Sciences, Engineering, and Medicine. 2018. Thriving on Our Changing 

Planet: A Decadal Strategy for Earth Observation from Space. Washington, DC: The National 

Academies Press. https://doi.org/10.17226/24938. 

Newman, M., and P. D. Sardeshmukh, 1998: The Impact of the Annual Cycle on the North 

Pacific/North American Response to Remote Low-Frequency Forcing. J Atmos Sci, 55, 1336-

1353, https://doi.org/10.1175/1520-0469(1998)055<1336:Tiotac>2.0.Co;2. 

Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003: A Study of 

Subseasonal Predictability. Mon Weather Rev, 131, 1715-1732, https://doi.org/10.1175//2558.1. 

Parker, T. J., G. J. Berry, and M. J. Reeder, 2014: The Structure and Evolution of Heat Waves in 

Southeastern Australia. J Climate, 27, 5768-5785, https://doi.org/10.1175/jcli-d-13-00740.1. 

Penland, C., and P. D. Sardeshmukh, 1995: The Optimal Growth of Tropical Sea Surface 

Temperature Anomalies. J Climate, 8, 1999-2024, https://doi.org/10.1175/1520-

0442(1995)008<1999:Togots>2.0.Co;2. 

Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold 

winter extremes over northern continents. Journal of Geophysical Research, 115, 

https://doi.org/10.1029/2009jd013568. 

Plumb R. A., 2010. Planetary waves and the extratropical stratosphere. In “The Stratosphere: 

Dynamics, Transport, and Chemistry”, Geophysical Monograph Series, 190, 

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/9781118666630.ch2. 



39 
 

Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of Interactive Aerosol on the African 

Easterly Jet in the NASA GEOS-5 Global Forecasting System. Weather Forecast, 26, 504-519, 

https://doi.org/10.1175/waf-d-10-05025.1. 

Reale, O., K. M. Lau, A. da Silva, and T. Matsui, 2014: Impact of assimilated and interactive 

aerosol on tropical cyclogenesis. Geophys Res Lett, 41, 3282-3288, 

https://doi.org/10.1002/2014GL059918. 

Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 

2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North 

American region. Clim Dynam, 40, 1749-1766, https://doi.org/10.1007/s00382-012-1493-y. 

Robertson, A. W., V. Moron, N. Vigaud, N. Acharya, A. M. Greene, and D. S. Pai, 2019: Multi-

scale variability and predictability of Indian summer monsoon rainfall. MAUSAM, 70, 277-292. 

Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmospheric 

Science Letters, 17, 51-56, https://doi.org/10.1002/asl.598. 

Schubert, S., H. Wang, and M. Suarez, 2011: Warm Season Subseasonal Variability and Climate 

Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves. J Climate, 24, 

4773-4792, https://doi.org/10.1175/jcli-d-10-05035.1. 

Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal 

forecast skill following stratospheric sudden warmings. Nat Geosci, 6, 98-102, 

https://doi.org/10.1038/ngeo1698. 



40 
 

Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: 

Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface 

Temperature Front. J Climate, 28, 1126-1147, https://doi.org/10.1175/jcli-d-14-00285.1. 

Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of extratropical 

stratosphere-troposphere interactions. Journal of Geophysical Research: Atmospheres, 117, 

https://doi.org/10.1029/2012jd017587. 

Song, L., and R. Wu, 2019: Impacts of MJO Convection over the Maritime Continent on Eastern 

China Cold Temperatures. J Climate, 32, 3429-3449, https://doi.org/10.1175/jcli-d-18-0545.1. 

Strazzo, S., D. C. Collins, A. Schepen, Q. J. Wang, E. Becker, and L. Jia, 2019: Application of a 

Hybrid Statistical–Dynamical System to Seasonal Prediction of North American Temperature 

and Precipitation. Mon Weather Rev, 147, 607-625, https://doi.org/10.1175/mwr-d-18-0156.1. 

Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting 

September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013. Geophys Res 

Lett, 41, 2411-2418, https://doi.org/10.1002/2014gl059388. 

Swain, D. L., D. Singh, D. E. Horton, J. S. Mankin, T. C. Ballard, and N. S. Diffenbaugh, 2017: 

Remote Linkages to Anomalous Winter Atmospheric Ridging Over the Northeastern Pacific. 

Journal of Geophysical Research: Atmospheres, 122, 12,194-12,209, 

https://doi.org/10.1002/2017jd026575. 

Taraphdar, S., F. Zhang, L. R. Leung, X. Chen, and O. M. Pauluis, 2018: MJO Affects the 

Monsoon Onset Timing Over the Indian Region. Geophys Res Lett, 45, 10011-10018, 

https://doi.org/10.1029/2018gl078804. 



41 
 

Teng, H., and G. Branstator, 2017: Causes of Extreme Ridges That Induce California Droughts. J 

Climate, 30, 1477-1492, https://doi.org/10.1175/jcli-d-16-0524.1. 

Thompson, D. B., and P. E. Roundy, 2013: The Relationship between the Madden–Julian 

Oscillation and U.S. Violent Tornado Outbreaks in the Spring. Mon Weather Rev, 141, 2087-

2095, https://doi.org/10.1175/mwr-d-12-00173.1. 

Ting, M., and P. D. Sardeshmukh, 1993: Factors Determining the Extratropical Response to 

Equatorial Diabatic Heating Anomalies. J Atmos Sci, 50, 907-918, https://doi.org/10.1175/1520-

0469(1993)050<0907:Fdtert>2.0.Co;2. 

Tippett, M. K., A. G. Barnston, and S. Li, 2012: Performance of Recent Multimodel ENSO 

Forecasts. Journal of Applied Meteorology and Climatology, 51, 637-654, 

https://doi.org/10.1175/jamc-d-11-093.1. 

Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on 

monthly time-scales and its impact on the skill of tropospheric forecasts. Q J Roy Meteor Soc, 

141, 987-1003, https://doi.org/10.1002/qj.2432. 

Tseng, K. C., E. A. Barnes, and E. D. Maloney, 2018: Prediction of the Midlatitude Response to 

Strong Madden-Julian Oscillation Events on S2S Time Scales. Geophys Res Lett, 45, 463-470, 

https://doi.org/10.1002/2017gl075734. 

Unger, D. A., H. van den Dool, E. O’Lenic, and D. Collins, 2009: Ensemble Regression. Mon 

Weather Rev, 137, 2365-2379, https://doi.org/10.1175/2008mwr2605.1. 



42 
 

Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by 

wintertime Mediterranean rainfall deficit. Geophys Res Lett, 34, 

https://doi.org/10.1029/2006gl028001. 

Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian Oscillation’s 

Influence on African Easterly Waves and Downstream Tropical Cyclogenesis. Mon Weather 

Rev, 139, 2704-2722, https://doi.org/10.1175/mwr-d-10-05028.1. 

Vigaud, N., and A. W. Robertson, 2017: Convection regimes and tropical-midlatitude 

interactions over the Intra-American Seas from May to November. International Journal of 

Climatology, 37, 987-1000, https://doi.org/10.1002/joc.5051. 

Vigaud, N., A. W. Robertson, and M. K. Tippett, 2017a: Multimodel Ensembling of Subseasonal 

Precipitation Forecasts over North America. Mon Weather Rev, 145, 3913-3928, 

https://doi.org/10.1175/mwr-d-17-0092.1. 

Vigaud, N., A. W. Robertson, M. K. Tippett, and N. Acharya, 2017b: Subseasonal Predictability 

of Boreal Summer Monsoon Rainfall from Ensemble Forecasts. Frontiers in Environmental 

Science, 5, https://doi.org/10.3389/fenvs.2017.00067. 

Vigaud, N., and A. Giannini, 2018: West African convection regimes and their predictability 

from submonthly forecasts. Clim Dynam, 52, 7029-7048, https://doi.org/10.1007/s00382-018-

4563-y. 

——, 2018a: Predictability of Recurrent Weather Regimes over North America during Winter 

from Submonthly Reforecasts. Mon Weather Rev, 146, 2559-2577, https://doi.org/10.1175/mwr-

d-18-0058.1. 



43 
 

Vigaud, N., M. K. Tippett, and A. W. Robertson, 2018b: Probabilistic Skill of Subseasonal 

Precipitation Forecasts for the East Africa–West Asia Sector during September–May. Weather 

Forecast, 33, 1513-1532, https://doi.org/10.1175/waf-d-18-0074.1. 

Vigaud, N., M. K. Tippett, J. Yuan, A. W. Robertson, and N. Acharya, 2019: Probabilistic Skill 

of Subseasonal Surface Temperature Forecasts over North America. Weather Forecast, 34, 

1789-1806, https://doi.org/10.1175/waf-d-19-0117.1. 

Vitart, F., 2017: Madden-Julian Oscillation prediction and teleconnections in the S2S database. 

Q J Roy Meteor Soc, 143, 2210-2220, https://doi.org/10.1002/qj.3079. 

Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. 

Bulletin of the American Meteorological Society, 98, 163-173, https://doi.org/10.1175/bams-d-

16-0017.1. 

Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: assessment of 

the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim 

Dynam, 33, 93-117, https://doi.org/10.1007/s00382-008-0460-0. 

Wang, H., S. Schubert, R. Koster, Y.-G. Ham, and M. Suarez, 2014: On the Role of SST Forcing 

in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts. J Hydrometeorol, 

15, 1255-1273, https://doi.org/10.1175/jhm-d-13-069.1. 

Watson, P. A. G., A. Weisheimer, J. R. Knight, and T. N. Palmer, 2016: The role of the tropical 

West Pacific in the extreme Northern Hemisphere winter of 2013/2014. Journal of Geophysical 

Research: Atmospheres, 121, 1698-1714, https://doi.org/10.1002/2015jd024048. 



44 
 

Waugh, D. W., A. H. Sobel, and L. M. Polvani, 2017: What Is the Polar Vortex and How Does It 

Influence Weather? Bulletin of the American Meteorological Society, 98, 37-44, 

https://doi.org/10.1175/bams-d-15-00212.1. 

Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the 

Madden–Julian Oscillation on Australian Rainfall and Circulation. J Climate, 22, 1482-1498, 

https://doi.org/10.1175/2008jcli2595.1. 

White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) 

predictions. Meteorological Applications, 24, 315-325, https://doi.org/10.1002/met.1654. 

WMO, 2018: WWRP/WCRP Sub-seasonal to Seasonal Prediction Project (S2S) Phase II 

Proposal. WWRP 2018 - 4 WCRP Report, No. 11/2018. 

Zhang, C., and B. Zhang, 2018: QBO-MJO Connection. Journal of Geophysical Research: 

Atmospheres, 123, 2957-2967, https://doi.org/10.1002/2017jd028171. 

Zhang, J., and R. Zhang, 2015: On the evolution of Atlantic Meridional Overturning Circulation 

Fingerprint and implications for decadal predictability in the North Atlantic. Geophys Res Lett, 

42, 5419-5426, https://doi.org/10.1002/2015gl064596. 

Zhang, X., C. Lu, and Z. Guan, 2012: Weakened cyclones, intensified anticyclones and recent 

extreme cold winter weather events in Eurasia. Environmental Research Letters, 7, 

https://doi.org/10.1088/1748-9326/7/4/044044. 

Zheng, Z., Z. Z. Hu, and M. L'Heureux, 2016: Predictable Components of ENSO Evolution in 

Real-time Multi-Model Predictions. Sci Rep, 6, 35909, https://doi.org/10.1038/srep35909. 



45 
 

 

  



46 
 

 

List of Figures 

 

Figure 1:  SSW events affect cyclone track frequency (panels a-c) and surface air temperature 

anomalies (panels d-f) for at least a month after they occur. Cyclone track frequency (cyclones 

per week) is calculated using Hodges (1994) tracking algorithm within 250 km of a given 

location for subsets of 1980-2015 January, February, or March days in the MERRA-2 data. (a) 

Cyclones that occurred within 30-days after a SSW event and (b) cyclones not within 30-days 

after a SSW event; (c) The difference between (a) and (b) with significance hatched at  the 80% 

confidence interval. Panels (d)-(f) as in (a)-(c) but for daily 2-meter temperature anomalies (K), 

with significance in (f) hatched at the 95% interval. Significance tested with n=1000 bootstrap 

resampling without replacement. 

 

Figure 2. The LIM empirical forecast model applied to identify MSLP winter forecasts of 

opportunity in the Pacific basin for up to six weeks lead time. The figure shows median hindcast 

skill (1999-2010) of wintertime Pacific basin MSLP weekly-averaged anomalies predicted by 

operational NCEP CFS and ECMWF IFS models and by the LIM model, for forecast leads 

ranging from 1 to 6 weeks. For each forecast system, two categories are shown: one where the 

LIM expects skill will lie in the upper 10% of all hindcasts (darker bars) and a second consisting 

of the remaining 90% of hindcasts (lighter bars). Whiskers denote uncertainty due to the small 

hindcast sample size (based on bootstrap confidence intervals). Skill is measured by the pattern 

correlation of the forecast MSLP anomaly with its verification in the region 20º-60ºN, 120ºE-

120ºW. [Adapted from Albers and Newman (2019)]. 
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Figure 3: MJO conditions opportunities to forecast atmospheric river activity with 3-4 weeks 

lead time. The figure shows the frequency of forecasts of opportunity calculated over all 

instances when the MJO is active at initialization during January-March. Opportunities are 

defined as phase and lead combinations for which the skill is significantly better than a random 

forecast at the 95% confidence level. Frequencies are calculated over all MJO phase and lead 

combinations from Week 3 through Week 4 (lead days 15-28). Atmospheric rivers are identified 

using a modified version of the Mundhenk et al. (2016) scheme (see Ralph et al. (2019)), with 

the predictand defined as the 5-day forward running mean atmospheric river anomaly from 

climatology. The empirical prediction scheme is detailed in Nardi et al. (2019) and based on 

Mundhenk et al. (2018) and Johnson et al. (2014). Users can create similar figures using the web 

app: http://barnes.atmos.colostate.edu/S2SPredictionModel/. [Figure courtesy of Kyle Nardi] 
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FIGURES 

 

Figure 1:  SSW events affect cyclone track frequency (panels a-c) and surface air temperature 

anomalies (panels d-f) for at least a month after they occur. Cyclone track frequency (cyclones 

per week) is calculated using Hodges (1994) tracking algorithm within 250 km of a given 

location for subsets of 1980-2015 January, February, or March days in the MERRA-2 data. (a) 

Cyclones that occurred within 30-days after a SSW event and (b) cyclones not within 30-days 

after a SSW event; (c) The difference between (a) and (b) with significance hatched for regions 

excluded by the 80% confidence interval smoothed by a 9-point smoother. Panels (d)-(f) as in 

(a)-(c) but for daily 2-meter temperature anomalies (K), with significance in (f) hatched at the 

95% interval. Significance tested with n=1000 bootstrap resampling without replacement.  
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Figure 2. The LIM empirical forecast model applied to identify MSLP winter forecasts of 

opportunity in the Pacific basin for up to six weeks lead time. The figure shows median hindcast 

skill (1999-2010) of wintertime Pacific basin MSLP weekly-averaged anomalies predicted by 

operational NCEP CFS and ECMWF IFS models and by the LIM model, for forecast leads 

ranging from 1 to 6 weeks. For each forecast system, two categories are shown: one where the 

LIM expects skill will lie in the upper 10% of all hindcasts (darker bars) and a second consisting 

of the remaining 90% of hindcasts (lighter bars). Whiskers denote uncertainty due to the small 

hindcast sample size (based on bootstrap confidence intervals). Skill is measured by the pattern 

correlation of the forecast MSLP anomaly with its verification in the region 20º-60ºN, 120ºE-

120ºW. [Adapted from Albers and Newman (2019)]. 
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Figure 3: MJO conditions opportunities to forecast atmospheric river activity with 3-4 weeks 

lead time. The figure shows the frequency of forecasts of opportunity calculated over all 

instances when the MJO is active at initialization during January-March. Opportunities are 

defined as phase and lead combinations for which the skill is significantly better than a random 

forecast at the 95% confidence level. Frequencies are calculated over all MJO phase and lead 

combinations from Week 3 through Week 4 (lead days 15-28). Atmospheric rivers are identified 

using a modified version of the Mundhenk et al. (2016) scheme (see Ralph et al. (2019)), with 

the predictand defined as the 5-day forward running mean atmospheric river anomaly from 

climatology. The empirical prediction scheme is detailed in Nardi et al. (2019) and based on 

Mundhenk et al. (2018) and Johnson et al. (2014). Users can create similar figures using the web 

app: http://barnes.atmos.colostate.edu/S2SPredictionModel/. [Figure courtesy of Kyle Nardi] 

 


