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ABSTRACT

In this study, we present a general algorithm for processing microcalorimeter data with special applicability to data with high photon count
rates. Conventional optimal filtering, which has become ubiquitous in microcalorimeter data processing, suffers from its inability to recover
overlapped pulses without sacrificing spectral resolution. The technique presented here was developed to address this particular shortcoming
and does so without imposing any assumptions beyond those made by the conventional technique. We demonstrate the performance of the
algorithm with a dataset that approximately satisfies these assumptions and which is representative of a wide range of microcalorimeter
applications. We also apply the technique to a highly non-linear dataset, examining the impact on performance in the limit that these
assumptions break down.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026193

I. INTRODUCTION

Optimal filtering is a well established technique for processing
data from microcalorimeter detectors. It assumes that all photons
absorbed by the detector produce a pulse with a common signal
shape S(t), scaled by an amplitude that is proportional to the inci-
dent photon energy. To recover the photon energy with optimum
resolution, this technique constructs the pulse amplitude estimator

E ¼
X1

j¼1

wjs j, (1)

where s j is the measured signal amplitude in the jth frequency bin,
equivalent to the discrete Fourier transform of S(t). The weights wj

are chosen to maximize the signal-to-noise ratio of S(t) relative to
the detector noise. Under the further assumption that the statistical
properties of the noise are not changing with time, it can readily be
shown that the weights wj are given by

wj ¼ s*j=n
2
j , (2)

where s*j and n2j are the complex conjugate of the mean signal
and the mean-square of the noise in the jth frequency bin,
respectively (for a complete derivation, see, e.g., Ref. 1). Back in
the time domain, this process is equivalent to the convolution of
the signal S(t) with the inverse Fourier transform of wj, W(t).
Whereas each time sample of the unfiltered signal S(t) provides
correlated information about the pulse amplitude E, the best
estimate of this quantity is given by just a single point in the fil-
tered signal, i.e.,

E ¼ W(t)� S(t)jt¼0, (3)

where t ¼ 0 corresponds to the pulse arrival time.
In practice, the detector output is sampled and digitized at a

rate sufficient to avoid aliasing the useful terms in Eq. (1). The
useful bandwidth extends up to frequency fmax, beyond which addi-
tional terms will not significantly improve the signal-to-noise ratio.
The time-domain length of W(t) determines the frequency resolu-
tion of the filter with longer filters having finer frequency-space
binning. Longer filters are thus more efficient for optimizing the
signal-to-noise ratio (particularly, when the noise spectrum
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contains features), providing improved energy resolution. To
achieve the best possible energy resolution, this length must typi-
cally be many times the decay time of the pulse, τ.

One major drawback of conventional optimal filtering (hence-
forth, COF) is its requirement that pulses produced by individual
photons have a minimum separation of at least the time-domain
length of the optimized filter, W(t). Pulses with less than this
minimum separation cannot be processed, resulting in detector
dead-time (Fig. 1). Practical considerations on detector design
place a limit on the detector speed (i.e., minimum τ), meaning that
W(t) cannot be shortened arbitrarily without sacrificing perfor-
mance. Consequently, a compromise must usually be made
between the desired spectral resolution and the dead-time when
choosing the filter length.

In response to this problem, we have developed a technique
called “Overlapped Pulse Fitting” (OLPF) for recovering overlapped
pulses without loss of resolution compared to COF. Early imple-
mentations of this technique were tailored to individual, relatively
small datasets and required significant human intervention
(Refs. 2and 3). The current algorithm has been generalized to be
applicable to all microcalorimeter datasets that approximately
satisfy the two assumptions made by COF, namely, linear response
and stationary noise. In addition to the two datasets presented in
this paper, this technique was also used to analyze three sounding
rocket observations of the soft x-ray background presented in
Ref. 4. A different approach to multi-pulse fitting has been pre-
sented in Ref. 5, which trades some loss of resolution for computa-
tional simplicity.

The OLPF technique was largely developed using data from
the University of Wisconsin-Madison/Goddard Space Flight Center
X-ray Quantum Calorimeter (XQC) sounding rocket payload. The
reader may refer to Ref. 6 for a complete description of the
payload. XQC is a 36-pixel, silicon thermistor microcalorimeter

detector optimized for x-ray energies below 1 keV. Most pixels
achieve a baseline resolution of �7 eV FWHM under typical labo-
ratory noise conditions. The pixels have an effective decay time
τ � 9 ms and are about 3% non-linear at 3 keV. Each pixel is
approximately current biased, and the pixel voltages are digitized to
12 bits at a sampling rate of 10.4 ksamples/s.

II. TECHNIQUE

A. Filtering

To begin, we construct the usual filter optimized for pulse
amplitude described by Eq. (2). In practice, s j and n j are deter-
mined by averaging pulses and noise spectra from calibration data
[Figs. 2(a) and 2(b)]. Since the dead-time of OLPF does not
depend on the filter length, this length can be as long as necessary
to maximize the spectral resolution and/or contain the entire signal
shape. The latter requirement ensures that the signal is zero at the
end points, and the signal shape is not meaningfully altered by
windowing.

In addition to the usual amplitude filter, a filter optimized for
the pulse arrival time is also constructed. This filter is needed to
constrain the pulse’s inter-sample arrival time, since sub-sample
shifts in time can affect the apparent signal shape and, therefore,
the reconstructed energy of the pulse. To understand the derivation
of this filter, it is instructive to revisit the amplitude filter in slightly
more detail. The complex phase of the weights in Eq. (2) is chosen
to make each term in Eq. (1) entirely real and thus maximize the
sum by ensuring the constructive phase addition of each term.
Another consequence of this choice is that the time-domain convo-
lution of the filter with the signal shape can be expressed as a pure
cosine sum, with each term constructively adding to attain a global
maximum equal to E at time t ¼ 0 [Eq. (3)]. Therefore, the output
of the amplitude filter for an isolated pulse will be maximum at the
pulse arrival time. We can take advantage of this fact to construct
an arrival time filter that maximizes the slope of the signal relative
to the noise and whose time-domain convolution with the signal
shape will have a zero-crossing at t ¼ 0 (i.e., the pulse arrival
time). Rather than deriving such a filter from scratch, we can
invoke the derivative theorem for Fourier transforms, simply multi-
plying the amplitude filter with a factor of 2πif . Based on the con-
struction of Eq. (1), the corresponding estimator for the slope can
be written as

E0 ¼
X1

j¼1

2πif jw js j ¼
X1

j¼1

w0
js j, (4)

where wj are the same as in Eq. (2). Here, f j is the central fre-
quency of bin j, and i is the complex number

ffiffiffiffiffiffi�1
p

.
The next step is to convolve each of these filters separately

with a copy of the entire pixel data stream. This is in contrast to
COF, where the amplitude filter is convolved with short, individu-
ally triggered data segments containing a single pulse. In practice,
these large continuous convolutions can be done efficiently in the
frequency domain and account for only a small fraction of the total
computational cost. For ease of processing, these two filtered data
streams are split into short segments typically a few times the

FIG. 1. Example of pulse overlap in XQC data (τ ¼ 9 ms). Each of the nine
pulses in this data segment has a minimum separation less than the 200 ms
time-domain filter length, typically used for this detector for best energy resolu-
tion and, therefore, cannot be processed using COF techniques. Using the
OLPF technique presented here, however, each of these pulses may be recov-
ered without sacrificing resolution. The shaded region indicates the time interval
of the filtered output shown in Fig. 3.
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length of the filter and containing several pulses. Finally, templates
for fitting pulses in the filtered data streams are made by convolv-
ing the average signal shape with the respective filters [Figs. 2(c)
and 2(d)]. Because pulses in the data stream arrive randomly with
respect to the sampling times, a dictionary of fitting templates is
precomputed for (typically 10) discrete sub-sample arrival times.
Provided that all of the signal power is below the Nyquist fre-
quency, an exact interpolation can be done by advancing the
phases in frequency space via the shift theorem for Fourier
transforms.

B. Fitting

For an isolated pulse, the zero-crossing time in the arrival
time-filtered data and the value of the amplitude-filtered data at
this time give the best estimates of the pulse arrival time and ampli-
tude, respectively. There is no additional information in any of the
other points. Things are more complicated for pulses closely spaced
in time, since the tail of a pulse and ringing introduced by the filter

distorts the signal of every other pulse within one filter length.
However, due to linear properties of the filters, as well as the
assumed detector linearity, this ringing is entirely deterministic and
can, therefore, be modeled. Specifically, a filtered data segment con-
taining N overlapped pulses can be modeled as the sum of the
appropriately scaled and shifted filtered pulse templates, i.e.,

M(t) ¼
XN

i¼1

aiPi(t � ti), (5)

where each filtered pulse template Pi has been interpolated to the
appropriate sub-sample arrival time based on ti. As illustrated in
Fig. 3, the value of the filtered data at each pulse arrival time is no
longer determined by the amplitude and arrival time of a single
pulse but instead depends on the amplitude and arrival time of
every pulse within the template length.

The objective is to solve for the amplitudes ai and arrival
times ti that predict the observed values in each of the two filtered

FIG. 2. (a) Average pulse template made by averaging several isolated 3.3 keV calibration pulses. (b) Average detector noise spectral density also made from calibration
data. (c) Average pulse template from Fig. 2(a) after being optimally filtered for amplitude and peak normalized. As in COF, the value at the pulse arrival time gives the
best (highest signal-to-noise) estimate of pulse amplitude. (d) Average pulse template from Fig. 2(a) after being optimally filtered for arrival time and normalized such that
the mean-square fluctuations of the filtered noise are the same as the amplitude-filtered data. The zero-crossing of this template gives the best estimate of pulse arrival
time. In both filtered pulse templates, the fluctuations around zero amplitude are not due to noise but are dominated by ringing introduced by the filter and are, therefore,
exactly predictable for a given pulse amplitude and arrival time.

Journal of
Applied Physics METHOD scitation.org/journal/jap

J. Appl. Phys. 128, 174503 (2020); doi: 10.1063/5.0026193 128, 174503-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


data segments at each pulse arrival time. In practice, the solution is
found through fitting, minimizing the quantity,

χ2 ¼
XN

i¼1

[DA(ti)�MA(ti)]
2 þ [DT (ti)�MT (ti)]

2, (6)

where DA and MA correspond to the amplitude-filtered data and
model, respectively, while DT and MT correspond to the arrival
time-filtered equivalents. Models MA and MT each take the form of
Eq. (5), incorporating the correspondingly filtered pulse templates
for Pi in each term. Note that, while each model can be evaluated
at all times, only the pulse arrival times ti are considered in the fit.
Therefore, for N pulses, there are 2N observations (the pulse arrival
times in each of the two filtered data streams) and 2N parameters

(the amplitude and arrival time for each pulse). This ensures that
there will always be an exact solution, even in the presence of noise
(though the noise will affect the accuracy of the derived solution).

Until now, we have made no mention of how the number of
pulses in each fit segment is determined. In our technique, we opt to
detect pulses in the amplitude-filtered data, since it provides the
highest signal-to-noise by construction. However, since the ringing
caused by the largest pulses can be comparable in amplitude to smaller
pulses, pulses must be detected iteratively, starting with the largest.

In the initial pass, the peaks of all excursions larger than the
maximum expected ringing are identified as pulses in the
amplitude-filtered data segment, and initial guesses for their ampli-
tudes and arrival times are made from the value and time of these
peaks, respectively. These guesses can be used in Eq. (5) to con-
struct models for both the amplitude- and arrival time-filtered data
segments, which can be further refined by minimizing Eq. (6)
through the fitting procedure. The amplitudes and arrival times
found for these pulses may be slightly distorted by as yet unde-
tected smaller pulses, but subtracting this solution removes their
associated ringing with a good approximation and allows the pulse
detection threshold to be lowered on the next iteration. With each
iteration, newly detected pulses are added to the models, and a new
self-consistent solution for amplitudes and arrival times is found
through fitting. This process continues until all pulses above the
detector noise level are detected and included in the fit (typically
achieved after three iterations).

Note that, since we are working with the amplitude-filtered data,
the noise level is intrinsically related to the optimally filtered energy
resolution. Based on our original formulation in Eq. (1) and assuming
that the noise is uncorrelated at different frequencies, the mean-
square fluctuations in our estimation of energy is given by

σ2
E ¼

X1

j¼1

(wjn j)
2: (7)

This is equivalent, however, to the mean-square fluctuations in the
amplitude-filtered output at all times, not just at the pulse arrival
times. In practice, this means that the 5σ lower threshold for pulse
detection normally considered adequate for a negligible false trigger
rate is only about twice the optimally filtered FWHM (where
FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln (2)

p
σE � 2:35σE). This is considerably better than

the triggering techniques using simple filters that are typically
employed in COF. The very low threshold not only enables detecting
lower-energy pulses but also reduces the impact of undetected pulses
corrupting the fit.

Pulses that arrive within a filter length of the end of each segment
may be affected by ringing of pulses that arrive in the following
segment but are yet undetected. For this reason, consecutively analyzed
segments are chosen to overlap by at least the filter length. Pulses
whose templates are completely contained in one segment are sub-
tracted from the overlapped region in the following segment. The
remaining pulses, which may be affected by pulses in the following
segment and vice versa, are passed to the following segment to be refit
with this new information. This process ensures that the final fit of
every pulse in the data stream includes the information of every other
pulse that arrives within a filter length before or after it.

FIG. 3. Data segment from the shaded region of Fig. 1 after optimally filtering
for (a) amplitude and (b) arrival time. Filtered data are shown with a solid line,
and the model components for each pulse [i.e., the terms in Eq. (5)] are shown
with dotted lines. Crossed circles mark the total model (i.e., the sum of all com-
ponents) at the pulse arrival times and are the only points considered in the
solution. The difference between the data and model is shown for all times in
the residual panel of each plot. Note that the residuals are minimized at the
pulse arrival times.
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C. Gain correction

The best-fit model parameters provide a “raw” pulse ampli-
tude that needs to be converted to the photon energy. Since
resolving powers (E=ΔE) of these detectors can exceed several
thousands, even small non-linearities that have a negligible effect
on the pulse shape or noise must still be taken into account in
this conversion. Typically, detector non-linearity is primarily due
to non-linear thermometer response and to a lesser extent to
increased pixel heat capacity at higher temperatures. As a result,
the pulse amplitude depends not only on the photon energy but
also on the pixel temperature at the time of pulse arrival. For
pulses that arrive a sufficiently long time after the preceding
pulse, the pixel is in thermal equilibrium at a temperature pre-
cisely regulated by the refrigerator. However, for pulses more
closely spaced in time, the pixel is still cooling from the first pulse
at the arrival time of the second. The second pulse will, therefore,
begin at a higher pixel temperature, resulting in reduced detector
response. Nevertheless, in the limit that the pulse shape and noise
properties are not significantly impacted by this effect, the energy
of the second pulse can still be recovered without loss of resolu-
tion, given its raw amplitude and the detector temperature at the
time of arrival. As shown in Fig. 4, this correction works well
even when closely spaced pulses have very different energies. In
practice, the function used to convert amplitude and temperature
to photon energy can be determined from an adequate amount of
calibration data or else calculated from a detector model. The
resulting function can be stored as a 2D table, which can later be
efficiently interpolated.

D. Addressing changing pulse shape

For datasets containing pulses spanning a broad energy range
(as is the case for many microcalorimeter applications), the shape
of the largest pulses may be affected by detector non-linearity. For
segments containing such large pulses, simply scaling a filtered
pulse template determined from lower-energy pulses will no longer
provide an accurate model of the filtered data. As a result, the fit
solution for any other pulses arriving within the filter length of
such a large pulse may be affected. To address this, we create a dic-
tionary of pulse templates, which can be selected or interpolated
based on the pulse amplitude. In other words, the templates Pi
used in Eq. (5) are made to be a function of both ti and ai. These
amplitude-dependent pulse shapes can be determined empirically
with calibration data or else modeled with the knowledge of the
particular detector. We note that, as these shapes only depend on
the amplitude of a single pulse, they do not account for shape
changes that result due to overlap. More elaborate algorithms
could, in principle, account for this effect as well but have not been
implemented in this work. Moreover, in the limit of extreme non-
linearity, the assumption of stationary noise breaks down, and alto-
gether different filtering techniques are needed (e.g., Ref. 7).

E. Live-time determination

The OLPF technique can yield a live-time efficiency of nearly
100% up to high count rates. The only irreducible source of dead-
time arises from pulses with time separations comparable to the
rise time of the detector (�1:5 ms for XQC). As the time separation
of two pulses approaches this limit, the combined shape of the
pulses begins to approximate the shape of a single pulse, and only
the sum of pulse amplitudes is constrained. Indeed, in the limit of
zero separation, the event will be indistinguishable from a single
pulse with the total energy of the two pulses. However, the fraction
of such pulses is very small for count rates much less than the
inverse of the detector rise time.

Another source of dead-time encountered, in practice, is the
inability to fit and subtract features in the convolved data streams
with unexpected shapes. Such features include thermal and electri-
cal crosstalk with other pixels, direct photon hits to the thermome-
ter, and large pulses that saturate the electronics. Without
templates for fitting these events, they cannot be included properly
in the model, resulting in residuals that impact the solution for
amplitudes and arrival times of good pulses. While it is possible to
construct templates for such non-pulse features, in the datasets
examined here, it was not worth the small improvement in live-
time compared to simply skipping over affected segments. To mini-
mize the live-time cost associated with these non-pulse features,
affected segments were masked from the data stream prior to con-
volution, to avoid “smearing out” the effects of the features over the
filter length.

III. COMPUTATIONAL REQUIREMENTS

The purpose of this section is only to provide a general sense
of the computational requirements for the OLPF technique as it is
currently implemented. The process is coded entirely in Python
and is executed on a modestly equipped desktop computer

FIG. 4. Scatterplot of recovered pulse energy vs time separation for pulses
created by 677 eV photons (F Kα). Each point corresponds to a single 677 eV
pulse that overlaps with another pulse at t ¼ 0, ranging in energy from 277 to
3590 eV (with the majority being .3 keV). Points plotted at negative times
arrive prior to the other pulse, positive times after. Top: Pulses that arrive shortly
after another pulse (within �20 ms, or a couple decay times) experience low
detector gain due to the pixel still cooling from the preceding pulse. Bottom:
Same pulses, after correcting for this effect. The spectral resolution does not
degrade until pulses are separated by as little as a few rise times, at which
point the sum of pulses cannot be distinguished from a single pulse.
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(4-core, 3.2 GHz processor; 12 GB of RAM). While some effort has
been made to improve the efficiency of the algorithm, we have not
conducted a detailed optimization. In practice, the minimization
described in Sec. II B is done with MINPACK’s Levenberg–
Marquardt non-linear least squares algorithm (Ref. 8), since the
estimation of arrival time lacks an analytic solution (i.e., the solu-
tion cannot be found by matrix inversion). This is currently the
most computationally intensive step of this process, accounting for
.60% computation time. Therefore, the computation time
depends more on the number of pulses than it does on the length
of the data record. A single 3.2 GHz processor core can process
�10 pulses/s using the current algorithm. This processing require-
ment puts the algorithm out of reach for the real-time onboard
analysis of a large array on a spacecraft.

IV. PERFORMANCE TESTS

To evaluate the OLPF technique, we have compared its perfor-
mance to COF using two distinct data sets. First, we consider XQC
data, on which the algorithm was developed and which is represen-
tative of many microcalorimeter applications. In particular, it con-
tains a high relative rate of photons spanning a large range in
energy, though the response is still approximately linear over this
range. Furthermore, the noise spectra are not entirely smooth, so
the spectral resolution is more sensitive to the choice of the filter
length (i.e., compared to smooth noise spectra, which primarily
suffer from the signal lost in the zeroth frequency bin alone). The x
rays in this dataset are generated by two sources: a 41Ca source and
an alpha-excited multi-target fluorescent source. Together, these
sources produce K-shell emission lines of C, O, F, Al, Si, and K,
spanning 277–3590 eV in energy. The combined photon count rate
is 1.8 counts/s/pixel, with slightly more than half the photons origi-
nating from the 41Ca source (.3 keV).

Figure 5 depicts the spectra of the F Kα line from the two dif-
ferent processing techniques. At this count rate, the processing live-
time of COF is only 12% when using the 200 ms filter needed for
near-optimum spectral resolution. In comparison, the OLPF tech-
nique presented here achieves 98% live-time while achieving identi-
cal spectral resolution to COF (the 2% dead-time is almost entirely
due to background events saturating the electronics). Under these
operating conditions, the OLPF performs near its theoretical limit,
recovering pulses separated by as little as the detector rise time
without loss of resolution.

Next, we evaluate the performance of the OLPF technique
using the dataset presented in Ref. 9, which features �100 counts/s/
pixel of 6 keV photons produced by a single 55Fe source. The small-
pitch TES detector used here was optimized for high count rates,
achieving an effective decay time τ � 200 μs through a combination
of high thermal conductivity and low heat capacity. As noted in
Ref. 9, the superconducting weak-link effect leads to better linearity
than one may naively expect for devices with such small heat
capacity. Nevertheless, at 6 keV this detector is still significantly
more non-linear than typical TES or silicon thermistor microcalo-
rimeters designed for observations at this energy. Isolated 6 keV
pulses are already �30% non-linear, and overlapped pulse pairs
can easily drive the detector near saturation. Under these rather

extreme conditions, the assumptions underlying both COF and
OLPF no longer hold true.

The analysis presented by Ref. 9 utilized a graded optimal fil-
tering technique adapted from that developed for the SXS instru-
ment on Hitomi (Ref. 10). This technique achieves almost 100%
processing live-time by using three filters of different lengths
depending on pulse separation. “High-res” events are those which
can be processed with the longest filter and, therefore, the highest
spectral resolution, “Mid-res” events are those processed with a
filter half the length, and “Low-res” events are those with only a
boxcar smoothed estimation of the pulse height.

While both the graded optimal filtering and OLPF techniques
achieve essentially 100% processing live-time for this dataset, in
Table I, we compare the FWHM resolution of pulses in each event
grade. In the limit of long pulse separation (i.e., “High-Res”
events), the two analyses reduce to the same conventional

TABLE I. Performance comparison of OLPF and COF techniques with small-pitch
TES data. Note that all pulses/event grades are processed simultaneously with the
OLPF technique. Post-processing, pulses are sorted into event grades according to
inter-pulse separation for the sake of comparison with COF. Each technique
achieves a total processing live-time of .99%. COF resolution values reproduced
from Lee et al., J. Low Temp. Phys. 176, 597 (2014). Copyright 2014 Author(s),
licensed under a Creative Commons Attribution (CC BY) License.

Event
grade

Percentage of
total counts

COF resolution
(eV FWHM)

OLPF resolution
(eV FWHM)

“High-res” 69.0 1.95 ± 0.04 1.95 ± 0.11
“Mid-res” 10.1 2.25 ± 0.11 2.11 ± 0.32
“Low-res” 20.4 3.78 ± 0.08 3.46 ± 0.16

FIG. 5. XQC spectra of F Kα line at 677 eV processed with the OLPF techni-
que (heavy blue line) compared to COF of the same dataset using a 200 ms
filter (light orange line). (a) Histograms of total counts illustrate the .8�
improvement in processing live-time with the OLPF technique. (b) Histograms
normalized to live-time illustrate identical spectral resolution. Solid state effects
broaden and distort the intrinsic line shape, making it difficult to accurately deter-
mine the instrumental resolution. Nevertheless, in both cases, near-baseline
performance of �7 eV FWHM is achieved.
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technique, so it is not surprising that the resolution does not
depend on the choice of algorithm. For “Mid-” and “Low-res”
graded events, both analyses exhibit degraded resolution to a com-
parable degree, with the OLPF technique delivering only slightly
better performance.

While the shorter filter employed for the “Mid-res” pulses
does contribute to the degradation in resolution for the graded
COF technique, pulse shape changes due to detector non-linearity
also contribute, limiting the performance of the OLPF technique as
well. As noted in Secs. II C and II D, the gain correction currently
implemented for overlapped pulses only corrects for linear changes
in pulse amplitude and does not account for changes in pulse
shape due to overlap. For the ”Mid-” and ”Low-res” graded events
in the this dataset, the magnitude of the required gain correction is
tens to hundreds of eV (in contrast to the XQC data, where this
correction was typically ,20 eV). As a result, even shape changes
at the sub-percent level can impact the achieved resolution on the
order of 1 eV. Much better performance would be expected for data
dominated by lower-energy photons, which is astrophysically more
realistic and would only rarely have overlaps of two large pulses
that extend into the saturating regime. Unfortunately, such a
dataset with sufficiently high rates was not available.

V. CONCLUSIONS

We have presented an overlapped pulse fitting technique for
processing microcalorimeter data, which is capable of recovering
pulses separated by as little as the rise time of the detector without
the loss of spectral resolution compared to COF. The improvement
in throughput and/or resolution is greatest for datasets that approx-
imately satisfy the assumptions of linear response and stationary
noise. Even in instances where the highest energy pulses violate
these assumptions, a significant fraction of the remaining pulses
may still be recovered.

As microcalorimeters have gained popularity in a variety of
contexts, this technique may have wide-reaching applications across
many scientific disciplines—particularly on ground-based experi-
ments or space-based experiments with the option of offline pro-
cessing. It may be possible to reduce the computation time
modestly with the optimization of the existing algorithm and its
coding. However, it is unlikely that the major reductions necessary
for implementation on the spacecraft will be possible without
making some simplifying approximations to the overlapped pulse
solution.
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