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Introduction: What Happened

Ø On November 12, 2001, an Airbus 300-605R operated as American Airlines flight 
587 (AA587) crashed soon after take-off from John F. Kennedy airport in New York 
City
• While accelerating to approximately 255 knots during initial climb, the aircraft twice 

experienced turbulence consistent with encountering wake vortices from a Boeing 747 operated 
as Japan Air Lines flight 47 (JAL47) that had departed ahead of them

• JAL47 and AA587 were approximately 5 statute miles and 90 seconds apart at the time of the 
vortex encounters

• The composite vertical stabilizer and rudder, or VTP, separated from the aircraft prior to the 
aircraft impacting the ground

• 260 persons aboard and 5 on the ground were killed as a result of the crash

Ø The National Transportation Safety Board (NTSB) summarized the results in 
Aircraft Accident Report NTSB/AAR-04/04
• “In-Flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300-

605R, N14053, Belle Harbor, New York, November 12, 2001”
• Adopted October 26, 2004
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Introduction: NASA Participation Request

Ø The NTSB asked NASA to participate in the investigation
• The VTP failure was the first failure of primary composite structure on a commercial transport 

aircraft

Ø NASA Langley Research Center (LaRC) participation in the investigation
• LaRC is the NASA Center of Excellence for composite materials
• Dr. James H. Starnes, Jr. and Dr. Damodar Ambur directed LaRC participation in the investigation
• The LaRC team investigated several aspects associated with the investigation

§ Design and performance of the VTP
§ Physical evaluations of the VTP
§ Wake vortex investigation

Ø NASA Ames Research Center participation in the investigation
• Investigation of human performance
• Used the vertical motion simulator to conduct tests and make observations
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References: Special AIAA SDM Session

Starnes Memorial Session - Selected Studies Supporting the NTSB AA587 Accident 
Investigation*
Ø B. Murphy, J. O’Callaghan, and M. Fox, L. Ilcewicz, and J. H. Starnes, Jr., “Overview of the 

Structures Investigation for the American Airlines Flight 587 Investigation,” AIAA 2005-2251
Ø M. R. Fox, C. R. Schultheisz, and J. R. Reeder, “Fractographic Examination of the Vertical 

Stabilizer and Rudder from American Airlines Flight 587,” AIAA 2005-2252
Ø W. P. Winfree, E. I. Madaras, K. E. Cramer, P. A. Howell, K. L. Hodges, J. P. Seebo, and J. L. 

Grainger, “NASA Langley Inspection of Rudder and Composite Tail of American Airlines 
Flight 587,” AIAA 2005-2253

Ø R. D. Young, A. E. Lovejoy, M. W. Hilburger, and D. F. Moore, “Structural Analysis for the 
American Airlines Flight 587 Accident Investigation – Global Analysis,” AIAA 2005-2254
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Rear Lug,” AIAA 2005-2255

*(46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, Texas, April 18-21, 2005)
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NASA Activities

Design and performance of the VTP

Physical evaluations of the VTP

Wake vortex investigation
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Design and Performance of the VTP 

Ø Led by Dr. James H. Starnes
Ø Two analysis teams were formed

• Global analysis team
§ Review Airbus certification process: testing, analysis, and design procedures
§ Develop and interrogate failure scenarios
§ Provide loads to Local Analysis Team to perform strength analyses
§ Conduct failure sequence analyses for most likely failure scenario (and correlate predicted 

damage with physical evidence)
§ Provide evidence to assess whether the structure performed as it was intended

• Local analysis team
§ Detailed progressive failure analysis (PFA) of local regions
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Review of Airbus Certification Process

Ø Objectives:
• Review Airbus drawings and finite element models
• Review Airbus finite element modeling assumptions
• Review Airbus strength justification documents
• Review Airbus finite element analysis and full-scale test correlation documents

Ø Actions:
• Read documents, met with Airbus engineers, performed finite element analyses, and performed 

test and analysis correlation
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Finite Element Model

Ø Received fin and rudder finite element models from Airbus
Ø Modified finite element models to review certification and failure scenarios

• Main attachment fitting modification progression
§ Refined shell representation
§ Solid-shell local model with pin contact
§ Layered-shell local model with pin contact
§ Global shell model with stiffness tuned to simulate local solid-shell model
§ Global-local iterative procedure to effectively embed local solid-shell models

• Mesh refinement demonstrated convergence of global-local models
• Nonlinear capable global and local models
• Compared linear and nonlinear results to assess nonlinear effects
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Ø Original
• Nonlinear capable (e.g., remove offsets)
• Lug refinement
• Mass adjustment

Ø Refinement (added to original)
• Mesh Refinement
• Transverse load offsets
• Tuned lug stiffness (from global-local)

LaRC Original and Refinement Study Models
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Local Lug Finite Element Model

Ø Lug (red) modeled using two methods 
• Solid-shell model

§ Lug fittings and skin modeled with solid elements
§ Remainder shell elements

• Layered-shell model
§ Lug fittings modeled with layers of shell elements

o Three-dimensional decohesion elements between layers

§ Remainder single layer of shell elements

Ø Pin modeled as frictionless rigid surface
Ø Validated against test data

• Two 1985 tests, 2003 subcomponent test
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Global-Local Analysis Process
Ø Used to provide flight loads to the local models and more accurately represent 

local lug stiffness in the global model

Solve the local 
model with {uL} as 

prescribed
{uL}a+1=[T] {uG}a+1

Reanalyze global 
model with {r}a as 
additional loads: 
{F}a+1={F}a + {r}a
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norma

Calculate residual
{FG} - {RG}={r} 
on global-local 
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Iterate

i

k m

p

Global (uG, FG)

k’ m’l’

p’
n’j’

i’

Local (uL, FL)
… …



16

Review Airbus Certification Process

Ø Airbus lug certification process
• Allowable from lug only tests
• Test a VTP with representative loading
• Adjust allowable based on VTP test (approx. 13%)

§ Reduction due to bending moment within lug
due to skin/lug offset

• LaRC ran analyses to examine effect of lug stiffness
on load distribution between lugs (varied each lug)
§ Loads in lugs insensitive to lug stiffnesses and dependent

upon applied load and geometry

Ø Findings:
• Airbus global finite element model adequate

§ Loads in lugs insensitive to lug stiffnesses
§ Loads in VTP test representative of aircraft loads

• Reduced lug allowable represented true strength, so acceptable

Skin/Lug
Offset
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Develop and Interrogate Failure Scenarios

Ø Examine physical evidence
Ø Develop possible failure scenarios
Ø Develop/update models
Ø Run analyses
Ø Interpret analysis results
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Failure Scenario Development: Physical Evidence
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Develop Failure Scenarios

Ø Main attachment fitting
• Pristine VTP
• VTP with hypothetical pre-existing fitting failure

Ø Buckling of fin causing failure elsewhere
Ø Rudder skin failure near ply drops
Ø Actuation of bent rudder
Ø Flutter of VTP from delamination of rudder skin
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Main Attachment Fitting Failure: Pristine VTP

Ø Used the LaRC original finite element model
Ø Flight simulation based on flight data recorder (FDR) data

• Time history of fin root bending moment, torsion and shear loads
§ Bending moment increased due to aerodynamic load reversal resulting in dynamic response
§ Loads were developed by various sources, including LaRC

• Linear analyses conducted at
maximum locations (A, B, C)

• Lowest reserve factor (RF)
at right rear lug at Max C
§ Minimum RF = 1.1
§ Most likely failure scenario

Time (s)       

(Note: VTP cross-section icons viewed from
above throughout presentation.)



21

Main Attachment Fitting Failure: Pre-Existing Lug Failure

Ø Conclusion the same for right front, center, and rear, 
and left center and rear lugs  
• Finding: No pre-existing failure of lug could

exist; predicted catastrophic progressive
failure of attachment fittings

Ø Left front lug
• Finding: No progressive failure of

attachment fittings predicted
• Physical evidence does not support

pre-existing failure

Ø Findings:
• Initial failure of right rear lug most likely failure scenario
• Pre-existing lug failure would have initiated catastrophic failure 

prior to maximum experienced load, or not change right rear lug 
failure as first failure under flight loads

Time (s)       
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Buckling of Fin Causing Failure Elsewhere

Ø Preliminary analyses of the VTP indicated sections could exhibit buckling at 
accident loading conditions
• Not necessarily failure, but could cause detrimental load distribution
• Due to reduction in stiffness, so approximated using secant stiffness

§ Applied to regions that might buckle
§ Used 50% of prebuckled stiffness
§ Skin strains increased around regions

o Conservative allowables and large stiffness
reduction indicate skin might have failure, but
physical evidence did not show such failures

o Load redistribution to lugs minimal effect

Ø Finding:
• Buckling of fin skin did not affect the failure load or

mode of the VTP
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Rudder Skin Failure Near Ply-Drop

Ø Physical evidence showed significant failures 
in rudder ply drop region near actuators
• Not explicitly addressed in documentation
• Local model made to investigate this region

§ Solid elements for skin and core
o Local model validated against global model 

response

§ Fiber failure most likely mode, not delamination
o Strains during accident did not reach predicted 

allowables

Ø Finding:
• Failure in ply-drop region of rudder not likely 

candidate for initiation of VTP failure
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Actuation of Bent Rudder

Ø Examine if bent VTP could affect rudder 
motion
• LaRC original finite element model used

§ Maximum loading condition used
§ VTP only used, lugs restrained
§ Actuation by thermal load to actuator beam
§ Nonlinear analysis

• Rudder stiff in torsion, low in bending
§ Conforms easily to bent condition
§ Required fitting forces are small
§ Effect negligible to response

Ø Finding:
• Rudder binding did not affect the VTP response

Time (s)   



25

Flutter of VTP From Delamination of Rudder Skin

Ø Skin delaminations could cause flutter and 
subsequent failure of VTP
• Two delamination sizes were studied

§ Approximate shear and compression stiffness 
reductions in global analysis
o Local model used to develop stiffnesses

• Effective stiffness function of normalized load
o Skin stiffness reduced and core eliminated
o Modal results provided to aeroelasticity group

§ Little effect on overall flutter response of VTP

Ø Finding:
• Flutter-induced failure not likely initiator of the VTP
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Most Likely Failure Scenario Sequence Development 

Ø Used LaRC refined finite element model
Ø Performed linear and nonlinear static analyses

• Each VTP connection was disconnected in order of predicted failure

• Predicted failure of all VTP connections, but no damage in rudder
• No rudder damage being predicted was not consistent with the physical evidence

Ø Transient failure approach was developed and implemented
• This approach accounts for dynamic load amplification factors
• Objective was to identify damage in rudder consistent with the physical evidence prior to 

complete separation of the VTP from the aircraft

No. Location

1 Right rear lug

2 Left rear yoke

3 Right center lug

4 Right center yoke

5 Left center yoke

6 Right front lug
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Transient Failure Sequencing: Process

Ø Modified the LaRC refined finite element model
• Multi-point constraints connect VTP to fuselage clevises
• Failed component multi-point constraints replaced with force-time history in next analysis

(from NASA/CR-2007-214540)
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Transient Failure Sequencing: Analysis

Ø Conducted at Max. C load conditions (right rear lug failure)
Ø Example of force-time history approximation, left rear yoke
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Transient Failure Sequencing: Results

Ø Many locations on rudder exhibited dynamic load variation
Ø Predicts failures in rudder prior to VTP separating from aircraft

Ø Findings:
• Structure performed in manner consistent with its design and certification
• Dynamic effects predict the most probable failure scenario sequence is consistent with the 

physical evidence, including on the rudder

No. Location

1 Right rear lug

2 Left rear yoke

3 Right center lug

4 Right center yoke

5 Left center yoke

6
Static

Right front lug

6
Transient

Left rudder skin 
by lower fitting
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NASA Activities

Design and performance of the VTP

Physical evaluations of the VTP

Wake vortex investigation
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Physical Evaluations of the VTP
 Ø Performed visual and scanning electron microscope (SEM) examinations

• Over 300 SEM photographs taken of translaminar fractures
• More than 150 square inches of delamination surface area examined
• Challenges encountered due to the presence of woven fabric in the construction

Ø Observations:
• Fracture patterns were consistent with lug failure

on the right side resulting in fin bending to the
left before failure of the left side

• No evidence of fatigue cracks on the lugs
• No evidence of significant pre-existing damage

was observed on the rudder

Ø Findings:
• No evidence of pre-existing damage or fatigue

cracking in the VTP was revealed by the
fractographic examination

Main lug fractures
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NASA Activities

Design and performance of the VTP

Physical evaluations of the VTP

Wake vortex investigation
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Wake Vortex Investigation 

Ø Researchers at LaRC investigated whether AA587 could have encountered the 
wake vortices from Japan Air Lines flight 47 (JAL47)
• Determining whether wake vortex interaction explained two sets of load factor excursions that 

were recorded by the FDR
• Data and analysis

§ Used flightpath and wind information for the two flights
§ Used atmospheric data from the day of the accident
§ Input data into four wake prediction models (models and results described in appendix B of 

the “Aircraft Performance Group Chairman’s Aircraft Performance Study”)
• AA587 would have encountered the wake vortices

§ Vortex strengths between 63% and 80% of the initial vortex strength

Ø Finding: Verified that AA587 encountered wake vortices of JAL47
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Summary of NASA Findings
Ø No significant or obvious deficiencies in Airbus certification and design methods
Ø VTP performed consistent with design and certification
Ø VTP failure attributed to loads greater than expected

• Loads at first failure at minimum 1.92 times limit load

Ø Failure scenario interrogation
• Most likely failure scenario was failure initiation at right rear lug attachment fitting

§ Pre-existing lug failures would have initiated catastrophic failure prior to maximum experienced 
load, or not change right rear lug failure as first failure under flight loads

§ Dynamic effects predict failure sequence consistent with the physical evidence, including rudder
• Buckling of fin skin did not affect the failure load or mode of the VTP
• Failure in ply-drop region of rudder not likely candidate for initiation of VTP failure
• Rudder binding did not affect the VTP response or failure
• Flutter-induced failure not likely initiator of the VTP failure

Ø No evidence of pre-existing damage or fatigue cracking in the VTP
Ø Verified that AA587 encountered wake vortices of JAL47
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Update: Title 14 / Chapter 1 / Subchapter C / Part 25

https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-C/subject-group-ECFR3e855ea22ea15d0/section-25.353
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QUESTIONS?
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