Inflow Studies of Propeller-Wing Configurations

Nikolas Zawodny, Andrew Lind, Joshua Blake Aeroacoustics Branch NASA Langley Research Center

NASA Acoustics Technical Working Group 14 April 2021

Motivation

Motivation

Zawodny, N. S., Boyd Jr., D. D., and Nark, D. M., "Aerodynamic and Acoustic Interactions Associated with Inboard Propeller-Wing Configurations," AIAA Scitech Forum, virtual event, 11–15 & 19–21 January 2021.

What is the influence of a wing's potential field on propeller inflow?

Motivation

Research Approaches

Experiment

- Measure flow through a cross-stream plane ahead of propeller using stereoscopic particle image velocimetry
- Collect three velocity components, including inflow velocity
- Demonstrate SPIV in LSAWT

Simulation

- OVERFLOW2 (URANS)
- Capture velocities and surface pressures (flow field and acoustics)
- Compare to SPIV data, validate simulation techniques, and gain additional insight

Research Approaches

Experiment

- Measure flow through a cross-stream plane ahead of propeller using stereoscopic particle image velocimetry
- Collect three velocity components, including inflow velocity
- Demonstrate SPIV in LSAWT

Experimental Setup

14 April 2021

Experimental Setup

PIV Data Processing

 \bigcirc

11

Advancing Blade Passage

(

Vertical Wing Displacement

-0

Vertical Wing Displacement

(

Streamwise Wing Displacement

Streamwise Wing Displacement

Blade Element Inflow Angle

Blade Element Inflow Angle

Research Approaches

- OVERFLOW2 (URANS)
- Capture velocities and surface pressures (flow field and acoustics)
- Compare to SPIV data, validate simulation techniques, and gain additional insight on the influence of the wing potential field

CFD Overview

Flow field (OVERFLOW2)

- Navier-Stokes equations solved on overset meshes
- Unsteady in time (~15 revolutions)
- URANS: SA-DDES turbulence model
- Run time ~ 1 day / rev. on 560 processors

Acoustic field (PSU-WOPWOP)

- Ffowcs Williams-Hawkings equation
- Thickness and loading noise from surface
 pressure

*More details in backup slides

Total Velocity

(

Total Velocity

 \bigcirc

Total Velocity

 \bigcirc

 \frown

Propeller + Wing

Conclusions

- Demonstrated stereoscopic PIV in LSAWT
- The potential field of the wing reduces total velocity and inflow angles
- The simulation showed azimuthally varying blade thrust as blades pass ahead of the wing
- Unsteady blade loading is believed to result in increased vibrations and additional periodic loading noise
- Recommendation is to install propellers far upstream of wing to reduce wing-on-prop noise

Acknowledgments

Computational Support

- $\Rightarrow \text{Doug Boyd}$
- ⇒ Joe Derlaga
- ⇒ Pieter Buning
- Experimental Support
 - ⇒ Luther Jenkins
 - ⇒ Scott Bartram
- LSAWT team
 - ⇒ John Swartzbaugh
 - \Rightarrow Stan Mason
 - \Rightarrow Bryan Lamb
 - \Rightarrow Jeff Collins
 - ⇒ Mick Hodgins
- Transformative Tools and Technologies (TTT) Project

Thank you.

Nikolas Zawodny nikolas.s.zawodny@nasa.gov Andrew Lind andrew.h.lind@nasa.gov Joshua Blake joshua.d.blake@nasa.gov

Aeroacoustics Branch NASA Langley Research Center

NASA Acoustics Technical Working Group 14 April 2021

Experiment Challenges and Limitations

Uncertainty in propeller azimuth and position

- ⇒ Time synchronization between 1/rev laser tachometer and programmable timing unit (PTU)
 - variation across run conditions (e.g., bias)
 - variation during each run (e.g., jitter)
- ⇒ Observed some lateral and vertical displacement of propeller spinner due to stand vibrations

Laser reflections

- ⇒ reflections can lead to camera saturation, thus limiting the laser power that can be used
- ⇒ bandpass optical filters were used on cameras
- ⇒ spinner was treated with orange reflective tape to shift wavelength of laser reflection
- ⇒ laser sheet was intentionally clipped to provide sufficient illumination of seeding near spinner
- \Rightarrow attempted to mitigate reflection off propeller using sharple, did not work
- ⇒ plan to investigate other optical treatment options for future test activities

• Intermittent flow seeding

- ⇒ The LSAWT is an open-circuit tunnel, challenging for uniform seeding
- ⇒ Seeding was introduced in settling chamber, targeting a streamtube through the field of view
- ⇒ A smoke rake will be considered in future tests to encourage more homogenious flow seeding

Sheet optics

- ⇒ LaVision's "variable divergent standard sheet optics" are specified to provide a maxiumum working distance of 2 meters. This proved challenging as it was required that the laser and sheet optics be positioned outside of the core flow in the LSAWT.
- ⇒ The gaussian intensity distribution of the laser sheet resulted in less illumination of seeding in the outer flow region

Calibration

⇒ Installation of the calibration target required partial disassembly of the model (e.g., spinner and propeller)

Experiment Successes

- Demonstrated stereoscopic PIV with interrogation plane perpendicular to flow direction with good correlation between image pairs
- Installed two cameras near nozzle on tall support structures; cameras did not vibrate appreciably
- Laser head was mounted on support structure; did not vibrate appreciably
- The two laser beams were aligned and similar in intensity; no need to realign or tune the laser head

Sample Image Pair

(

Propeller Azimuth Drift in Background Images

Sample Image Pair with Background Subtracted

Inflow Studies of Propeller-Wing Configurations

Instantaneous Measurment

Ensemble Average

Ensemble Average

Ensemble Average

Interpolation

Slight differences in run conditions

Input Value	Experiment	Simulation
M_{∞}	0.07	0.068
U _∞	~ 24.4 m/s	23.1 m/s
Ω	~ 100 Hz	97.76 Hz
J	~ 0.60	0.59

OVERFLOW2 Details

- \Rightarrow LHS = Improved SSOR
- ⇒ RHS = HLLE++ upwind scheme with Newton sub-iterations
- ⇒ URANS: SA-DDES w/rotation and curvature corrections

• Run Time

- Convergence to oscillatory steady-state = reduction in residuals of two-orders of magnitude at each sub-iteration
- \Rightarrow 1 revolution ~27 hrs. on Pleiades with 560 cores (at $\frac{1}{4}$ deg time steps)
- \Rightarrow 15+ revolutions (10 coarse @ 2.5° increments, 5 @ at 1/4° increments)

