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Abstract. This paper introduces a synthetic polarimetric radar simulator and retrieval 22 

package, POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS), for 23 

evaluating cloud-resolving models (CRMs).  POLARRIS is composed of forward 24 

(POLARRIS-f) and inverse (retrieval and diagnostic) components (iPOLARRIS) to 25 

generate not only polarimetric radar observables (Zh, Zdr, Kdp, ρhv) but also radar-26 

consistent geophysical parameters such as hydrometeor identification (HID), vertical 27 

velocity, and rainfall rates retrieved from CRM data.  To demonstrate its application and 28 

uncertainties, POLARRIS is applied to simulations of a mesoscale convective system 29 

over the Southern Great Plains on 23 May 2011, using the Weather Research and 30 

Forecasting model (WRF) with both spectral bin microphysics (SBM) and the Goddard 31 

single-moment bulk 4ICE microphysics. Statistical composites reveal a significant 32 

dependence of simulated polarimetric observables (Zdr, Kdp) on the assumptions of the 33 

particle axis ratio (oblateness) and orientation angle distributions.  The simulated 34 

polarimetric variables differ considerably between the SBM and 4ICE microphysics in 35 

part due to the differences in their ice particle size distributions as revealed by 36 

comparisons with aircraft measurements.  Regardless of these uncertainties, simulated 37 

HID distributions overestimates graupel and hail fractions, especially from the simulation 38 

with SBM.  To minimize uncertainties in forward model, the particle shape and 39 

orientation angle distributions of frozen particles should be predicted in a microphysics 40 

scheme in addition to the size distributions and particle densities.    41 
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1. Introduction 42 

 43 

 Cloud-resolving models (CRMs) have been and will continue to be important 44 

tools in the weather and climate research community [e.g., Tao and Moncrieff 2009].  45 

Consequently, establishment of robust frameworks to evaluate their dynamical and 46 

microphysical outputs is critical [e.g., Jung et al. 2010; Fridlind et al. 2012].  Ground and 47 

aircraft-based in-situ and remote sensing measurements are a vital source of validation 48 

for the microphysics and vertical velocities in CRMs [e.g., Iguchi et al. 2012b,c, 2014].  49 

Indeed, reflectivity and Doppler velocities from ground-based radar have been used for 50 

evaluating microphysical characteristics [e.g., Lang et al. 2007, 2011, 2014; Iguchi et al. 51 

2012a, 2014].  In the last decade, the widespread emergence of polarimetric radars has 52 

provided the opportunity for additional metrics in addition to the radar reflectivity factor 53 

at horizontal polarization (Zh) for evaluating CRMs, including differential reflectivity 54 

(Zdr), linear-depolarization ratio (LDR), specific differential phase (Kdp), and co-polar 55 

correlation coefficient (ρhv) [e.g., Ryzhkov et al. 2011; Putnam et al. 2017; Snyder et al. 56 

2017a,b].  57 

Jung et al. [2008a] first applied a polarimetric radar simulator to ensemble 58 

convection-permitting forecast simulations and examined the impact of polarimetric radar 59 

assimilation using an ensemble Kalman filter [Jung et al. 2008b].  Jung et al. [2010] 60 

applied single- and double-moment microphysics to the polarimetric simulators to 61 

examine whether the bulk microphysics schemes could reproduce specific spatial 62 

structures of polarimetric radar signals from a supercell thunderstorm and found that the 63 

single-moment scheme could not reproduce a Zdr arc, mid-level Zdr, and hv rings due to 64 
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its inability to simulate size sorting effects.  65 

Dawson et al. [2014] investigated the low-level Zdr signature in supercell forward 66 

flanks using CRM simulations and a polarimetric radar simulator.  Snyder et al. [2017] 67 

applied a polarimetric radar simulator to a CRM supercell simulation with a triple-68 

moment microphysics scheme.  Ryzhkov et al. [2011] developed a polarimetric radar 69 

simulator for more complex microphysics:  the Hebrew University Cloud Model 70 

(HUCM) with spectral-bin microphysics (SBM).  These previous studies examined 71 

observed and simulated vertical cross-sections of polarimetric variables (Zh, Zdr, LDR, Kdp, 72 

ρhv) in addition to the associated size distributions of CRM hydrometeors to understand 73 

particular convective processes with a focus on deep convective clouds.  However, this 74 

type of direct comparison is not straightforward, because of i) the dependence of 75 

polarimetric radar observables on radar elevation angle and other factors, ii) the need to 76 

better understand the different polarimetric radar observables by the CRM community, 77 

and iii) uncertainties in the microphysics, especially the axis ratio and orientation angle 78 

distributions as noted in this study.  79 

Recently, robust hydrometeor identification (HID) algorithms have been more 80 

widely applied to polarimetric radars at X-, C- and S-band [e.g., Straka et al. 2000, Park 81 

et al. 2009; Dolan and Rutledge 2009; Snyder et al. 2010; Bechini and Chandrasekar 82 

2015].  HID algorithms retrieve bulk hydrometeor classes for given ranges of 83 

polarimetric radar observables.  These detailed HID retrievals have great potential for 84 

constraining four dimensional distributions of bulk hydrometeors and thus microphysical 85 

conversion processes in CRMs, which have been a long-standing uncertainty in the 86 

community since the first appearance of primitive cloud microphysics schemes, 87 
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particularly for mixed- and ice-phases [Lin et al. 1983; Rutledge and Hobbs 1984].  88 

Putnam et al. [2014] applied a polarimetric radar simulator to regional storm-89 

scale forecasts to evaluate bulk double-moment microphysics schemes by examining 90 

polarimetric radar observables (Zh, Zdr, Kdp) and HID categories.  In a follow-up study, 91 

Putnam et al. [2017] evaluated five different microphysics schemes.  These studies 92 

demonstrated that the polarimetric observables and retrievals performed better in 93 

evaluating performance details of cloud microphysics from simple to complex schemes 94 

compared to traditional methods using only radar reflectivity data [e.g., Lang et al. 2007].  95 

Along with HID algorithms, vertical velocity and precipitation retrievals from 96 

Doppler, polarimetric-radar measurements have been improved via more reasonable 97 

assumptions in size, density, and terminal fall velocity [Dolan et al. 2013].  Observed 98 

polarimetric datasets provide a significant opportunity to validate the performance of 99 

CRMs and in the long run, improve the microphysical, dynamical and life cycle 100 

simulation of convective systems.  101 

Toward the goal of more comprehensive model evaluation, data assimilation, and 102 

polarimetric radar retrieval development, a systematic framework for a polarimetric 103 

simulator is required, including a fast and accurate forward model as well as a rigorous 104 

inverse component for linking polarimetric observables with retrieved geophysical 105 

parameters.  This paper introduces a synthetic polarimetric radar simulator and inverse 106 

retrieval framework for evaluating the microphysics and dynamics in CRMs.  The 107 

POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is composed of a 108 

forward model (POLARRIS-f) based on rigorous Mueller matrix [Vivekenandan et al. 109 

1991] and an inverse (retrieval and diagnostic) component (iPOLARRIS) based on the 110 
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Colorado State University (CSU) radar retrievals [e.g., Dolan and Rutledge 2009; Dolan 111 

et al. 2013].   112 

The paper is intended to demonstrate the utility and uncertainties of POLARRIS 113 

in evaluating the microphysical structures of a simulated MCS in a holistic statistical 114 

sense using bulk and bin microphysics. The intent here is not to compare the specific 115 

performance of the model dynamics or microphysics schemes.  In Section 2, the detailed 116 

methods and software components of POLARRIS are described.  In Section 3, 117 

uncertainties in particle assumptions and their impact on estimating polarimetric 118 

observables are detailed as well as the different assumptions in polarimetric simulators 119 

that have already been developed and are available in the community.  In Section 4, 120 

POLARRIS applications are demonstrated using regional CRM simulations for a mid-121 

latitude continental convective event.  A summary of the capabilities and future 122 

applications are given in Section 5.  123 

 124 

2. Methods 125 

 126 

2.1 POLARRIS-f:  forward model  127 

The forward component, i.e., POLARRIS-f, is built upon the Goddard Satellite 128 

Data Simulator Unit (G-SDSU), which features a generalized end-to-end multi-129 

instrument satellite simulator designed for CRMs [Matsui et al. 2013, 2014].  The G-130 

SDSU includes microwave, radar, visible-infrared, lidar, and broadband satellite 131 

simulators with a unified CRM input module.  G-SDSU can be used to evaluate CRM 132 

simulations [Matsui et al. 2009, 2016; Li et al. 2010; Shi et al. 2010; Han et al. 2013; 133 
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Chern et al. 2016], conduct data assimilation [Zhang et al. 2017], and support current and 134 

future satellite missions [Matsui et al. 2013; Kidd et al. 2016; Iguchi and Matsui 2018].  135 

In POLARRIS-f, both T-Matrix and Mueller-Matrix modules [Vivekenandan et al. 136 

1991] are integrated following the physical principles in the G-SDSU software modules 137 

[Matsui et al. 2014]:  i.e., physical consistency between the CRM and forward models, 138 

including microphysics assumptions and atmospheric conditions.  The exceptions are the 139 

particle shape and orientation angles, which are typically not predicted by the model 140 

microphysics as discussed in the next section.  In the T-matrix module, the single 141 

scattering matrix of axis-symmetric oblate hydrometeors are computed while the 142 

Mueller-Matrix is used to estimate radar observables from the T-Matrix single-scattering 143 

properties for a given radar elevation angle and the assumed particle orientation angle 144 

distributions.  Details on calculating the 4×4 Mueller matrix are described in 145 

Vivekenandan et al. [1991]; the calculation of the effective dielectric constant is given in 146 

Appendix A.   147 

 148 

2.1.1 Integration of the Mueller Scattering Matrix and Radar Observables 149 

 Once a single-particle 4×4 Mueller scattering matrix (𝑆, mm
2
) is generated (see 150 

the equations in Vivekenandan et al. [1991]), it is integrated over the particle size 151 

distributions (PSDs) for each species class in the model to derive a size-integrated 44 152 

Mueller scattering matrix (S|𝑖, mm
2
/m

3
): 153 

S|𝑖 = ∫𝑆 𝑁(𝐷)𝑑𝐷    Eq. 1 154 

where i represents each particular hydrometeor species, and N(D) represents the particle 155 

number density (m
-4

) for a given particle diameter D (m).  In typical bulk microphysics 156 
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schemes with four ice categories such as the Goddard 4ICE scheme [Lang et al. 2014; 157 

Tao et al. 2016], the hydrometeor species are cloud, rain, ice crystals, snow aggregates, 158 

graupel, and hail.  In the HUCM SBM scheme [Khain et al. 2011], i represents liquid 159 

droplets, three types of ice-crystal shapes (column, dendrite, and plate), snow aggregates, 160 

graupel, or hail. The PSD in bulk cloud microphysics schemes is typically assumed to be 161 

a three-parameter gamma distribution: 162 

𝑁(𝐷) = 𝑁0𝐷
−𝜇𝑒𝑥𝑝(−Λ𝐷)   Eq. 2 163 

where N0 is the intercept parameter, μ is the shape parameter, and Λ is the slope 164 

parameter. In contrast, the HUCM SBM scheme explicitly predicts N(D) through 165 

discretization over 33 or 43 particle size bins.  166 

The size-integrated Mueller scattering matrix is further integrated for all species. 167 

𝑆|𝑡𝑜𝑡 = ∑ 𝑆|𝑖𝑖      Eq. 3 168 

where 𝑆|𝑡𝑜𝑡 (mm
2
 m

-3
) represents a total CRM-grid-volume Mueller scattering matrix 169 

wherein particle number concentrations and species consistent with the microphysics 170 

scheme are integrated.  Finally, volume polarimetric radar observables (Zh, Zdr, Kdp, ρhv) 171 

are derived from the integrated scattering matrix, 𝑆|𝑡𝑜𝑡. 172 

Horizontally polarized reflectivity (Zh, mm
6
 m

-3
, dBZ= 10*log(Zh)) is expressed 173 

as 174 

Zℎ =
4𝜋𝜆4

|𝑘|2𝜋5 (
𝑆11|𝑡𝑜𝑡−𝑆12|𝑡𝑜𝑡−𝑆21|𝑡𝑜𝑡+𝑆22|𝑡𝑜𝑡

2
)  Eq. 4 175 

where  is the radar wavelength (mm) and |k|
2
 is the dielectric factor of water.  176 

Differential reflectivity (Zdr, unitless) is the ratio between the horizontal (H) and 177 

vertical (V) polarized reflectivities, generally expressed in logarithmic scale: 178 

Z𝑑𝑟 = 10 𝑙𝑜𝑔10 (
𝑍ℎ

𝑍𝑣
)     Eq. 5 179 
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where Z𝑣 (mm
6
 m

-3
) is defined as 180 

Z𝑣 =
4𝜋𝜆4

|𝑘|2𝜋5 (
𝑆11|𝑡𝑜𝑡+𝑆12|𝑡𝑜𝑡+𝑆21|𝑡𝑜𝑡+𝑆22|𝑡𝑜𝑡

2
)  Eq. 6 181 

Zdr (dB) is a measure of the size-weighted mean oblateness of particles in the Rayleigh 182 

scattering regime (i.e., weather radar) and is also sensitive to particle phase (liquid vs. 183 

ice). 184 

The co-polar correlation coefficient ( ρℎ𝑣 , unitless) between the H- and V-185 

polarization waves [Jameson 1989] can be used to assess the diversity in particle shapes 186 

and phases in a pulse volume and is given by: 187 

ρℎ𝑣 = (
√(𝑆33|𝑡𝑜𝑡+𝑆44|𝑡𝑜𝑡)

2+(𝑆43|𝑡𝑜𝑡−𝑆34|𝑡𝑜𝑡)
2 

√𝑍ℎ𝑍𝑣
) Eq. 7 188 

In order to calculate the specific differential phase (Kdp,  km
-1

), the 4×4 size-189 

species-integrated extinction matrix (K|tot, m
2 

m
-3

) is needed.  This is derived from the 190 

forward component of the size-species-integrated 2×2 scattering amplitude matrix 191 

(𝑓(0)|
𝑡𝑜𝑡

 , m  
m

-3
). 192 

𝐾4,3|𝑡𝑜𝑡
= 𝐼𝑚(𝑀ℎℎ − 𝑀𝑣𝑣)   Eq. 8 193 

where 194 

𝑀ℎℎ =
𝜆

1000
 𝑓ℎℎ

(0)
|
𝑡𝑜𝑡

    Eq. 9 195 

𝑀𝑣𝑣 =
𝜆

1000
 𝑓𝑣𝑣

(0)
|
𝑡𝑜𝑡

                Eq. 10 196 

where λ is radar wavelength (mm) and 1000 is the unit conversion from mm to m.  197 

Specific differential phase is then defined as [Sachidananda and Zrnic 1986]:  198 

 199 

K𝑑𝑝 =
180

𝜋
𝐾4,3|𝑡𝑜𝑡

∙ 1000   Eq. 11 200 
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 201 

where the units of Kdp are given in deg km
-1

, 1000 is the unit conversion from m to km.  202 

Kdp is sensitive to the axis ratio and total mass content.   203 

Actual integration of T-matrix and Mueller matrix modules over size distributions 204 

and species, and grids are very time consuming task. Straightforward calculation of radar 205 

observables from the regular WRF grid cost several hours with a few thousands of 206 

processors. Thus, we have developed efficient look-up table (LUT) approach. With 207 

assumptions of particle axis ratio and orientation angle distributions, 4×4 Mueller 208 

scattering matrix and 2×2 forward scattering amplitude matrix are calculated for ranges 209 

of size bin, temperature, and radar elevation angle for a specific radar frequency and a 210 

specific microphysics scheme. This LUT generation process can be scaled up to a few 211 

thousands processors, which can generate one LUT within a few minutes. Therefore, the 212 

framework allows us test different assumptions of particle shape and orientatino angle 213 

distributions (Section 3).  214 

 215 

 216 

2.1.2 Radial Velocity  217 

Radial velocity (Vrad) is computed using the particle terminal velocity at reference 218 

pressure level, wind, pressure, and radar scanning geometry.  Doppler velocity from a 219 

single particle species is calculated from integrating the backscatter-weighted terminal 220 

velocity over the particle sizes: 221 

𝑉𝑑𝑜𝑝|𝑖 =
∫𝑉𝑡 (𝐷)|𝑖  𝛽(𝐷)|𝑖𝑑𝐷

𝛽|𝑖
   Eq. 12 222 

, where 𝛽|𝑖 is the size-integrated backscattering coefficient. 223 
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𝛽|𝑖 = ∫  𝛽(𝐷)|𝑖𝑑𝐷,     Eq. 13 224 

𝛽(𝐷)|𝑖 = 𝑆11|𝑖 − 𝑆12|𝑖 − 𝑆21|𝑖 + 𝑆22|𝑖  Eq. 14 225 

The final velocity is obtained by further integrating over the Doppler velocity of all 226 

species, adjusting the pressure from the reference state, and then subtracting vertical wind 227 

velocity (w). 228 

𝑉𝑑𝑜𝑝|𝑡𝑜𝑡 = √
𝑃𝑟

𝑃
  
∑ 𝑉𝑑𝑜𝑝|𝑖𝑖   𝛽|𝑖

∑ 𝛽|𝑖𝑖
− 𝑤  Eq. 15 229 

The direction of 𝑉𝑑𝑜𝑝|𝑡𝑜𝑡 is normal to the ground (along the vertical direction of the 230 

CRM).  The radial velocity is represented by 231 

𝑉𝑟𝑎𝑑 = −[𝑢 cos(𝛼𝑢) + 𝑣 cos(𝛼𝑣) + 𝑉𝑑𝑜𝑝|𝑡𝑜𝑡 𝑐𝑜𝑠(cos(𝛼𝑤))] Eq. 16 232 

where αu, αv, and αw are the angles between the grid-instrument vector, and u and v are 233 

the eastward and northward wind components, respectively.  The negative sign is defined 234 

here as a radial velocity toward the radar.  235 

  236 

 237 

2.2 iPOLARRIS:  Retrieval, Diagnostics, and Visualization 238 

One of the most difficult aspects of comparing models and radar observations is 239 

the interpretation of polarimetric radar signals. To address this, the radar community 240 

applies retrieval algorithms which convert radar observations into single, more relatable 241 

quantities, such as HID.  To utilize this in comparison with CRMs, an inverse framework, 242 

termed iPOLARRIS, has been developed to apply the same retrieval algorithms and 243 

analysis tools to different types of gridded datasets.  iPOLARRIS is a set of retrieval 244 

algorithms that can be executed on either simulated model data through POLARRIS-f 245 

output or on polarimetric and dual-Doppler radar observations in a visually and 246 
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algorithmically consistent manner.  This streamlined framework allows for the mutual 247 

benefit of validating radar retrieval algorithms and /or model microphysics and dynamics.  248 

For example, the assumptions made in the HID can be tested for consistency with model 249 

fields (i.e., the mixing ratios of various species) while the simulated polarimetric HID can 250 

be analyzed against observations to diagnose/ evaluate different model microphysical 251 

schemes.  The iPOLARRIS framework allows for streamlined statistical analysis of 252 

model data and observations, such as contoured frequency with altitude diagrams 253 

(CFADs, Yuter and Houze [1995]), echo top heights, and vertical velocity characteristics.  254 

iPOLARRIS is Python-based and incorporates a library of radar processing algorithms 255 

available through the CSU Radar Meteorology group (such as HID, polarimetric rainfall 256 

estimation, liquid and ice water path calculations, and up/ downdraft statistics; 257 

https://doi.org/10.5281/zenodo.1035908). Example retrievals are described in the 258 

following sections. 259 

 260 

2.2.1 HID  261 

HID has become a valuable tool for analyzing bulk microphysics from 262 

polarimetric radar.  HID has been applied to several precipitation radar wavelengths from 263 

S- to X-band [Vivekanandan et al. 1999; Straka et al. 2000; Keenan 2003; Park et. al 264 

2009; Dolan and Rutledge 2009; Snyder et al. 2010; Dolan et al. 2013; Bechini and 265 

Chandrasekar et al. 2015].  Many of these algorithms apply fuzzy logic techniques 266 

requiring membership functions to calculate a score for different meteorological 267 

categories based on the input observations.  Although some algorithms have attempted to 268 

achieve classification methods based on the data itself [Wen et al. 2015], typically the 269 

https://doi.org/10.5281/zenodo.1035908
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membership functions (MBFs) are based on objectively and subjectively determined 270 

ranges of polarimetric variables.  However, it is notoriously difficult to validate any 271 

hydrometeor classification due to the lack of robust in situ observations.  By running HID 272 

on model-derived data, the HID algorithm itself can be evaluated in a self-consistent 273 

manner, as long as cloud simulations and forward operators are robust enough for 274 

microphysical consistency.    275 

 The fuzzy logic HID described in Dolan and Rutledge [2009] and Dolan et al. 276 

[2013] has been implemented in iPOLARRIS and is used herein to demonstrate the sort 277 

of analysis POLARRIS can facilitate.  The algorithm requires temperature, polarimetric 278 

data, and radar wavelength and then determines the bulk hydrometeor type at a given 279 

point using theoretically-based MBFs.  For model data, the environmental air temperature 280 

at every grid point is used, while for observations, the closest atmospheric sounding in 281 

space and time is used and interpolated to the radar analysis grid.  Ten categories are 282 

allowed in the HID:  drizzle (DZ), rain (RN), ice crystals (IC), dry snow (DS), wet snow 283 

(WS), vertical ice (VI), low-density graupel (LDG), high-density graupel (HDG), hail 284 

(HA), and “big” drops (BD).  Vertical ice is a special case where anisotropic ice crystals 285 

are aligned in the vertical due to the presence of an electric field, which is not readily 286 

simulated in the current CRM configuration. Thus, the CR and VI categories are grouped 287 

together in the CR field.  288 

 289 

2.2.2 Vertical Velocity 290 

 Comparison of kinematic fields from observations and models is challenging. 291 

Radar retrievals of the horizontal wind generally rely on vector decomposition of two 292 
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independent radial velocity measurements (i.e., so-called dual- or multi-Doppler 293 

analysis); the vertical velocity then is derived through integration of the anelastic mass-294 

continuity equation [e.g., Mohr and Miller 1983; Potvin et al. 2009]. More accurate 295 

winds can be recovered if particle fall velocity is accounted for in the vertical wind 296 

component. Presently, reflectivity-fall velocity relationships for snow, ice, and rain with 297 

Giangrande et al. [2013] reflectivity-fall speed (Zh-Vt) relationships are used to remove 298 

the component of the observed radial velocity due to hydrometeor fall speed. The Zh-Vt 299 

relationship is selected based on HID classifications, where low- and high-density 300 

graupel and hail are grouped into ‘ice’ and ice crystals, aggregates, and vertical ice are 301 

considered ‘snow’. A fall speed is not retrieved for HID classifications of wet snow (e.g. 302 

melting layer). Such radar retrievals can then be compared to u, v, and w winds from 303 

model fields.  An added functionality in iPOLARRIS is to again test the retrieval 304 

algorithms by applying the radar dual-Doppler algorithm from two POLARRIS-f 305 

simulated radial velocity fields and comparing with the model u, v, and w fields as well as 306 

the observation-derived 3D wind field.  This capability will be shown in a future study. 307 

 308 

2.3 WRF simulations 309 

To demonstrate the utility of POLARRIS, the Advanced Research Weather 310 

Research and Forecasting model (WRF-ARW; http://www.wrf-model.org/index.php) is 311 

used to simulate a continental mesoscale convective system (MCS) over the Southern 312 

Great Plains (SGP) during the Midlatitude Continental Convective Clouds Experiment 313 

(MC3E) field campaign [Jensen et al. 2016].  WRF was configured with a triple-nested 314 

domain (with 9 km, 3 km, and 1 km horizontal-grid spacing) and driven by NCEP Final 315 

http://www.wrf-model.org/index.php


 15 

Operational Global Analysis (FNL).  Simulations using different reanalysis data were 316 

also conducted, with results showing differences in location and timing of convection, but 317 

microphysical statistics varied little when sampled separately for convection and 318 

stratiform regimes (not shown).  The location and the number of grid points of the finest 319 

domain are similar to those in previous works [Iguchi et al. 2012a; Tao et al. 2013].  The 320 

WRF simulations were initialized at 1200 Z on 23 May 2011 and integrated for 24 hours.  321 

Output was generated at 10-minute intervals.  322 

This study utilizes two microphysical packages:  the Goddard single-moment 323 

4ICE microphysics [Lang et al. 2014; Tao et al. 2016] and HUCM SBM [Khain et al. 324 

2000, 2011; Phillips et al. 2007; Iguchi et al. 2012b,c].  The Goddard 4ICE and HUCM 325 

are well suited for simulating intense midlatitude convective systems owing to the 326 

explicit hail category [Iguchi et al. 2012c, Tao et al. 2016], but the two schemes are very 327 

different in degree of complexity and therefore provide a good demonstration of 328 

POLARRIS capabilities.  The intent herein is not to compare and improve these specific 329 

schemes.     330 

The single-moment 4ICE essentially predicts the mass mixing ratio of bulk 331 

microphysics species (cloud, rain, ice, snow aggregates, graupel, and hail) and is a 332 

significant improvement over the previous 3ICE scheme [Lang et al. 2014].  333 

Improvements include a number of new ice process functionalities as well as PSD 334 

mapping schemes adjusted with respect to ground-based radar measurements. A mass-335 

dimension relationship (i.e., effective density) for snow aggregates is based on in-situ 2D 336 

video disdrometer (2DVD) data from along the Front Range of eastern Colorado 337 
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[Brandes et al. 2007].  All of the PSD and density information are consistent with 338 

POLARRIS-f.  339 

HUCM SBM is based on a scheme from the Hebrew University Cloud Model 340 

[Khain et al. 2011] and has been tested for a cold-season snowstorm case [Iguchi et al. 341 

2012a], an MC3E midlatitude case (Iguchi et al. 2012b), and high-latitude mixed-phase 342 

precipitation events [Iguchi et al. 2014].  The PSD of each hydrometeor category is 343 

explicitly calculated over 43 mass bins spanning particle mass sizes from 3.35×10
-11

 g to 344 

1.47×10
2
 g (ranging from nucleation particles up to cm-scale hail stones).  Additionally, 345 

bin-by-bin melt fractions are also calculated for the snow aggregate, graupel, and hail 346 

categories [Phillips et al. 2007; Iguchi et al. 2014].  Snow aggregates account for explicit 347 

calculation of bin-by-bin riming of supercooled water allowing for smooth transitions of 348 

bulk effective density from fluffy snow aggregates to dense graupel/hail particles, 349 

omitting any spontaneous snow-to-graupel/hail autoconversion processes between these 350 

categories.  Both HUCM SBM and 4ICE use a power-law mass-dimension relationship.  351 

4ICE snow aggregates have a higher density than the HUCM SBM as the 2DVD included 352 

some degree of riming at ground level [Brandes et al. 2007].  HUCM snow aggregate 353 

density is for pure dry aggregates and much lower without riming (not shown), but 354 

explicit riming can still increase the density toward graupel [Iguchi et al. 2012b].  All of 355 

these physical parameters are consistently represented in POLARRIS-f. 356 

However, the SBM used in this study does not yet include time-dependent rain 357 

freezing or wet growth of hail/graupel [Phillips et al. 2014, 2015], which limits the 358 

understanding of polarimetric signals of partially-melted hail/graupel in the mixed-phase 359 

zone.  As bright band evaluation [e.g., Iguchi et al. 2014] is not in the scope of this study, 360 
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mixed-phase particles (air-ice-liquid mixture) are not considered in POLARRIS-f.  The 361 

main focus of this study is on the uncertainties related to the ice species particularly 362 

related to the axis ratio and orientation angle assumptions.  363 

 364 

3 Assumptions and Uncertainties in POLARRIS 365 

While size distributions, effective density, and phase are assumed or predicted by 366 

either bulk or bin microphysics schemes, particle axis ratio and/or orientation angle 367 

distributions are not considered in most microphysics schemes.  Thus, a critical 368 

component of POLARRIS-f is determining appropriate values of these parameters in 369 

order to precisely reproduce polarimetric radar variables (e.g., Zdr, Kdp).  Axis ratios 370 

(aspect ratio, A) of rain drops have been extensively investigated, yielding various 371 

empirical relationships representing the oblateness of raindrops as a function of diameter 372 

[e.g., summarized in Beard and Chuang 1987].  Matrosov et al. [1996] investigated axis 373 

ratios for different ice crystal habits in a limited case.  However, very few studies have 374 

reported on axis ratio distributions for precipitating solid particles such as snow 375 

aggregates, graupel, and hail, which are difficult to measure and may depend upon the 376 

environment and storm type. Thus, the impact of these uncertainties on POLARRIS-f 377 

results are investigated in this study. 378 

Figure 1 shows the scattering geometry of an oblate particle with a specific 379 

particle symmetry axis (𝑁⃗⃗ ) in the cartesian coordinate (X, Y, and Z axis) [e.g., Holt 1984; 380 

Vivekanandan et al. 1991].  Particle orientation angle is represented by two parameters (𝜃 381 

and 𝜙 ).  In general, 𝜙  is assumed to be randomly oriented so there is no preferred 382 

orientation angle in the X-Y plane; however, most previous studies did measure some 383 
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preferred orientation angles with respect to the vertical axis (𝜃).  Therefore, hereafter, 384 

“particle orientation angle” refers to 𝜃 (the angle between the particle symmetry axis and 385 

the vertical axis) in this manuscript. 386 

 Most previous studies [e.g., Jung et al. 2010; Ryzhkov et al. 2011; Putnam et al. 387 

2017; Kollias and Tatarevic 2017] assumed a Gaussian angle distribution, where the 388 

mean orientation angle (𝜃̅) and standard deviation (degree of particle tumbling σ) are 389 

used to describe particle orientation behavior via 390 

Δ(𝜃) =
1

√2𝜋𝜎
𝑒𝑥𝑝 [−(

𝜃−𝜃̅

√2𝜎
)
2

]     Eq. 17 391 

A limited study of the orientation behavior of planar crystals also confirmed the Gaussian 392 

distribution in orientation angle [Sassen 1980]. Fall behaviors of other ice particles are 393 

less known, particularly snow aggregates, graupel, and hail [section 10.5.3, Pruppacher 394 

and Klett 1997; Straka et al. 2000]. 395 

Table 1 shows three sets of assumptions tested herein derived from recent studies 396 

as well as this study.  Ryzhkov et al. [2011] (RY11) and Kollias and Tatarevic [2017] 397 

(CR-SIM) use nearly identical assumptions so RY11 is used to represent both.  398 

Similarities and differences between RY11, Putnam et al. [2017] (referred to as PU17) 399 

assumes more oblate particles with smaller standard deviation (σ) than RY11, and this 400 

study (denoted as MA18) proposes a few non-traditional assumptions for comparison 401 

purpose. Note that this paper does not intend to conclude whether a specific assumption 402 

is more accurate or not due to limitation from available observations. All cloud species 403 

are assumed to be spherical. For bulk microphysics, randomly oriented ice columns are 404 

assumed for simplicity; therefore ice crystal particle does not contribute to Zdr and Kdp 405 

values. SBM includes plates and dendrites, which can contribute to Zdr and Kdp values 406 
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(Table 1). The distributions of rain axis ratio and orientation angle are unified following 407 

Brandes et al. [2011]. Thus, differences in Zdr and Kdp between RY11, PU17, and MA18 408 

is due to the different assumptions in snow aggregate, graupel, and hail in this study 409 

(Table 1). 410 

In this study, snow aggregate axis ratio model is derived from the MC3E field 411 

campaign using particle probes outfitted on the UND Citation II aircraft. We have 412 

collected nine three-minute samples of snow aggregate images from the HVP-3 probe (Dr. 413 

A. Bansemer, personal communication), and estimated axis ratio following Korolev and 414 

Isaac [2003]. Axis ratio is furthered binned as a function of particle diameter to estimate 415 

the following empirical relationship for diameter (D) less than 10 mm, while it is constant 416 

value of 0.5 for diameter greater than 10 mm.  417 

Axis = 0.7 - 0.05D + 0.003D
2
 (D < 10 mm)     Eq. 18 418 

Hendry et al. [1987] examined radar observations using circular polarization, and 419 

estimated standard deviation of snow orientation angle from 15° to 30° within moderate-420 

to-heavy snow. This study assumes mean orientation angle and standard deviation 421 

identical to PU17 (𝜃̅ = 0°,  σ=20°).  422 

Graupel axis ratio and orientation angle distributions are rarely reported [Straka et 423 

al. 2000]. We have used the statistical distributions of aspect ratio and orientation 424 

distributions of graupel from a Multi-Angle Snowflake Camera (MASC) at Utah 425 

Mountain [Garrett et al. 2015].  Despite the sampling points being limited to a single 426 

location and time of year, this is one of the only sources of observations using modern 427 

instruments.  MASC utilizes three cameras to characterize three-dimensional shapes of 428 

falling snow aggregate and graupel. Based on interpretation of the normalized histogram 429 
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derived in Garrett et al. [2015] via Eqn. 17, we treat a peak of absolute orientation angle 430 

distribution as the mean axis ratio (𝜃̅ = 20°), and calculated the standard deviation of 42° 431 

and mean axis ratio (Axis =0.814) for graupel. This non-traditional assumption is quite 432 

different from RY11 and PU17, especially the non-zero mean orientation angle. However, 433 

large standard deviation tends to smear out polarization signals (see the section 4.2).  434 

The assumed hail axis ratio in this study is estimated from the observations 435 

recorded in Knight [1986].  Samples from three locations (Oklahoma, N.E. Colorado and 436 

Alberta) of hail axis ratios are averaged for each sampled size bin and weighted by 437 

sampling number to derive the following 2
nd

-order polynomial fit:  438 

A = max(0.725, 0.897 - 0.0008D - 0.0002D
2
)  Eq. 18 439 

The orientation angle and fall behavior of hail is also uncertain. Straka et al. [2000] 440 

summarized observational and modeling studies showing typical Zdr values of hail in the 441 

range -2 dB 0.5 dB for sizes from 20 to 40 mm at S-band frequency. Aydin et al. [1986] 442 

showed the ZH-Zdr scatter plots from S-band polarimetric radar, indicating the negative 443 

ZDR for very large ZH (~ 60 dBZ). Theoretical calculation from Depue et al. [2007] and 444 

Ryzhkov et al. [2013] suggest that the negative ZDR is due to the strong resonance 445 

scattering due to melting oblate hail with its maximal dimension in the horizontal.  For 446 

contrasting reasons, this study assumes the mean orientation angle 𝜃̅ = 90° is adopted to 447 

one of the assumption examined in Vivekanandan et al. [1991], while we assume large 448 

standard deviation (40°) similar to the RY11. This assumption has a slightly different 449 

impact on radar observables than assuming prolate hail with 𝜃̅ = 0º in that it does not 450 

produce as much of a resonance scattering effect. Such an effect will be pronounced in 451 
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the simulated Zdr statistics. All the different assumptions (Table 1) are tested in the next 452 

section.  453 

 454 

4 Results and Discussion  455 

Radar data for this study are derived from the U. S. Department of Energy (DOE) 456 

C-band scanning precipitation radar (CSAPR).  The data were quality controlled, bias- 457 

and attenuation corrected using the specific differential phase with a big drop correction 458 

[Carey et al. 2000], and Kdp was calculated using the Wang and Chandrasekar [2008] 459 

methodology.  Some regions of extreme differential attenuation (-6 dB) from large 460 

voluminous rain core were noted during this case, which were too significant for the 461 

applied correction methodology. Thus Zdr values below -1 dB have been removed from 462 

the analysis hereafter. Note that these strong negative Zdr signals are not associated with 463 

oblate melting hail [Ryzhkov et al. 2013], since they are not associated with strong 464 

reflectivity (i.e. convective cores).  Three dimensional winds were derived from the DOE 465 

SGP radar network including CSAPR, two X-band scanning radars (XSAPRS), and the 466 

nearby NEXRAD KVNX WSR-88D radar by applying the multi-Doppler CEDRIC mass-467 

continuity methodology [Mohr and Miller 1983].  468 

The forward model (POLARRIS-f) assumes observation-consistent C-band radar 469 

frequency and radar coverage (118 km maximum radar range) to calculate polarimetric 470 

radar observables and radial velocity.  The radar instrument geolocation is also consistent 471 

to the CSAPR (36.796N and 97.451W) in the WRF-SBM simulations; however, due to 472 

a southward shift of convection in the simulations, the radar instrument is adjusted 0.5 473 

southward in the WRF-4ICE simulation. Figure 2 shows the evolution of radar 474 
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reflectivity at 2 km AGL at three times from the CSAPR and WRF-SBM and WRF-4ICE 475 

simulations.  Convective echoes are present within the CSAPR domain from 22 Z May 476 

23 to 00 Z May 24.  The WRF-SBM run has strong convection within the radar sampling 477 

area; the WRF-4ICE run has less convective coverage at 22 Z than the SBM, but its 478 

reflectivity structure is more realistic at 00 Z May 24.  Although the exact spatial 479 

structures are not captured by the WRF simulations, both reproduce the range of 480 

reflectivities in both the convective (up to 64 dBZ) and stratiform precipitation.   481 

 482 

4.1. Cross-Sections of Polarimetric Radar Observables and Retrievals 483 

Figure 3 shows horizontal cross-section images at a height of 2 km above mean-484 

sea level (MSL) of the CSAPR radar observations (Z, Zdr, Kdp, ρhv, and Vrad) and 485 

retrievals (wind vectors and HID) at 2148 Z on May 23.  Convective cells within the 486 

radar domain reach 60 dBZ with high Zdr (>3.0 dB) and Kdp (2.5  km
-1

), all of which 487 

suggest the presence of large oblate raindrops and appreciable water contents.  These are 488 

mostly categorized as rain (RN) or big drops (BD) in the HID; the thick red contours in 489 

Fig. 3a mark the convective cores using the separation method in Powel et al [2016].  The 490 

stratiform regions are generally categorized as drizzle (DZ) with relatively low 491 

reflectivity (< 35 dBZ) and smaller Zdr (< 1.0 dB) and Kdp (< 0.5  km
-1

) values.  Radial 492 

velocity (Vr) and wind vectors indicate strong convergence in the most intensive 493 

convective cores in the southwest portion of the radar domain (Fig. 3f).  494 

Figure 4 shows horizontal cross-section images of C-band radar parameters from 495 

the WRF simulation with HUCM SBM at 00 Z on 24 May. Note that the 00 Z field is 496 

used to best match the morphology of the observations presented in Fig. 2. The radar 497 
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observables are simulated from POLARRIS-f using the MA18 axis ratio and orientation 498 

angle distribution assumptions.  Identical convective-stratiform separation [Powel et al. 499 

2016] and HID retrievals [Dolan et al. 2013] are derived using iPOLARRIS.  The strong 500 

convective core and associated horizontal wind convergence is captured in the middle of 501 

the radar domain, where the radar reflectivity reaches greater than 60 dBZ with very high 502 

Zdr (> 2 dB) and Kdp (> 2.5  km
-1

).  Similar to the observations, these simulation results 503 

suggest the presence of large raindrops and appreciable water contents.  504 

Figure 5 shows horizontal cross-section images from the WRF simulation using 505 

the 4ICE bulk microphysics at 00 Z on May 24, again for C-band and with MA18 506 

assumptions.  The radar reflectivity in the convective core reaches ~55 dBZ, and Zdr and 507 

Kdp ranges up to 3.0 dB and 2.5  km
-1

, respectively.  Similar to the WRF-SBM 508 

simulation, the WRF-4ICE simulation produces reasonable ranges of polarimetric radar 509 

signals in the convective cores (discussed more quantitatively later).  Both WRF-SBM 510 

and WRF-4ICE capture the depressed hv values within the convective core apparent in 511 

the CSAPR data.  However, WRF-4ICE has a much wider region of hv below 0.97 (Fig. 512 

5e), while WRF-SBM has a very limited area with hv below 0.96 (Fig. 4e).   513 

Figure 6 shows observed vertical cross-sections of radar observations along east-514 

west transect 10 km north of CSAPR at 2148 Z on May 23.  CSAPR shows that a strong 515 

convective core is present ~40 km east of the radar domain with echoes greater than 50 516 

dBZ reaching to 13 km MSL (Fig. 6b).  Kdp values within the raining region of the 517 

convective core are around 2.5  km
-1

 (Fig. 6d), while Zdr reaches 3.0 dB (Fig. 6c).  The 518 

HID indicates the presence of hail (HA) and big drops (BD) surrounded by low- and 519 

high-density graupel (LDG and HDG) (Fig. 6a).  The width of this convective core 520 
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exceeds 10 km and the vertical velocity peaks at 20 m s
-1

 (Fig. 6f).  On the other hand, 521 

the stratiform region is dominated by snow-aggregates (AG) (Fig. 6a).  The presence of 522 

the melting layer is denoted by the wet snow (WS) category.  Stratiform reflectivity 523 

signatures remain below 35 dBZ, and Zdr ranges from 0 to 1 dB with near-zero Kdp, 524 

suggesting the presence of low-density, nearly spherical snow aggregates.  Reflectivities 525 

near the surface are weak to moderate up to 30 dBZ, and there is no significant positive 526 

Zdr and Kdp, suggesting the presence of small raindrops/drizzle.  527 

 Similar vertical cross-sections of WRF-SBM (4ICE)-simulated radar observables 528 

and HID are shown in Fig. 7 (Fig. 8).  Corresponding distributions of SBM-simulated 529 

hydrometeor mass concentrations (g m
-3

) are also shown for comparision to the HID 530 

algorithm. These mass concentrations include ice (qi: sum of dendrites, needles, and 531 

plates), cloud (qc:  liquid class < 100 μm radius), rain (qr: liquid class > 100 um radius), 532 

snow (qs: aggregates with explicit riming fraction), graupel (qg: graupel), and hail (qh: 533 

hail).  Around 97.5°E, a very strong convective core reaches up to 15 km MSL with radar 534 

echoes up to 60 dBZ (Fig. 7b) and an associated updraft with peak speeds of 25 m s
-1

 (Fig. 535 

7f).  The HID profiles show the dominance of hail (HA) and graupel (LDG) in and 536 

around the core (Fig. 7a).  Vertical profiles of the HID classes are well matched with the 537 

corresponding SBM mass concentrations in convective cores as well as stratiform 538 

regimes. For example, in the stratiform region, HID indicates the presence of ice crystals, 539 

aggregates, low-density graupel, and drizzle from the cloud top toward the surface similar 540 

to the SBM mass concentration transitions.   541 

While variability of the reflectivity and the vertical velocity are similar in 542 

magnitude to the observations (Fig. 6), the simulated Zdr and ρhv appears to be much more 543 
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homogeneous in the ice regions compared to observations (Fig. 7c and 7e).  Notably, the 544 

observed hv ranges from 0.95 to 0.98 (Fig. 6e), while the simulated ranges from 0.99 to 1 545 

(background is 1.) (Fig. 7e).  Depression of the background hv in the observations could 546 

be related to systematic factors, which are not modeled by the T-matrix/ Mueller matrix, 547 

e.g., receiver noise in each channel, antenna mis-match, cross-coupling, non-uniform 548 

beam filling, beam broadening, etc. [Zrnic et al. 2006; Ryzhkov 2007]. The lack of high 549 

density graupel in favor of low-density graupel in the SBM HID compared to 550 

observations is noted. 551 

 In comparison with the SBM, 4ICE (Fig. 8) produces narrower convective cores 552 

characterized with hail (HA) and low-density graupel (LDG), which is actually more 553 

closely aligned to the observations (Fig. 6).  In the surrounding stratiform area, ice 554 

crystals (CR) generally dominate the HID profile above the 0°C isotherm (Fig. 8a).  555 

Snow aggregates (AG) are sporadically present closer to the 0°C isotherm level (HID), 556 

although snow mass concentrations (Fig. 8o) from direct model output indicate a large 557 

amount of snow aggregates present in the simulation.  These issues are further 558 

investigated in Sec. 4.2.  559 

 560 

4.2.  Sensitivity of the Polarimetric Radar Observables to Particle Assumptions 561 

In this section, the polarimetric observables and retrievals are compared 562 

statistically in the form of CFADs using the three different assumptions on particle 563 

orientation angle distributions and axis ratio in Table 1.  The radar observables are 564 

computed at C-band radar frequency (6.25 GHz) to be consistent with the CSAPR 565 

observations. The analysis is performed during the most intense time period from 2300 Z 566 
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on May 23 to 0130 Z on May 24 using 10 min intervals for model output.  The CFAD 567 

color-scale is set to highlight the most frequent occurrences (colored), while gray scales 568 

represent considerably lower frequencies (below 0.5%).  569 

Figure 9 shows CFADs of Zdr and Kdp from the convective and stratiform region 570 

of the CSAPR observations compared to the WRF-SBM run using the three sets of 571 

assumptions for particle shapes and orientation angles (Table 1).  The observed 572 

convective Zdr distribution shows a wide range of frequencies (defined as > 0.05 % in the 573 

color shades) ranging from -1 to 0.5 dB around 14 km MSL, where high frequencies of 574 

negative values could indicate the presence of vertically aligned anisotropic ice crystals 575 

in a strong electric field or attenuation correction issue associated with very strong rain 576 

core.  Zdr in the 5-10 km MSL height range exhibits a narrower distribution from -0.5 to 577 

0.9 dB, whereas at heights below the 0°C isotherm, the distributions have much larger 578 

values with higher variability (from 0.5 to 5.5 dB), the largest values associated with 579 

large oblate raindrops. The observed stratiform Zdr shows similar distributions to the 580 

convective one, except Zdr below 2km MSL is narrowly distributed (up to 2 dB).  581 

The WRF-SBM simulated convective and stratiform Zdr values are more narrowly 582 

distributed especially for the MA18 and RY11 assumptions than those of the observations.  583 

PU17 has slightly wider distributions (from 0.0 to 1.0 dB, mode centered at 0.8 dB) than 584 

the MA18 and RY11 above the 0°C isotherm level, but they have a positive bias.  In rain, 585 

all three assumptions use the identical parameterization from Brandes et al. [2011], 586 

leading to values from 1.5 to 2.5 dB in the convective region and 0 to 1.5 dB in the 587 

stratiform; whereas the observations extend to 5 dB.  Despite a very low frequency (< 588 

0.05%), wide ranges of negative Zdr are present in the PU17 and RY11 assumptions due 589 
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to the resonance effect of Mie scattering from large horizontally-oriented oblate hail 590 

particles, while the vertically-oriented oblate hail assumption in MA18 do not have a 591 

resonance effect. Thus, hail assumptions in PU17 and RY11 could be more realistic.  592 

The observed convective Kdp has a narrow distribution in the solid-precipitation 593 

zones, centered at 0  km
-1

 with a slight negative excursion between 10 and 12 km MSL.  594 

In the rain zone, distributions of Kdp are wide with the most frequent values between -0.6 595 

and 2.0  km
-1

.  The observed stratiform Kdp has even narrower distributions. All 596 

assumptions exhibit too wide distributions of Kdp especially between 8 and 15km MSL 597 

due to presence of horizontally oriented plate ice crystals.  With PU17, more oblate 598 

particle shapes and smaller standard deviations of orientation angle for small frozen 599 

hydrometeors result in broader CFADs, especially in Kdp. Despite the different 600 

assumptions of axis ratio and orientation angle distributions in snow, graupel, and hail, 601 

Zdr and Kdp distributions appear to be similar between MA18 and RY11.  602 

Figure 10 shows CFADs from the WRF-4ICE simulations using the three particle 603 

assumptions.  The WRF-4ICE Zdr CFADs are more variable among the three assumptions 604 

than with the SBM and have differing structures compared to WRF-SBM.  The MA18 Zdr 605 

values between 8km and 16km MSL are bi-modally distributed.  The near-zero Zdr values 606 

are due to the 90-degree oriented oblate hail assumptions, while the positive Zdr peak is 607 

due to the near-horizontally oriented oblate snow aggregates; this 2
nd

 mode does not 608 

appear in the WRF-SBM Zdr values.  The PU17 Zdr values are mostly centered around 1.0 609 

to 1.2 due to horizontally oriented oblate snow, graupel, and hail, while the RY11 has the 610 

narrowest and the smallest Zdr values in the ice region, again due to having large 611 

tumbling assumptions.  The MA18 and PU17 assumptions result in unrealistically large 612 
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Kdp values for both convective and stratiform regions above the 0°C isotherm level; 613 

RY11 produces the most realistic, narrow distributions of Kdp for WRF-4ICE case.   614 

Figures 9 and 10 provide an overall depiction of the polarimetric radar 615 

observables from the observations and the simulations for both SBM and the 4ICE 616 

microphysics using different assumptions for axis ratio and orientation angles for both the 617 

convective and stratiform precipitation regimes.  No single set of assumptions accurately 618 

reproduced the observed Zdr and Kdp distributions in either the convective or stratiform 619 

regions.  Interestingly, these assumptions affect the Zdr and Kdp distributions differently 620 

for the bin and bulk schemes. For example, MA18 produces broader Zdr and Kdp 621 

distributions than the RY11 in the 4ICE scheme but the reverse in the SBM, pointing to 622 

possible critical differences between the explicit and bulk approaches in terms of their 623 

PSDs.  624 

To this end, detailed PSDs of solid particles are compared between the 625 

simulations and available aircraft observations from the Citation II for this case.  Figure 626 

11 shows the PSD (solid black) measured from the Citation HVPS-3 on May 23 at a 627 

height of around 8 km.  In comparing the aircraft flight track, particle images from the 628 

high-resolution cloud particle imager (CPI), and CSAPR-derived HID (not shown), it was 629 

found that the sampled particles mostly represent snow aggregates in the stratiform 630 

region.  Blue solid and dotted lines represent PSD assumptions for the aggregate category 631 

in Dolan and Rutledge [2009] and Dolan et al. [2013] (the same algorithm used in this 632 

study for HID).  Corresponding PSDs are derived from the WRF-SBM and WRF-4ICE 633 

simulations similar to the aircraft estimation method [Iguchi et al. 2012b].  It essentially 634 

re-samples the model bulk or bin microphysics PSD into the aircraft-measurable bulk 635 



 29 

PSD bins and integrates over the particle maximum diameter and the domain to estimate 636 

the mean PSD.  In this study, simulated ice crystals and aggregate species between 7 km 637 

and 9 km of altitude are sampled to construct the aircraft-measurable bulk PSD, 638 

consistent to the actual measurement patterns of the Citation aircraft. 639 

  In MC3E, similar to the Citation aircraft observations during the MC3E (not 640 

shown here), PSDs in Fig. 11 are dominated by snow aggregates.  The sampling period is 641 

identical to that for the CFADs, from 2300 Z on May 23 to 0130 Z on May 24 using 642 

model output every 10 minutes.  4ICE (green solid) has a much steeper curve, close to the 643 

assumption of DR09 assuming an equivalent snowfall rate of 0.5 mm hr
-1

.  SBM (red 644 

solid) has a similar PSD to the 4ICE and DR09 (0.5 mm hr
-1

) until the 4 mm diameter bin 645 

but is bi-modally distributed with the secondary mode around 8 mm in diameter.  646 

Therefore, part of the explanation for the smaller Zh and larger Kdp distributions 647 

compared to observations is related to this narrow snow aggregate PSD in 4ICE.  648 

Resultantly, the low Zh and relatively high Kdp lead the HID algorithm to classify model 649 

snow aggregates as “ice crystals” (Fig. 8a). 650 

 651 

 652 

4.3 Statistics of HID Retrievals  653 

 In this section, a probability-based analysis of the polarimetric radar retrievals of 654 

HID is discussed.  As noted earlier, all polarimetric parameters (Z, Zdr, Kdp, and hv) from 655 

observations and POLARRIS-f calculations from WRF SBM/4ICE simulations output 656 

the same exact radar retrievals within iPOLARRIS.  Thus, radar retrievals are derived in 657 

a consistent manner between the observations and simulations.  Putnam et al. [2017] 658 
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conducted a very similar approach and compared the HID between observations and 659 

simulations with a number of different bulk microphysical schemes in 0.5-tilt images.  660 

To carry out a more comprehensive analysis, we have constructed “stacked frequency by 661 

altitude diagrams” (SFADs) of the HID integrated over intense precipitation periods.  The 662 

SFADs represent the relative frequency of each identified hydrometeor type at each 663 

height. 664 

 Figure 12 shows HID SFADs from CSAPR observations.  The HID observations 665 

from CSAPR show that heavily-rimed particles (HA, LDG and HDG) occupy ~20-50% 666 

of the convective region, whereas AG and CR dominate in the stratiform region above 667 

the 0°C isotherm level. These vertical fractions of ice hydrometeor are critical for 668 

evaluating the CRM simulation ever since the development of bulk microphysics 669 

[Rutledge and Hobbs 1984].   670 

 Figure 13 compares the observed and simulated HID profiles using the three 671 

different assumptions for the snow aggregate (AG), graupel (HDG and LDG), and hail 672 

(HA) categories.  All assumptions applied to both SBM and 4ICE largely underestimate 673 

(underestimate) the AG fraction by as much as 40 % in the convective (stratiform) region.  674 

Graupel is also largely overestimated by WRF-SBM and WRF-4ICE in both the 675 

convective and stratiform regions with overestimations varying appreciably among the 676 

different sets of assumptions. For the convective regions, SBM and 4ICE overestimate 677 

the hail fraction by up to 35% and 20%, respectively.  Uncertainties in the polarimetric 678 

radar variables (Zdr and Kdp) using the different particle shape and orientation angles 679 

affect the HID fraction by up to 20% for the graupel and hail but less so in terms of AG 680 

fraction (generally < 10%). Here it can be seen that the particle assumptions all tend 681 
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toward the same general over- or under-prediction compared to observations, with 682 

generally very little spread between assumptions other than the 4ICE convective graupel 683 

and SBM stratiform graupel. 684 

Overall, it can be concluded that both WRF simulations tend to over-predict the 685 

hail and graupel fractions, while underestimating the proportion of snow aggregates.  The 686 

different assumptions for axis ratio and orientation angle distributions among MA18, 687 

PU17, and RY11 affect the quantitative distributions of Zdr and Kdp but do not change this 688 

overall conclusion.  This implies that despite the uncertainties in the axis ratio and 689 

orientation angle, POLARRIS HID can provide a useful model evaluation tool to identify 690 

the four-dimensional distributions of bulk hydrometeor class in a qualitative manner.  691 

   692 

 693 

5 Conclusions 694 

A new framework, POLARRIS, has been developed to compare CRM cloud 695 

model simulations with polarimetric radar observations.  POLARRIS is comprised of a 696 

forward simulator (POLARRIS-f) and an inverse module (iPOLARRIS).  POLARRIS-f 697 

is based on robust T-matrix and Mueller matrix scattering calculations [Vivekenandan et 698 

al. 1991] in order to compute polarimetric observables through the consistent 699 

assumptions of microphysics size distributions and effective density with effective 700 

dielectric constant [Maxwell Gartnet 1904; Bruggeman 1935; Debye 1929; Bohren and 701 

Battan 1980].   702 

An important aspect of POLARRIS-f is assigning particle axis ratio and 703 

orientation angle distributions.  These are not typically specified in the majority of 704 
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microphysics schemes but can have a large influence on the retrieved polarimetric 705 

observations.  While POLARRIS-f has similar capabilities to other polarimetric radar 706 

simulators [e.g., Ryzhkov et al. 2011; Putnam et al. 2017; Kollias and Tatarevic 2017], 707 

iPOLARRIS is a unique post-processing component that consistently implements 708 

polarimetric radar retrievals and statistical analysis.  HID has been used as an example in 709 

this study, but iPOLARRIS can be extended to different retrievals, such as precipitation, 710 

vertical motion, liquid water contents, and convective-stratiform separation.  The model 711 

and observations are put into the exact same framework to make consistent comparisons. 712 

Three different sets of assumptions in particle axis ratio and orientation angle 713 

distributions from two previous studies [Ryzhkov et al. 2011, Putnam et al. 2017] 714 

alongside a set of assumptions derived for this study were tested for snow aggregate, 715 

graupel, and hail particles via WRF simulations of an intense midlatitude convective 716 

complex observed during MC3E.  The results from any given set of assumptions are 717 

qualitatively similar, but quantitatively diverse, particularly in the probability 718 

distributions of Zdr and Kdp, which are directly related to particle oblateness and 719 

orientation angle distributions in addition to the particle density and size distributions.  720 

For hail, the RY11 and PU17 hailstone orientation assumptions appear to be more 721 

reasonable than MA18, since the MA18 hailstone assumption does not reproduce 722 

resonance scattering signals in Zdr. On the other hand, Knight and Knight [1970] showed 723 

direct observation of large prolate-shaped hailstone falling along the maximum 724 

dimension. Although RY11 and PU17 assumptions agree well with some observational 725 

and theoretical calculations [Depue et al. 2007; Ryzhkov et al. 2013], the natural 726 

variability of hail shape and falling behavior could be more complex.  727 
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For snow and graupel, none of the assumption sets outperformed the others 728 

compared to observed Zdr and Kdp CFADs using either SBM or 4ICE microphysics. The 729 

simulated Zdr and Kdp CFADs are generally either more narrowly or widely distributed in 730 

the different cases than the observations. Thus, we conclude that the single model of 731 

particle shape and orientation angles are not sufficient assumptions to represent nature of 732 

the polarimetric radar observation. These uncertainties were not reported in previous 733 

studies [e.g., Ryzhkov et al. 2011; Putnam et al. 2017; Kollias and Tatarevic 2017].   734 

HID seems to be a more stable metric, because the fuzzy-logic methodology 735 

synthesizes information from all variables and is heavily weighted by reflectivity. 736 

Additionally, the broad membership beta functions encompass a wide variety of 737 

assumptions about axis ratio and orientation angle distributions.  HID comparisons 738 

revealed that all three sets of assumptions applied to both microphysics schemes tended 739 

to overpredict hail and graupel in convection, while underestimating the fraction of snow 740 

aggregates in this particular case study.  741 

Almost all bulk and bin microphysics schemes do not explicitly predict axis ratio 742 

and orientation angle distributions, so that these parameters remain uncertain, in addition 743 

to size distributions [Heymsfield et al. 2004], effective density [Heymsfield et al. 2010], 744 

and partially melting particles [Phillips et al. 2007]. A few microphysics schemes crudely 745 

predict ice crystal and aggregate particle shape [Hashino and Tripoli 2011; Harrington et 746 

al. 2013; Chen and Tsai 2016], which can impact not only the ice microphysics processes 747 

but also polarimetric observables [Sulia and Kumjian 2017]. With the careful analysis of 748 

polarimetric radar signals [Hendry et al. 1987; Ryzhkov et al. 2002; Ryzhkov, and Zrnic 749 
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2007], these new microphysics schemes will allow us to constrain variability of particle 750 

shapes and orientation angle distributions against observations.   751 

Once the simulated microphysics is well evaluated, simulated polarimetric 752 

observables along with simulated hydrometeors can be used to examine uncertainties and 753 

extend the capability of polarimetric radar retrievals [e.g., Kumjian and Prat 2014; 754 

Schrom and Kumjian 2018] or detailed microphysics process in deep convective cores 755 

[Dawson et al. 2014].  For such purpose, CRM simulations must resolve radar sampling 756 

volumes at eddy permitting scales (=250m) and future simulated radar observables must 757 

be re-sampled to be consistent with the radar instrument beam width and range volume. 758 

These studies will be presented in future work.  759 
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Appendix A. Calculation of Effective Dielectric Constant and Particle Density 760 

The complex dielectric constant (ε) describes the absorption and refraction 761 

properties of a medium at a specific wavelength.  The dielectric constant for water and 762 

ice is largely determined by wavelength and slightly by temperature [Liebe et al. 1991; 763 

Hufford 1991].  Unlike pure liquid drops (cloud and rain), ice particles are often mixed 764 

with air and water.  These mixtures of dielectric constant can be treated as a single 765 

“effective” dielectric constant (εeff), when each single medium is much smaller than the 766 

wavelength, i.e., Rayleigh regime (size parameter: X=πD/λ  ~ 2, where D is particle 767 

diameter and λ is wavelength).  768 

Several solutions have been derived through different physical assumptions, 769 

including Maxwell-Garnett (MG) [Maxwell Garnett 1904], Effective Medium (EM) 770 

[Bruggeman 1935], and Debye (DB) solutions [Debye 1929].  These solutions are 771 

compared and evaluated in Bohren and Battan [1980].  The MG method assumes a 772 

medium of a shell (matrix) and a core (inclusion) so that it always has two solutions 773 

between the shell-core (e.g., air-shell and ice core versus ice-shell and air core) 774 

assumptions.  EM has homogeneous mixing assumptions so that the estimation (ε) falls 775 

somewhat between the two MG solutions.  DB also assumes a mixed homogeneous 776 

medium such as an aqueous medium.  Bohren and Battan [1980] concluded that 777 

particular assumptions appear to be better in particular (mixing) situations so that there is 778 

no compelling reason that one scheme is completely superior to the other schemes 779 

universally.  Here are three formulas for calculating the effective dielectric constant for 780 

the three different methods. 781 

MG: 𝜖𝑀𝐺 = 𝜖𝑚 [1 +
3𝑓(

𝜖−𝜖𝑚
𝜖+2𝜖𝑚

)

1−𝑓(
𝜖−𝜖𝑚
𝜖+2𝜖𝑚

)
]     Eq. A1 782 
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EM:  𝑓 (
𝜖−𝜖𝐸𝑀

𝜖+2𝜖𝐸𝑀
) + (1 − 𝑓) (

𝜖𝑚−𝜖𝐸𝑀

𝜖𝑚+2𝜖𝐸𝑀
) = 0  Eq. A2 783 

DB:  
𝜖𝐷𝐵−1

𝜖𝐷𝐵+2
= 𝑓 (

𝜖−1

𝜖+2
) + (1 − 𝑓) (

𝜖𝑚−1

𝜖𝑚+2
)   Eq. A3 784 

In POLARRIS-f, these options are available to calculate air-ice mixture (i.e., for 785 

ice crystals, dry snow aggregates, graupel, and hail).  Once the effective dielectric 786 

constant of an air-ice mixture is derived, it will be further mixed with liquid particles for 787 

mixed-phase particles (snow aggregates, graupel and hail) again via the above equations 788 

with different physics assumptions.  This second process has a much larger impact on 789 

simulating the bright band from the thin melting layer so that the choice will be more 790 

obvious (not shown here).  The effective mixture approximation is inaccurate, when the 791 

size parameter (X) becomes much larger than ~2 (Mie scattering regime).  In this case, a 792 

more sophisticated single-scattering model is required.  Recently, Schrom and Kumjian 793 

[2018] compared the polarimetric scattering properties between branched planar crystals 794 

and homogeneous oblate particles and found significant errors when calculating the 795 

backscattering cross sections of horizontal and vertical polarizations at X-band.  Further 796 

study is required to better understand the scattering field of complex ice particle in the 797 

future.    798 

 799 

 800 
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Tables 1090 

 
RY11 PU17 MA18 

Liquid 

(cloud & 

Rain) 

Axis = 0.9951+0.0251*D-0.03644*D2 +0.005303*D3-0.0002492*D4  

[Brandes et al. 2011] 

Type: quasi-Gaussian (Θmean= 0°,  σ=1°) 

Ice 

(column) 

Axis = 2.0 

Type: random 

Ice 

(plate) 

Axis = 0.35 

Type: quasi-Gaussian (Θmean= 0°,  σ=10°) 

Ice 

(dendrite) 

Axis = 0.125 

Type: quasi-Gaussian (Θmean= 0°,  σ=10°) 

Snow 

aggregate 

Axis = 0.8 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=40°) 

Axis = 0.75 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=20°) 

Axis = 0.7 - 0.05D + 

0.003D2 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=20°) 

Graupel 

Axis =max(0.8, 1.-0.2*D) 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=40°) 

Axis = 0.75 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=10°) 

Axis = 0.814 

Type: quasi-Gaussian 

(Θmean= 20°,  σ=42°) 

Hail 

Axis max(0.8, 1.-0.2*D) 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=40°) 

Axis = 0.75 

Type: quasi-Gaussian 

(Θmean= 0°,  σ=10°) 

Axis = max(0.725, 0.897 - 

0.0008D - 0.0002D2) 

Type: quasi-Gaussian 

(Θmean= 90°,  σ=40°) 

 1091 

Table 1. Differing assumptions used for particle axis ratio and orientation angle 1092 

distributions from Ryzhkov et al. [2011] (RY11), Putnam et al. [2017] (PU17), and this 1093 

study (MA18). For all three sets of assumptions, identical values for rain and ice crystals 1094 

are used for simplification.  In the 4ICE microphysics, randomly oriented needle-shaped 1095 

ice crystals are assumed so that the ice crystal class has essentially no impact on Zdr and 1096 

Kdp.  Axis is the axis ratio, D the diameter (in mm), Θmean the mean orientation angle (in 1097 

degrees), σ the standard deviation of the orientation angle distributions (in degrees); 1098 

max() and min() are Fortran operators indicating the selection of the maximum and 1099 

minimum of the pair, respectively.   1100 
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 1110 

 1111 

Figure Captions 1112 

 1113 

Figure 1. Scattering geometry of an oblate particle with a specific orientation direction 1114 

(𝑁⃗⃗ ) within a cartesian coordinate (X, Y, and Z).  𝑁′⃗⃗⃗⃗ 
XY is the projection of 𝑁′⃗⃗⃗⃗  on the X-Y 1115 

plane.  𝑁′⃗⃗⃗⃗ and 𝑍′ are the projections of 𝑁⃗⃗  and the Z axis on the polarization plane.  V and 1116 

H are the linear polarization base vectors.  Adapted from Vivekanandan et al. [1991]. 1117 

 1118 

 1119 

Figure 2. Time series of 2 km horizontal cross-section of horizontal reflectivity (dBZ) 1120 

from CSAPR observations (left) and the WRF-SBM (middle) and WRF-4ICE (right) 1121 

simulations.  Note that the CASPR observations are plotted using physical distance (in 1122 

km from radar instrument), while the simulations use a latitude-longitude projection. 1123 

 1124 

 1125 

Figure 3. horizontal cross-sections of CSAPR a) HID retrieval (shaded), b) reflectivity, c) 1126 

differential reflectivity, d) specific differential phase, e) co-polar correlation coefficient, 1127 

f) radial velocity and wind vectors at 2 km MSL at 21:48Z on 23 May 2011 over the 1128 

Southern Great Plains.  Thick red contours in the HID panel a) separate convective and 1129 

stratiform precipitation regimes.  1130 

 1131 

 1132 

Figure 4. Same as Figure 2 except for POLARRIS-f C-band simulations using the WRF-1133 

SBM output from 00Z 24 May 2011 and MA18 assumptions.  Wind vectors are derived 1134 

directly from WRF.  1135 

 1136 

 1137 

Figure 5. Same as Figure 2 except for POLARRIS-f simulations using the WRF-4ICE 1138 

output from 00Z 24 May 2011.  Axis ratio and orientation angle assumptions follow 1139 

MA18.  1140 

 1141 

 1142 

Figure 6. Vertical cross-sections of the CSAPR radar observations (Z, Zdr, Kdp, ρhv) and 1143 

retrievals (w, wind vectors and HIDs) corresponding to those shown in Fig. 2 but along 1144 

an east-west line located 10 km north of the radar location.  1145 

 1146 

 1147 

Figure 7. East-west vertical cross-sections along the 36.876N latitude of a) the WRF-1148 

SBM-simulated CSAPR radar observables (Z, Zdr, Kdp, ρhv) and retrievals (w, HIDs) 1149 

corresponding to those shown in Fig. 3.  Wind vectors are derived directly from WRF.  b) 1150 

Corresponding model-simulated hydrometeor mass concentrations [g/m
3
] along the same 1151 

latitude.  Axis ratio and orientation angle assumptions follow MA18.  1152 

 1153 

 1154 
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Figure 8. Same as Fig. 6, but for the WRF-4ICE simulation at a latitude of 36.05 N and 1155 

corresponding to Fig. 4.  Axis ratio and orientation angle assumptions follow MA18.  1156 

 1157 

 1158 

Figure 9. CFADs of differential reflectivity and differential phase speed for convective 1159 

and stratiform regions from the CSAPR observations and the POLARRIS simulations 1160 

based on three different assumptions using the WRF-SBM simulation.    1161 

 1162 

 1163 

Figure 10. Same as Figure 8 but derived from the WRF-4ICE simulation. 1164 

 1165 

 1166 

Figure 11. PSDs estimated from the Citation HVPS-3, DR09 polarimetric radar retrieval 1167 

assumptions for 0.5 mm hr
-1

 and 0 mm hr
-1

, WRF-SBM (SBM), and WRF-4ICE (4ice).  1168 

 1169 

 1170 

Figure 12. HID SFADs from the CSAPR observations (top row) and the POLARRIS 1171 

simulations for three different assumptions using the WRF-SBM simulation. The 1172 

convective portion is shown in the left column and the stratiform in the right. 1173 

 1174 

 1175 

Figure 13. Vertical profiles comparing HID fractions for snow, graupel (including high 1176 

and low density graupel), and hail from observations and WRF-SBM and WRF-4ICE 1177 

with three different assumptions.  1178 

 1179 

 1180 
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