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ABSTRACT 
We have leveraged STARE indexing to package partitioned 
data chunks from diverse datasets into netCDF files, distrib-
uted them on a cluster of 16 lightweight nodes with their 
placements spatiotemporally co-aligned, and demonstrated a 
few integrative analyses using netCDF parallel I/O and Py-
thon MPI, with single-user performance and scalability com-
parable to, or even better than, that of a parallel array database 
management system (ADBMS) such as SciDB. However, 
records of the node location and STARE index ranges for 
each data chunk, similar to the chunk maps of SciDB, must 
be maintained and consulted by the I/O and analysis code for 
coordinating the analytic operations in parallel, in order to 
achieve the good performance and scalability. 
 

Index Terms— Big Data, interoperability, parallel pro-
cessing, scalability, data-intensive analysis 

1. INTRODUCTION 
Relative to the Moore’s law [1], the productivity of geo-spa-
tiotemporal data analysis has been comparably stagnant for 
decades, primarily due to the enormous volume and diversity 
of the data involved. The existing practice of packaging these 
data in files (albeit in only a few standard file formats) for 
dissemination causes tremendous waste in communication 
bandwidth utilization and storage-compute resource duplica-
tion. Moreover, while almost all of these (geo-spatiotem-
poral) data are expressed using the array data structure, the 
process of packaging them into files inevitably decouples the 
array indexing from corresponding geo-spatiotemporal coor-
dinates (e.g. longitude-latitude and date-time), due to the dif-
ferences in data resolutions as well as data models used. 
Analyses of these diverse datasets thus demand case-by-case 
considerations, seriously impacting interoperability and lim-
iting scalability. 

Our innovation, the SpatioTemporal Adaptive-Resolu-
tion Encoding (STARE; see section 2 for a description), is 
developed as a universal indexing scheme for all geo-spatio-
temporal data, thereby establishing a one-to-one coupling be-
tween STARE index pair and geolocation & time (up to a 

precision of better than 10 cm in geolocation and millisecond 
in time). Since all geo-spatiotemporal data can be indexed 
consistently and uniformly with STARE indexing, STARE 
enables a consistent interpretation and achieves unparalleled 
interoperability among the vast varieties of these data. 

In addition, since STARE also encodes data resolution, 
for both geolocation and time, in its indices, it not only ena-
bles efficient geo-spatiotemporal set operations (e.g. union, 
intersect, and difference) but also supports spatiotemporal 
data placement alignment when partitioning diverse datasets 
onto a distributed cluster environment. Such data placement 
alignment engenders the optimal data locality (aka data-com-
pute affinity) for integrative analysis requiring spatiotem-
poral coincidence; that is, analyzing data of the same area and 
time from related but different datasets. 

W have presented an integration of STARE, as an out-
come of our previous effort [1], with the use of a parallel ar-
ray database management system (ADBMS), SciDB, to fur-
ther multiply its power. For scaling large volume, the obvious 
and only solution is parallel processing. Without variety scal-
ing, however, the scaling achieved by parallel processing is 
at best piecemeal, i.e. one variety at a time. While the variety-
scaling power of STARE through data placement alignment 
can minimize data movement and guarantee pleasingly paral-
lel problems remain pleasingly parallel, integrating STARE 
with a parallel ADBMS enables high scalability of a more 
advanced class of parallel processing, i.e. distributed memory 
parallelization (DMP). The consistent partitioning of all geo-
spatiotemporal data serves as a reusable domain decomposi-
tion, which the parallel ADBMS can take advantage repeat-
edly in a predictable manner for coordinating the communi-
cation needed for DMP. 

In this paper, we introduce another integration of STARE 
with conventional array-oriented scientific data management 
and processing tools, i.e. netCDF and Python, instead of an 
ADBMS. Our design of STATE makes the deployment to 
netCDF (for data chunk packaging) straightforward and re-
quires only marginal effort. For processing with Python MPI, 
records of chunk locations and STARE index ranges must be 
maintained and consulted during analysis operations. We 
demonstrate that, using netCDF parallel I/O and Python MPI, 
STARE again enables the optimal scaling of variety and, a 



 

more thorough scaling of volume through DMP for geo-spa-
tiotemporal data analysis.  

In the following sections, we first describe STARE 
briefly in section 2. The advantageous features of STARE are 
outlined next in section 3. The integration of STARE and 
netCDF is described in section 4. We then introduce the ex-
periments and their purposes in section 5. Section 6 con-
cludes. 

2. STARE 
The SpatioTemporal Adaptive-Resolution Encoding, 
STARE, consists of two parts, a spatial and a temporal com-
ponent, as summarily described below. More detailed de-
scription can be found in [3]. 

The spatial part of STARE uses a 64-bit integer and is 
based on the hierarchical triangular mesh (HTM) [4][5], 
which is a way to address the 2D angular space (i.e. the solid 
angle) of the spherical coordinate system using a hierarchy of 
spherical triangles. The mesh is generated following the pro-
cedure below: 
1.   Start with an octahedron inscribing a sphere. 
2.   Bisect each edge of its eight triangular facets. 
3.   Project the bisecting points to inscribe the sphere from 

its center to form 4 smaller spherical triangles. 
4.   Repeat from step 2, until a desired resolution (precision) 

is reached. 
After the initial octahedron, each iteration from step 2 is 
termed a quadfurcation, i.e. division/branching into 4 parts. 

The spatial index of STARE is a customized variant of 
the HTM with two distinctions. 1) While right-justified en-
coding is used for the original HTM indexing, we choose a 
left-justified encoding to facilitate spatial data placement 
alignment. 2) In addition, geolocation uncertainty (commen-
surate with data resolution) is added to the encoding using a 
few least-significant bits to facilitate set operations among di-
verse datasets [6]. 

Essentially, STARE’s spatial index is a one-dimensional 
equivalent way (to the use of latitude-longitude) of specifying 
geolocation to a given uncertainty. For example, with 23 
quadfurcations (i.e. at the 23rd depth level), a latitude-longi-
tude coordinate is concisely and uniquely mapped to an inte-
ger with ~1-m uncertainty. 

The temporal index of STARE also uses a 64-bit integer. 
It is also hierarchical but, to avoid unnecessary translations 
between temporal frameworks, it uses calendrical date/time 
units, such as year, month, week, day, hour, etc., to build the 
hierarchy. It is thus called hierarchical calendrical encoding 
(HCE). The least significant few bits of the index are also 
used to denote the approximate temporal resolution of the 
data. 

3. ADVANTAGEOUS FEATURES OF STARE 
Since STARE indexing is hierarchical and carries with it (ap-
proximate) data resolution information, it embodies many ad-
vantageous characteristics. We list some of the most im-
portant ones below. 

First, STARE affords sophisticated and yet highly effi-
cient set operations, including conditional subsetting, which 
samples a second dataset based on properties (usually fil-
tered) of a first, and likely dissimilar, dataset. For example, 
one may wish to correlate cloud-top infrared brightness tem-
perature with the presence and intensity of precipitation. With 
STARE, this sort of set operations is turned into fast opera-
tions on STARE-index integer intervals, as opposed to much 
more complicated and slower operations on floating-point 
latitude-longitude pairs. 

Moreover, because each edge of a spherical triangle in 
HTM is a segment of a great circle, it is more straightforward 
to ascertain which hemisphere (delineated by the great circle) 
a given geolocation belongs to. This property can thus be uti-
lized to quickly determine the set of STARE indices (even 
with varying quadfurcation levels) corresponding to a user 
specified region of interest (ROI). 

The hierarchical nature of STARE also supports progres-
sive visualization. That is, we may use coarser resolution 
(lower-level quadfurcation) and thus smaller data volume to 
rapidly render initial visualization and use progressively 
higher resolutions to refine the visualization until a desired 
quality is reached. Bandwidths in a data traffic chain, espe-
cially when low-bandwidth connections (e.g. Internet) are in-
volved, can therefore be better utilized to provide a more 
pleasant user experience. 

A disadvantage of STARE, however, is the lack of a 
straightforward way in specifying an overlap (aka halo) for 
neighboring partitions of data, which is important to perfor-
mance for operations that are not pleasingly parallel. Deter-
mining neighboring STARE cells is straightforward, but re-
quires a (small) tree traversal, as opposed to a simple index 
increment, that must then be convolved with the parallel com-
puting platform’s data distribution scheme. 

4. INTEGRATION OF STARE AND NETCDF 
In a conventional netCDF file, data elements are typically ar-
ranged according to certain attributes or indices. For example, 
one common practice is to use regular gridding in their spatial 
and/or temporal coordinates. In a distributed environment 
(e.g. a computing cluster), data elements often are partitioned 
into chunks and distributed among the computing nodes ac-
cording to the order of the indices. However, it is hard to 
guarantee that data chunks for the same space-time are placed 
on the same node. We leverage the universality of STARE 
indexing with netCDF, to spatiotemporally co-align data 
chunk placements on the computing nodes.  

Our design of STARE makes it easy to integrate with 
netCDF, as shown in Fig. 1. First, given an input netCDF file 
of a dataset, we compute a STARE index for each data ele-
ment according its spatial and temporal coordinates, and add 
the STARE index as a new attribute into the netCDF file. Sec-
ond, the file is partitioned into a number of data chunks ac-
cording to the order of STARE indices and prescribed inter-



 

vals in geolocation and time. The size of each chunk is spec-
ified as a parameter, which is set to contain 4096 data ele-
ments in each chunk in this work. Finally, the data chunks of 
a dataset are distributed among the computing nodes in a 
round-robin fashion.  

This STARE-based partitioning and distributing ap-
proach has several advantages: First, it ensures that a dataset 
can be equally partitioned and distributed into data chucks, 
leading to a balanced workload on each computing node. Sec-
ond, for input netCDF files of different varieties, their parti-
tions on each computing node are co-aligned spatiotempo-
rally; that is, data elements with the same STARE index are 

placed on the same node. This facilitate high performance for 
those geophysical data analyses (e.g., join queries) requiring 
spatiotemporal coincidence by minimizing cross-node data 
communications. 

5. EXPERIMENTS AND RESULTS 
We conduct our experiments using a cluster of 16 nodes. 
Each node has identical features: 32GB of main memory, an 
8-core CPU and 9TB of local disk storage. They all run Cen-
tos 7 Linux operating system. The nodes are interconnected 
with 10 Gigabit Ethernet. We use the enterprise edition of 
SciDB release 16.9 and netCDF 4.3.3.1. 

Two regular gridded datasets and one swath dataset for 
the period of Winter 2010 (i.e., from December 1st, 2009 to 
February 28th, 2010) are used to conduct the experiments. 
The first regular gridded dataset is extracted from an hourly 
dataset of the NASA Modern Era Retrospective-analysis for 
Research and Applications (MERRA-2) [7] data collection, 
while the second dataset is extracted from a reprocessed 5-

minute National Mosaic and Multi-sensor QPE (NMQ, where 
QPE stands for quantitative precipitation estimate) [8]. The 
swath dataset, from NASA’s Tropical Rainfall Measuring 
Mission (TRMM), derives vertical hydrometeor profiles us-
ing data from Precipitation Radar (PR) and TRMM Micro-
wave Imager (TMI). Table 1 summarizes the main properties 
of the datasets. These datasets are placed on our cluster nodes 
using both SciDB and netCDF. 

One of the performance comparisons we have conducted 
is the join query of the three datasets with STARE and regular 
gridding using both SciDB and netCDF stores. As shown in 
Fig. 2, the query time of our STARE-based approach in-
creases marginally with the number of days, and is signifi-
cantly lower than regular gridding.  The performance of 
netCDF is slightly better than SciDB. This is possibly be-
cause of the overhead incurred by sophisticated data manage-
ment functionalities of SciDB.  

6. CONCLUSIONS 
We have demonstrated that adapting STARE to existing par-
allel computing approaches is straightforward, requiring 
moderate implementation effort. Our work clearly shows 
that, when combined with STARE, both parallel ADBMS 
(e.g. SciDB) and existing data management/processing tools 
(e.g., netCDF+Python) can scale well and achieve their opti-
mal efficiency in geo-data-intensive analysis to deliver the 
best value. However, only single-user mode has been tested 
with the netCDF+Python approach. The multiuser scalability 
of SciDB is expected to be better than that of netCDF+Py-
thon, because it is constructed as a multiuser system. 
 

 
Fig. 1 STARE-based partitioning and distribution of netCDF 

files. 

 
 

Table 1 Main properties of the datasets used in our experiments 

 
 

 
Fig. 2 Comparison of timing results of join query between 
STARE and regular gridding using three datasets with different 
number of days 
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