
Overarching Properties as means of compliance:
An industrial case study

Zamira Daw
Intelligent Systems

Raytheon Technologies Research Center 
Berkeley, California

zamira.daw@rtx.com

Scott Beecher
Engineering Controls

Pratt & Whitney
East Hartford, Connecticut

scott.beecher@prattwhitney.com

Michael Holloway, Mallory Graydon
Safety Critical Avionics Systems Branch

NASA Langley Research Center
Hampton, Virginia

c.michael.holloway@nasa.gov
m.s.graydon@nasa.gov

Abstract—The Overarching Properties (OPs) have been cre-
ated by an international working group and are being evaluated
by the National Aeronautics and Space Administration (NASA),
the Federal Aviation Administration (FAA), industry, and other
certifying agencies in an effort to streamline certification pro-
cesses. Their intent is to facilitate the use of alternative ap-
proaches and to allow flexibility to combine the system, software,
and complex hardware certification. The hope is that the FAA
may eventually establish an Advisory Circular that offers the
OPs as a Means of Compliance (MoC) for software approval
(and eventually systems and hardware) by showing the product
possesses the three OPs: Intent (specification of the intended
behavior), Correctness (implementation of the intended behavior)
and Innocuity (safety of unintended behavior). In the certification
community, there is still a concern about the practicability of
using such high level properties in certification. This paper aims
to address that concern by showing possession of the OPs in an
industrial case study using assurance arguments. The two main
contributions of this paper are: a certification process based on
OPs as Means of Compliance, and a certification argument for an
on-board physical model of an UAV (Unmanned Aerial Vehicle),
as industrial example. We propose a hybrid approach for the
certification process that combines OPs with existing certification
standards. Thus, OPs can be used for parts of a system that
uses technologies that are not supported by current standards
or for which existing standards require additional effort without
commensurate additional safety assurance.

Index Terms—overarching properties, certification, arguments,
assurance cases

I. INTRODUCTION

Aerospace systems are seeing a strong trend towards
‘electronification’. This move towards increasingly critical
and complex functionality and safety behaviors captured in
aerospace electronics is driving consideration of new certifi-
cation methods. Systems complexity is challenging certifying
agencies, approving organizations, academia and industry to
search for new and innovative technologies to provide effective
assurance of safety-based systems. Certification applicants,
like Unmanned Aerial System (UAS) makers, have com-
plained (rightfully so) to certifying agencies that today’s stan-
dards do not account for the complexity of newer technologies.
In some cases the technology or methods used do not pro-
vide sufficient safety assurance to support them. Furthermore,
the fast development and adoption of new technologies has

outpaced the development of new standards. Therefore, the
FAA has proposed consideration of streamlining the aircraft
certification and approval processes. In relation to this stream-
lining effort, the Overarching Properties (OPs) concept has
been developed by an international Overarching Properties
Working Group (OPWG) with NASA and certifying agencies
including FAA and EASA support. The intent of this group is
to develop the OPs concept to a point where the certification
agency could recognize it as a Means of Compliance (MoC).
OPs are a set of three high level properties that define a
sufficient set of properties for making approval decisions.
The high-level nature of the properties offers applicants great
flexibility when certifying a system since these properties are
not specific to a domain or a type of system. This flexibility
could make certification more agile and adaptable to evolving
technologies. In contrast to existing standards, arguments that
combine hardware, software, and system characteristics can be
leveraged using OPs.

Certifying agencies have expressed some concern on the
practical use of these high-level properties. We identify two
main challenges in adopting OPs as a means of compliance:
the heterogeneity and the verifiability of the argument. Due to
the flexibility of the OPs, applicants can submit an argument
that shows that the systems hold the OPs using any format.
This can make applications difficult to evaluate and can
significantly slow down the approval process. To present the
argument, applicants can for instance create a white paper
with a textual description of the argument. With so many
worldwide aerospace development organizations, copious use
of this open free-form method without standardization would
likely cause confusion and difficulty to interpret the argument.
This in turn would cause inconsistencies in the evaluated re-
sults as assessed by certification authorities. We use assurance
arguments to present OPs arguments in a more systematic,
consistent, and complete manner. Assurance arguments are
also used in the literature [1]–[4] to create a well-structured
argument for OPs. An assurance argument is defined as an
explicit argument that a system or service is acceptable for its
intended use [5]. To emphasize the centrality of arguments,
we use the term assurance argument henceforth instead of
assurance case. The structure provided by the assurance ar-



guments can facilitate the evaluation of the OPs, addressing
the verifiability problem. The heterogeneity of the argument
(i.e. every applicant can come with their own argument) was
considered to potentially overwhelm certification authorities.
This led to discussions of argumentation patterns and limiting
use of OPs for specific portions of systems which are not
supported by current recognized standards or which require
additional effort using these standards without the additional
safety assurance. Assurance argument patterns are generic
arguments that a type of system or service is acceptable for
a given use under specified restrictions. An approved library
of argumentation patterns can increase the confidence in the
arguments and speed up the approval process of a specific
system.

Although there have been some initial efforts in different
companies to apply OPs in the certification process, showing
possession of OPs is still a process in its infancy. There have
been some research efforts in this area. Collins Aerospace
is currently carrying out an OPs project in conjunction with
Adacore and their QGEN product as a TQL1 qualification
with FAA oversight [1]. There are some published works
that use assurance arguments to show possession of OPs. [3]
discusses how to define evaluation criteria using assurance
arguments and demonstrate them for a micro UAV. [4] also
uses assurance arguments to provide airworthiness arguments
for Commercial off-the-shelf (COTS) components. [2] retro-
spectively created documentation showing that SAFEGUARD,
an assured safety net technology for UAS, holds the OPs
using assurance arguments. This paper also uses assurance
arguments to show possession of the OPs. In contrast, we
propose a hybrid approach that combines OPs with existing
certification standards (Section III). In addition, this paper
presents a certification process that supports the use of OPs
as a Means of Compliance, and detailed assurance arguments
(Section V) based on an industrial example (Section IV) that
aims to clarify how to bridge the gap between the high-level
properties and system evidence. Section VI presents lessons
learned from applying OPs.

II. BACKGROUND

A. Overarching Properties

In 2015, the FAA started the effort to streamline certification
processes. This includes a move towards process audits based
on company reputation, facilitating the use of alternative
approaches, and allowing integrated certification of systems,
software and complex hardware. The OPs themselves were
first presented to the public in late 2016, and further developed
and refined over the last several years through work by
NASA and the OPWG. They were developed from distillation
of existing standards and research-based contemplation for
what is needed for complete assurance. It has informally
been shown that these properties capture the foundational
concepts upon which the existing standards are built. Beyond
the properties themselves, NASA and OPWG have developed
supporting definitions and proposed a structure for property-
based argumentation. The expectation is that the FAA may

eventually establish an Advisory Circular that provides a
Means of Compliance (MoC) for software approval (and
eventually systems and hardware) by showing the product
possesses the OPs. This will be “a means but not the only
means” of approval and offer an alternative to AC 20-115D
that recognizes DO-178C and its associated document suite.
The following is the definition of the OPs [5]:

• Intent: The defined intended behavior is correct and
complete with respect to the desired behavior.

• Correctness: The implementation is correct with respect
to its defined intended behavior, under foreseeable oper-
ating conditions.

• Innocuity: Any part of the implementation that is not
required by the defined intended behavior has no unac-
ceptable impact.

The OPs also define: a) Requisites for showing possession
of the OPs, in which the applicant must demonstrate that the
system and its safety assessment exist; b) Assumptions that
the applicant has about the system in relation to its behavior
and safety; and c) Constraints on how to show possession
of the OPs by showing correctness and completeness of the
process (e.g. safety assessment must address all the implemen-
tation).

The OPs concept may be extended beyond a single disci-
pline to include systems, software and hardware. For example,
one might jointly certify a board with an FPGA (Field-
Programmable Gate Array), its firmware, and its integrating
software.

B. Argument specification using assurance cases

In most OP-related literature, assurance arguments are used
to show that a system possesses the OPs. Assurance arguments
provide a consistent and reusable structure that facilitates the
communication and evaluation of an argument. Assurance
arguments are used to present an argument that a system
is safe, secure, reliable, etc. within a given context. There
are many notations one could use to represent an assurance
argument. Some of these are textual [6], others graphical, such
as Goal Structuring Notation (GSN), Claims Argument and
Evidence (CAE) notation, and the new Structured Assurance
argument Metamodel (SACM) notation [6]–[8]. The presented
methodology is not aligned with any specific notation or
tool. Currently, in this project, we use the Friendly Argument
Notation (FAN) [9] to specify the assurance arguments. FAN
is a textual notation that is based on a small number of terms
chosen to promote clarity, understanding and communication
of arguments and facilitate the use for assurance arguments by
ordinary engineers. FAN defines the following concepts:

• Argument: An attempt to convince others to believe a
conclusion through reasoning and one or more premises.

• Believe: Accept as true.
• Premise: A statement you think your audience believes.
• Reasoning: States why you think the premises should

cause your audience to believe your conclusion.

2



• Binding: An association between a term used in an
argument and the real-world information to which that
term refers.

• Defeater: Statement that may cause your audience to not
believe your conclusion.

• Conclusion: The statement you want your audience to
believe.

Figure 1 shows an assurance argument specified in FAN
[9]. Note that every premise, reasoning, conclusion, or binding
can be tagged with a unique name, which is depicted using
curly brackets (e.g. 1 in Figure 1). Underlined words in the
proposition indicate that the word has specific meaning in
this context and is defined within the binding section. As the
example shows, the reasoning can be as short as ‘conjunction’
as long as it is clear that the premises are a sufficient basis
for believing the conclusion.

Believing
Subsystems SAM and IAM both possess Innocuity {1}
Is justified by applying
the principle of conjunction {2}
To these premises
1) SAM possesses Innocuity {3}
2) IAM possesses Innocuity {4}
3) SAM and IAM are independent {5}
with these definitions
• Innocuity: definition in the OP description

¡https://hdl.handle.net/2060/20190029284¿ {6}
• independent: to be defined {7}

Fig. 1: FAN example from [5]

III. HYBRID CERTIFICATION APPROACH

Existing standards provide a good safety and security guide-
line. However, there are systems or parts of systems that use
technologies that are not supported by current standards or
which require additional effort when using these standards
without the additional safety assurance. Aviation regulation
for engine control software 14CFR33.28(g) states that “The
applicant must design, implement, and verify all associated
software to minimize the existence of errors by using a
method, approved by the FAA, consistent with the criticality
of the performed functions”. Since regulations do not state a
specific method to use for compliance, we propose a combi-
nation of existing standards (RTCA DO-178C / EUROCAE
ED-12C) and OPs, called the hybrid approach, as a means
of compliance. The motivation of the hybrid approach is to
leverage existing standards where they are effective, and to use
OPs for parts of the software that are not as well supported
by the standards. Note that this approach applies equally well
for systems and hardware approvals or for multidisciplinary
approvals. This section presents the means of compliance for
the hybrid approach and the corresponding certification liaison
process as applicable for this industrial aviation software
example.

A. Certification Argument

From an argumentation point of view, existing standards
provide an implicit argument for certification that has been
evaluated and accepted by a group of experts. Thus, certi-
fication authorities only evaluate whether the executed ac-
tivities and generated artifacts satisfy the objectives of the
existing standard. Using OPs, certification authorities need to
also evaluate the argument, which we called a certification
argument. The certification argument shows that a system or
a component holds the OPs. The certification argument is
presented in the form of an assurance argument that specifies
this argument in a structured manner and includes both (a)
binding documents, which provide background information
relevant to the argument, and (b) a list of artifacts that support
the leaf premises of the assurance argument.

During its development, the certification argument is a
living document that may change during the planning and
development process of a product. As development proceeds,
the applicants may add to or revise both the argument and its
supporting evidence. Figure 2 shows the proposed life cycle.

Argument planning process: Applicants construct a certi-
fication argument of the proposed premises that satisfy the
conclusions that the product holds the OPs. This process
produces the Planned Certification Argument (PCA), which
is a snapshot of the certification argument presented with the
Plan for Software Aspect of Certification (PSAC).

PCA approval process: The certification authority reviews
the PCA and provides rebuttals that have to be addressed by
the applicant. This interaction between applicants and certi-
fication authorities continues until an agreement is reached.
The expectation is that the approved PCA is the baseline
certification argument and approved with the PSAC.

Argument completion process: Applicants update and
refine the approved certification argument incrementally as
needed based on project execution adjustments. This process
produces the Argument Accomplishment Summary (AAS),
which is the project’s final snapshot of the certification argu-
ment presented with the Software Accomplishment Summary
(SAS). Throughout project development, changes to the certi-
fication argument must be tracked (CC1). In addition, relevant
changes in the certification argument shall be coordinated with
the certification authority.

AAS approval process: The certification authority reviews
the AAS and provides rebuttals that the applicant must address.
This interaction between the applicant and the certification
authority continues until an agreement is reached. The expec-
tation is that the approved AAS is approved with the SAS.

B. Certification Liaison

The certification liaison establishes a process to ensure
communication and understanding between the applicant and
the certification authority throughout the argument life cycle.

C. Means of Compliance and Planning

The PSAC as defined in RTCA DO-178C / EUROCAE ED-
12C is commonly used to define the means of compliance

3



Fig. 2: Certification Argument Life Cycle

for software projects. In order to support the proposed hybrid
approach, we extend the Certification Considerations section
11.1.

Fig. 3: Example of an extended PSAC to support a hybrid
certification

The Certification Considerations section summarizes the
proposed means of compliance to satisfy the regulations. As
in all software approvals for certification, including this hybrid
certification, applicants shall provide the failure condition
categories of the components, and the Means of Compliance
such as DO-178C or OPs (see Example in Figure 3). For
components using OPs, applicants shall include or reference
the Planned Certification Argument (PCA), which provides
the argumentation for certification basis. The PCA consists
of a hierarchical assurance argument that shows that the
target component holds the OPs. The PCA provides sufficient
information for the evaluator to understand the means of
compliance. Details regarding the depth of the hierarchical
assurance argument, meaning amount of argumentation lev-
els, shall be determined in agreement with the certification
authority. Argumentation levels are created when a premise

is further argued by putting it as the conclusion for a lower-
level component of the argument. For the PCA, the assurance
arguments shall provide a complete argument without linking
the actual evidence. That is achieved by providing enough
information about the content of the artifacts that support the
argument. In most projects, the PSAC and supporting plans
would reference procedures, work instructions, review forms
and other supportive artifacts that provide additional detail to
the PCA evaluator.

D. Compliance Substantiation

At project completion, the applicant provides the evidence
that satisfies the PSAC which is summarized in the SAS.
For components using OPs, the applicants shall provide the
AAS, which consists of the complete argument with access
to the supporting artifacts, identified with references or links.
Throughout project execution, the certification authority must
be made aware of any structural or significant changes in the
argument.

E. Quality Assurance

For Quality Assurance (QA), we believe this function should
be performed in a similar manner as to what is done for
objectives in the current standards. We want QA to review
and ensure execution of all project plans, and adherence to
the means of compliance (including OPs assurance arguments)
as identified in the PSAC and PCA. The Quality Assurance
process results should be summarized in the same Conformity
Report as identified for use with existing standards. The QA
team should take a reviewer’s role in the creation of the
certification arguments. The QA process for the certification
argument aims to provide confidence that:

1) The planned argument defined by the assurance argu-
ments satisfies OPs.

2) The final assurance arguments are compliant with the
planned assurance arguments.

3) The supporting artifacts comply with the requirements
of their artifact types and support the claims they were
asserted to support.

IV. CASE STUDY: ROBOT DYNAMIC MODEL FOR UAV
WITH A MODEL-BASED COLLISION AVOIDANCE

This paper discusses an industrial aviation example that
addresses software for a robotic dynamic on-board model
(ON-RDM) of an UAV. The overall system is a UAV with a
model-based collision avoidance system. A collision is avoided
by exploiting the dynamic behavior of the robot and the
measured relative distances between objects in the environ-
ment for automatically determining control inputs to safely
steer the UAV away from obstacles. Model-based controls
can be found in other applications, in which a model helps
to estimate parameters that are used for the control module
[10], [11] or for diagnostic purposes. This model could be
considered a surrogate for other software, systems or hardware
complex logic that has no specific requirements for the internal
intermediate values. We propose using OPs in a hybrid manner

4



where argumentation is proposed as the means of compliance
for the ON-RDM only. Existing standards are proposed where
they are effective for the remaining aspects of the system. We
believe this hybrid approach to be a typical use of the OPs, at
least in the near future.

On-board models can be algorithmically complex with
physics-based polynomial computations. These models gen-
erally have no internal or intermediate parameters used within
the functional or safety aspects of the system. Current stan-
dards require detailed traceability and for decomposed require-
ments to be thoroughly tested. In cases like models and AI/ML
type logic, we often do not care about the micro-behaviors
except for safe execution (exceptions, etc.). This on-board
model macro-behavior focus can be shared with AI/ML logic
where specific detailed responses are not required, but rather
safely bounded responses are considered acceptable. Flight and
failure scenarios are learned and must be safe but perfectly
optimized responses are not required or even possible.

Although FAN provides a binding section, we propose
to additionally provide a binding document that provides
an overview of the system that highlights technologies and
methods that are relevant to the assurance argument evaluation.
This overview provides more technical details than is typically
provided in a PSAC. The following subsection illustrates a
proposal for content of the binding document. It is important to
mention that this is only a part of the actual binding document,
and by no means complete.

A. ON-RDM – Background

The ON-RDM is a real-time robot dynamics model, which
estimates the robot dynamics in run-time based on sensed val-
ues taking into account physical deterioration, faults, weather,
etc. Here the UAV control can be designed to maximize perfor-
mance without excessive conservatism on the robot dynamics.
There is a second, off-board robot dynamics model (OFF-
RDM) that can serve as an input to the robot development
team. While the ON-RDM is specific to one robot model
line and requires validation, the OFF-RDM is a widely used
generic model that has been extensively analyzed and vali-
dated. The OFF-RDM is widely used to simulate and analyze
robot dynamics and is already accepted by stakeholders due
its high accuracy. If it could be shown that the ON-RDM
is not only suitable for real-time use but a sufficiently close
approximation of the OFF-RDM, stakeholders would likely
accept it as well.

The accuracy of the OFF-RDM is related to the individual
accuracy of the model components of the vehicle. Therefore,
the model of the components needs to get calibrated using
data from the real UAV data. The validation timeline of an
OFF-RDM is shown in Figure 4. OFF-RDMV0

is instantiated
based on stakeholder requirements (e.g. navigation vector).
This serves as specification for the production of the UAV.
Data is extracted from testing of the UAVs. This data is used
to calibrate OFF-RDMV0 , resulting in OFF-RDMV1 . Based on
OFF-RDMV1

, the ON-RDM is developed.

Fig. 4: Development timeline for the ON-RDM

Although the OFF-RDM model can accurately estimate
robot dynamics, the model can require a great amount of mem-
ory and processing resources and can need non-deterministic
amounts of execution time to provide an answer. These aspects
make it difficult to use and approve them in a run-time envi-
ronment. The UAV control algorithm requires that the model
provides outputs for navigational estimation at a given periodic
rate. So non-deterministic algorithms are generally deprecated
for safety critical aerospace applications considering embed-
ded processors have limited computational resources. The ON-
RDM guarantees a timing determinism that safely supports
the navigational estimation by sacrificing a prescribed level
of accuracy in the parameters. The definition of accuracy, in
this context, is the difference in the estimation between the
OFF-RDM and ON-RDM, which is due to the difference in
the resolution of the physics based models and computation
models. The required accuracy of the estimation of a parameter
depends on the usage of that parameter in the UAV control
algorithm. Depending on the usage of the model’s output, as
input to the control within the most sensitive environmental
condition, a conservative accuracy margin for every output
is established. However, this margin can be relaxed on a
case-by-case basis based on an acceptability analysis while
still providing a safe margin, which guarantees that the robot
dynamics control behaves safely in the computation of the
vehicle’s navigational vectors.

V. METHODOLOGY FOR CREATING AN OPS ARGUMENT

For showing OPs, assurance arguments are used to present
an argument in a structured manner showing that the system
or a component of a system holds the three OPs, Intent,
Correctness, and Innocuity. These assurance arguments consist
of different hierarchical levels of argumentation and can be
quite large. For the sake of space, this section is focused on
the parts of the assurance argument for the ON-RDM that are
unique to the OPs: a) the first level of the argument that creates
the bridge between OPs and the assurance arguments, and,
b) a leaf assurance argument that connects the premises with
existing artifacts. Moreover, this section presents the argument
structure of the PCA and the AAS for the ON-RDM.

We use a combination of textual and graphical notation
to represent the assurance arguments. The textual notation is
the source of the argument and the graphical notation can
be extracted from it. Based on our experience, we believe
that textual representation allows the writer to focus on the
argument without distraction of the structure, in contrast to
the graphical representation. We are using FAN as a textual
representation. However, we recognize that the big picture of
the argument is key in the evaluation of the OPs. Therefore,

5



we propose a simple graphical notation that provides an
architectural overview of the argument structure, but it is not
meant to give the reader enough details to fully evaluate the
argument. We connect the textual and the graphical depictions
of the argument using a tag attached to each proposition.
Our convention is to use short tag names that signal the
meaning of the propositions they identify. We separate words
with dashes and begin tags with prefixes that identify the
argument the propositions appear in: IT for Intent, CR for
Correctness, and IO for Innocuity. Although the presented
assurance arguments provide additional information in the
bindings section, a binding document summarizing the tech-
nical approach, justifications, and definitions is also presented
to the certification authorities. For the case study, we create
one assurance argument for every property, which creates 3
primary argument branches with one each for the 3 OPs.

A. Intent

To show possession of the Intent property, the assurance
argument needs to argue that the applicant is accurately
capturing the intent of the stakeholders. The premises for this
argument, which will be agreed with stakeholders, will identify
applicable artifacts and verification activities such as reviews
and analyses. In keeping with current standards, intent is often
captured in system-level requirements, and further detailed
with software high and low-level requirements. As explained
earlier in section IV, software low-level requirements would
not meaningfully capture what the ON-RDM must do (or not
do). Accordingly, we specify and verify the macro-behavior of
the model, the behavior of the robot dynamics, using a highly
accurate physical-based robot dynamic model as ground truth.

Figure 5 presents our argument that the ON-RDM possesses
the Intent property. In the first argumentation level, we rely
on the formal definition of the property for the justification, as
you can see in the bindings. We customize the definition to the
target system by redefining what is DIB, DB and correct and
complete. In order to define the DB, it is important to identify
first who is the stakeholder of the ON-RDM. In this case, it is
the UAV Control Module, which specifies the accuracy needed
in the outputs of the estimation model.

The definition of completeness states that the intended
behavior is only complete if the robot dynamics (macro-
behavior), accuracy, robustness and timing requirements are
specified. In contrast, the intended behavior is correct if there
is a functional equivalence between the robot dynamics and
the ON-RDM.

Now that we know what needs to be achieved (conclusion)
and how we are planning to achieve it (reasoning), we can
start with the premises that support the argument. Premises
2, 3, and 4 address accuracy, robustness, memory and timing
requirements, respectively. Note that definition of robustness
is based on a standard definition. However, the definition is
also customized to the ON-RDM by stating possible abnormal
conditions specific to on-board models. Accuracy is defined as
the difference between the on-board model (ON-RDM) and
the off-board model (OFF-RDM), which is a highly accurate

Believing
ON-RDM holds Intent {Intent}
Is justified by applying
ON-RDM defined intended behavior is correct and complete with
respect to the DB
To these premises
1) The OFF-RDM is a highly accurate model representation of the

robot dynamics {IT-OFF-RDM-baseline}
2) The ON-RDM is accurate in relation to robot dynamics as

needed by the control {IT-accuracy}
3) The OFF-RDM is used as a surrogate robot dynamics model for

accuracy specification for each ON-RDM output parameter
{IT-accuracy-spec}

4) ON-RDM robustness requirements are correct and complete for
off-nominal input values and numerical instability {IT-robustness}

5) ON-RDM requirements correctly address all memory and timing
constraints {IT-mem-time}

with these definitions
• ON-RDM: ON-board Robot Dynamic Model
• OFF-RDM: OFF-board Robot Dynamic Model
• Intent: The Defined Intended Behavior (DIB) is correct and

complete with respect to the Desired Behavior (DB) (Definition
from OPs). Customization to this project:
DIB = Requirements of ON-RDM
DB = Model of the robot dynamics at a level of accuracy as needed
by the control system

• Correct and complete:
– The complete detailed description of the behavior of the

ON-RDM correctly captures the robot dynamics plus accuracy,
robustness, memory and timing requirements defined by the
control system {ON-RDM-behavior}

– Correctness within the context of the intent of ON-RDM means
functional equivalency to the robot dynamics

• Highly accurate: aims to qualify the accuracy of the ON-RDM and
the OFF-RDM in relation to the robot dynamics

• Accuracy: represents the difference between the ON-RDM against
the robot dynamics, which is defined by the difference of the
ON-RDM output parameters against the OFF-RDM output
parameters under the same inputs due to premise
[IT-OFF-RDM-baseline]

• Robustness: corresponds to “The extent to which software can
continue to operate correctly despite abnormal inputs and
conditions” (Definition from RTCA DO-178C). Additional to
abnormal inputs and conditions common to embedded software,
ON-RDM is affected by other abnormal conditions, such as,
instability due to discrete mathematical abstraction and abrupt
changes in the inputs

• Needed by the control: means that the control system sets the flight
envelope and the accuracy of each output parameter

Fig. 5: Intent of ON-RDM

representation of the robot dynamics as stated in premise 1.
Thus, correctness is fully addressed by premises 1 and 2. All
the premises are supported by additional assurance arguments
(see in argument structure). In order to evaluate the validity
of the argument, evaluators need to ask themselves, assuming
that the premises are true, “can the premises fully support the
conclusion.” If one believes these premises, can one agree with
the conclusion? In the case that there is doubt that a premise
can be achieved, for example it can be hard to believe that the
OFF-RDM is so accurate that it can be used as a reference
or ground truth, the evaluator can validate the acceptability
of the premise by validating the supporting argument for that

6



premise.

Believing
ON-RDM holds Correctness {Correctness}
Is justified by applying
ON-RDM implementation is correct w.r.t requirements of ON-RDM
under the flight envelope
To these premises
1) The ON-RDM implementation is a representation of the robot

dynamics at the level of accuracy as needed by the control system
{CR-accuracy}

2) ON-RDM implementation is robust for off-nominal input values
and numerical instability {CR-robustness}

3) ON-RDM implementation operates within memory and timing
constraints {CR-mem-time}

with these definitions
• Correctness: The implementation is correct with respect to its

Defined Intended Behavior (DIB), under foreseeable operating
conditions. [Definition from OPs]. Customization to this project:
DIB = Requirements of ON-RDM defined in intent
Foreseeable operating conditions = Flight envelope
Requirements of ON-RDM = robot dynamics, accuracy, robustness,
memory and timing requirements

• Flight envelope: In aerodynamics, the flight envelope defines
operational limits for an aerial platform with respect to maximum
speed and load factor given a particular atmospheric density. The
flight envelope is the region within which an aircraft can operate
safely

• Correct within the context of the correctness of the ON-RDM
means functional equivalency to the ON-RDM requirements

• The accuracy of the ON-RDM implementation against the robot
dynamics is defined by the accuracy of the ON-RDM
implementation against the OFF-RDM assuming premise
IT-OFF-RDM-baseline

• Robustness: corresponds to “The extent to which software can
continue to operate correctly despite abnormal inputs and
conditions” (Definition from RTCA DO-178C). Additional to
abnormal inputs and conditions common to embedded software,
ON-RDM is affected by other abnormal conditions, such as,
instability due to discrete mathematical abstraction and abrupt
changes in the inputs

Fig. 6: Correctness of ON-RDM

B. Correctness

In this property, the assurance argument needs to specify
how the applicant proposes to show that the implementation
matches the intent. Figure 6 presents the assurance argument
that shows that ON-RDM holds Correctness. Similar to Intent,
the official definition is customized to the system and to the
foreseeable operating conditions, i.e. the target environment of
our system, which in this case is the drone’s flight envelope.
The reasoning states that the implementation of the ON-RDM
is correct if there is functional equivalency with the ON-
RDM requirements specified in Intent. Note that premises for
Correctness partially mirrors the premises from Intent. The
only one that does not have a reflection in Correctness is
premise 1 of Intent since that premise is not related to the
implementation of the ON-RDM.

C. Innocuity

In this property, the assurance argument needs to specify
that the implementation contains no behavior that undermines

Believing
ON-RDM holds Innocuity {Innocuity}
Is justified by applying
Any part of the executable ON-RDM that is not required by the DIB
has no unacceptable impact
To these premises
1) Open/retained problems represent non-required behaviors

{IO-open-problems}
2) Unexpected behaviors caused by implementation choices, such as,

numerical instability, inaccuracy, and exceptions are addressed by
the DIB {IO-impl-choises-DIB}

3) Other unexpected behaviors caused by implementation choices that
are not addressed in the DIB are uncovered by system regression
testing and robustness testing {IO-impl-choises-noDIB}

4) Safety assessment addresses all open/retained problems and
unexpected behaviors caused by implementation choices
{IO-safety-assess}

5) Open/retained problems and implementation choices have no
unacceptable impact as concluded by the safety assessment
{IO-safety-impact}

6) Common software functionalities or technologies that might cause
unintended behaviors are not used in ON-RDM implementation
{IO-NA-common-unint-beh}

with these definitions
• Innocuity: Any part of the implementation that is not required by

the Defined Intended Behavior (DIB) has no unacceptable impact.
Customization to this project:
Implementation = Executable ON-RDM
DIB = Requirements of ON-RDM captured or defined in intent
(robot dynamics, accuracy, robustness, memory and timing
requirements). Any additional requirements added during the
development process are added to the DIB.

• Open/retained problems: Throughout verification activities when the
implementation does not match the requirements a problem report
is created. Based on a control board assessment, the problem can
remain open for a specific software release.

• Implementation choices: unintended behaviors that can emerge due
to approximation of the OFF-RDM (accuracy), and due to
additional behaviors related directly to the ON-RDM
implementation. ON-RDM Implementation:
– ON-RDM can be implemented using component-based physics

equations, look-up tables, approximations using linear equation
systems, physic-based algorithmic approximation or neural
networks.

– In this specific implementation physic-based algorithmic
approximation, unintended behaviors are numerical instability
due to discretization of the calculation and the constraints of the
target platform, such as timing and memory.

• Common software functionalities or technologies: External
developed libraries, COTS, multi-tasking and multi-core,
Non-deterministic algorithms, and machine learning functions.

Fig. 7: Innocuity of ON-RDM

safety. We approach Innocuity a little differently than the other
properties, in which we first assume that there are no behaviors
outside of the DIB and try to come up with the defeaters
of the argument. Later, the defeaters are transformed into
premises. Figure 7 presents the assurance argument that shows
that the ON-RDM holds Innocuity. The official definition of
Innocuity is customized in the same manner than the other
properties. There are two types of behaviors presented in
the implementation of the ON-RDM that are not specified
in the DIB, such as, open/retained problems (premise 1)
and unexpected behavior caused by implementation choices

7



OPs

Intent (IT)

Correctness(CR)

CR-robustness

IT-OFF-RDM-baseline

Accurate-general-
behavioral-model

Customization-
Process Initial-OFF-RDM

OFF-RDM-Calibration

OFF-RDM-Validation

OFF-RDM-as-
Spec

IT-accuracy

IT-env-conditions

IT-model-config

IT-conservative-margins

IT-safety-analysis

IT-mem-time

IT-op-conditions

IT-timing-reqIT-mem-req

IT-exception-req

IO-open-problems

IO-impl-choises-DIB

IO-impl-choises-noDIB 

IO-safety-assess

IO-safety-impact

IO-NA-common-unexpt-beh

Innocuity (IO)

CR-accuracy

CR-ac-testcases CR-ac-data

CR-ac-no-conservative CR-ac-safe

CR-imp-choices

CR-trans-modes CR-outrange-exceptions

CR-no-offset CR-stability

IT-robustness

IT-imp-choices

IT-trans-modes IT-outrange-values

IT-no-offset IT-stability

CR-mem-time

CR-timingCR-mem

CR-exception

CR-system-response

CR-processor-utilization

CR-determinism

IT-accuracy-spec

Fig. 8: AAS for the ON-RDM. Dotted argument is added to the PCA during the execution phase.

(premise 2). Premises 4 and 5 provide assurance that these
additional behaviors do not impact the safety of the system
by performing a safety assessment.

Open/retained problems refers to parts of the implementa-
tion that do not completely satisfy their intent (e.g. timing
response slower as expected). In the industry, open/retained
problems are common and must be carefully analyzed and
accepted by the Safety team. ON-RDM is an approximation
of the robot dynamics and can be implemented in different
ways from a look up table to a neuronal network. Depending
which type of implementation is chosen, there are unexpected
behaviors caused by that implementation (e.g. timing delays,
inaccuracies, non-determinism). In the case of the ON-RDM,
a physics-based algorithmic approximation is chosen. This
implementation choice can lead to numerical instability due to
discretization of the calculation and the timing and memory
constraints of the target platform. Although these behaviors
are known, premise 2 states that these specific behaviors are
addressed in the DIB. This aims to facilitate the understanding
and the evaluation of the argument. Additional behaviors
caused by the implementation are uncovered by regression and
robustness testing.

Once we addressed all behaviors outside of the DIB, we
evaluate whether common sources of additional behaviors
are applicable to the ON-RDM implementation. Premise 6
groups them and states that they are not applicable. Although
this premise can be counter intuitive, it can help evaluators

to understand that the applicant had already evaluated and
validated those sources of additional behaviors. The argument
without this premise is still valid. However, this premise
can help the evaluation process and the re-usability in other
contexts.

D. Argument structure

The argument structure is presented in Figure 8 and aims
to provide the evaluator an architectural overview of the
argument. This high-level overview is especially important for
showing that OPs are held since there is some flexibility in
where to address any specific topic. For example, depending on
how the DIB is defined, some behavior specification and val-
idation could move from Intent and Correctness to Innocuity.
Or in the case of the ON-RDM, additional behaviors produced
by the implementation choice are instead addressed in Intent
and Correctness. We believe that the high-level overview can
help evaluators to verify and validate the completeness of the
argument.

The argument structure is visually helpful but does not con-
tain enough detail to evaluate the argument. It is intended to
be examined together with the assurance arguments presented
in FAN. The structure graphically connects a conclusion to the
corresponding premises. Note that if a premise is supported
by further argument, that premise is also the conclusion
of that other argument and is, in turn, supported by other

8



premises. This structure can be automatically generated from
the assurance arguments.

OPs connect the conclusion that “ON-RDM hold the OPs”,
to the previously presented arguments. As shown in Figure
5, Intent is supported by premises related to accuracy (IT-
accuracy), robustness (IT-robustness), memory and timing
(IT-mem-time), and the ground truth model (IT-OFF-RDM-
baseline), and therefore, they are connected in the argument
structure. All these premises are supported by another assur-
ance argument. Note that the arguments for Correctness mirror
the structure of the arguments for Intent. We believe that this
mirroring facilities the clarity on the proposed verification and
validation process.

PCA consists of the argument that is depicted with solid
lines. The doted-line argument is added during the comple-
tion phase. Thus, the structure overview shows the complete
argument presented as AAS. During the planning phase,
applicants provide a description of the type of artifacts that
support the premise. The actual artifacts are referenced and
made available after the completion phase. Note that only
the premise of CR-timing is extended in the AAS using
an additional assurance argument. This premise/conclusion
states that “ON-RDM implementation satisfies timing intent”.
After the completion phase, CR-timing is supported by the
following premises: the estimation is completed within timing
constraints as required by the control (CR-system-response),
the implementation does not exceed the allocated processor
budget (CR-process-utilization), and code execution is deter-
ministic (CR-determinism). The latest premise is required by
the calculation of the timing and processing utilization, which
are only accurate for deterministic code. It is expected that
some premises of the PCA are refined in the AAS, as well
as, some minor changes in the argument structure. However,
significant or architectural changes should be discussed with
certification authorities.

E. Leaf argument

A leaf argument is the level where additional premise
detail is not needed. Leaf arguments provide premises that are
believable in light of referenced artifacts, with no additional
decomposition needed. Leaf arguments are identified on a
premise basis, where a conclusion may have one or more
leaf premises and one or more premises requiring additional
decomposition for agreement with the conclusion.

Figure 9 shows the leaf argument that states that the
implementation accuracy is sufficient for the UAV control.
In this case, all the premises are meant to be supported by
evidence from specific artifacts. Although the majority of the
artifacts that support the assurance argument are created during
the completion phase, applicants still need to provide enough
information for evaluating the argument, including the planned
evidence. Therefore, we propose to provide types of artifacts
instead of the artifact content for the PCA. The artifact type
describes the scope and nature of how the artifact supports the
premise. Information about artifacts is collected in a table to

facilitate the evaluation of the existence of the evidence (see
Table I).

Premise Tag Artifact Type ACC
CR-ac-testcases Verification Cases and Procedures

document
CC1

CR-ac-data Verification Test Report, Model
Test Report

CC2

CR-ac-no-conservative Model Report CC2
CR-ac-safe Model Report CC2

TABLE I: Description of supporting artifacts, their connection
to the assurance argument and their Artifact Control Category
(ACC)

Believing
The ON-RDM implementation is a representation of the robot
dynamics behavior at the level of accuracy as needed by the control
system {CR-accuracy}
Is justified by applying
Estimated outputs from the ON-RDM implementation are accurate if
the output is within a defined general conservative accuracy margin or
an additional acceptability analysis that ensures that ensures that the
UAV control behave safely.
To these premises
1) Test cases and procedures established to encompasses the entire

envelope are identified {CR-ac-testcases}
2) Execution data of the ON-RDM outputs are collected {CR-ac-data}
3) Outputs of the ON-RDM implementation outside of the

conservative margin are identified {CR-ac-no-conservative}
4) Accuracy of outputs outside of the conservative margin does not

compromise the safety of the UAV control {CR-ac-safe}
with these definitions
• Accuracy: Represents the difference between the ON-RDM against

the robot dynamics behavior, which is defined by the difference of
the ON-RDM output parameters against the OFF-RDM output
parameters under the same inputs. This is valid due to premise
{IT-OFF-RDM-baseline} is true

• General conservative accuracy margin: defines a conservative
accuracy range of every parameter depending on the usage of the
model’s output as input to the control logic within the most
sensitive environmental condition. This margin ensures the safety of
the system but it can be relaxed on a parameter basis

• Acceptability analysis: evaluates whether the accuracy of output,
which is outside of the conservative margin, does not compromise
the safety of the UAV control

Fig. 9: FAN example from [9]

VI. LESSON LEARNED

In this section, we want to share some observations from
working this project that might be helpful for applicants and
certification authorities that want to use assurance arguments
for showing possession of OPs.

1) Adopting assurance arguments in the certification process
• The creation of assurance arguments was mainly per-

formed by one argumentation expert and one ex-
perienced certification designee. This team structure
helped to create well-formed assurance arguments that
contain realistic information relevant to the certifica-
tion process. We believe that this team structure will

9



be required during the adaptation phase of assurance
arguments in the certification process.

• Flexibility provided by the OPs may potentially over-
whelm certification authorities, leading to discussions
of argumentation patterns and limiting use of OPs for
specific portions of systems. These may be portions
which are not supported by current recognized stan-
dards or which require additional effort using these
standards, without the additional safety assurance.

• To write effective argumentation with the assurance ar-
guments components, a change in mindset might be re-
quired from an activity-based mindset to a proposition-
based mindset. The activity-based mindset is com-
monly utilized in the certification process since current
standards use it to satisfy objectives. In contrast, a
proposition-based mindset incorporates statements that
can either be true or false.

2) Argumentation for OPs
• There is no official order in which the three properties

must be addressed. Based on our experience, we see
a lot of value in addressing Intent first since it is
very useful to understand the intended behavior to
know what needs to be verified in Correctness and
to identify what behaviors are not intended and need
to be addressed in Innocuity. This project benefited
from addressing Correctness before Innocuity since
some verification results in Correctness were used for
validating some premises in Innocuity.

• The key role of the binding information can be un-
derestimated. Although the other components of the
assurance arguments provide the argument structure,
the bindings give information that provide credibility
in the propositions and to avoid misinterpretation,
especially if common words are used (e.g. correct).

3) Although this research focused on the creation instead
of the evaluation of assurance arguments for OPs, we
identified two different evaluation steps: 1) evaluation of
the wellformedness of the argument and 2) the evaluation
of the validity of the argument. For the second one,
system and technology information is needed. We think
that the binding documents are key for evaluating the
validity of the argument.

4) Representation of assurance arguments: There are differ-
ent notations for assurance arguments (see section II). The
selection of the notation is not straight forward if there is
no prior experience. During this research, we tried a light
version of GSN as graphical notation, a tabular notation
and FAN as textual notation
• In the brainstorming phase, the graphic notation got in

the way of the idea flow since we were more focused
on the pictures. In contrast, both textual notations were
very useful to discuss the argument. However, tabular
notation (Excel table) was not suitable to add binding
information. FAN felt more intuitive for specifying the
assurance argument.

• Although FAN helped us to focus on the argument, it
was hard to see the overview of the argument, which
has proven to be important when creating arguments
for OPs. Therefore, we propose to complement the
textual notation with a graphical representation of
the argument structure providing a visual architectural
view. This graphical representation is a convenience
only; it is not part of the argument itself.

• The level of detail to be presented in the graphical
representation is not straight forward. Putting all details
in the graphical representation becomes unreadable.
Abstracting some information has the risk that readers
can take the graphical representation as the complete
argument forgetting that some information has been
abstracted. Therefore, we proposed to only provide an
identifier forcing the reader to review the complete
assurance argument. This can be easily automated from
FAN.

• While the project was only a small sample of a much
larger system, the argument diagram and the FAN
argument can be structured to represent a hierarchical
organization. This could decompose a system into sub-
components where sub-components have assurance ar-
guments that collectively support the system. Arbitrar-
ily large systems could be supported by the proposed
notations.

VII. CONCLUSION

Assurance methods using Overarching Properties have a
clarity and power through the identification of the true key
properties that are needed to establish assurance. Currently
there are several standards with several dozens of objectives
(like DO-178C, DO-254, and ARP4754A) that have integrated
some level of technology or development assumptions into the
standard’s often detailed requirements. OPs provide properties
that address ‘what’ needs to be accomplished as opposed
to ‘how’. With today’s technologies and methods evolving
faster than regulation and standards can keep up with, the
OP approach is of interest for aerospace safety assurance
when used in conjunction with existing standards. The ability
to focus on a component or provide an argument across
disciplines adds to the power of OP assurance. In order to
understand how to use OPs as means of compliance, the
three high-level properties have to be grounded to practical
properties, objectives and activities for system approval. This
paper presents a hybrid certification approach that applies OPs
to one component of a UAV, the on-board robot dynamic
model, for which existing standards are not effective. We
also provide a summary of the certification argument for this
component and lessons learned during this research project
that, we hope, helps the reader to understand how to use OPs
as a means of compliance in a practical manner. An important
point of this industrial example is the proposed activities that
specifically do not match existing standards. The intent is to
enable applicants and certification authorities to accept novel

10



methods for compliance that involve arguments and artifacts
different from those implied or required by existing standards.

Future works are focused on moving beyond a hybrid
approval of a software component to a more comprehensive
systems approval with inclusion of the System Safety Assess-
ment. Additionally, there is interest in cross discipline approval
where systems, software and hardware aspects of a component
can be approved with an OP argument. Furthermore, there is
still research needed on the creation and evaluation of argu-
mentation patterns that can facilitate the recognition of OPs as
a means of compliance by gaining consensus across industry,
academia, and particularly across certifying authorities.

VIII. ACKNOWLEDGMENT

This research was supported by NASA through grant no.
80NSSC20M0006. We are thankful to George Romanski and
Barbara Lingberg from the FAA for their essential contribution
during this research project. We would also like to thank
Overarching Properties Working Group for their feedback and
relevant discussions.

REFERENCES

[1] M. A. Aiello, C. Comar, and J. F. Ruiz, “An Assurance Case based
on Overarching Properties for QGen: a TQL1 Code Generator,” 10th
European Congress: Embedded Real Time Systems, 2020.

[2] M. Graydon, “Retrospectively Documenting SAFEGUARD’s Possession
of the Overarching Properties,” in 2019 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks–Supplemental
Volume (DSN-S), pp. 27–28, IEEE, 2019.

[3] J. Chelini, J. Camus, C. Comar, D. Brown, A.-P. Porte, M. de Almeida,
and H. Delseny, “Avionics Certification: Back to Fundamentals with
Overarching Properties,” in HAL archives-ouvertes, 2018.

[4] H. Forsberg and A. Schwierz, “Emerging cots-based computing plat-
forms in avionics need a new assurance concept,” in 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), pp. 1–8, IEEE, 2019.

[5] C. M. Holloway, “Understanding the Overarching Properties,” NASA
Report, 2019.

[6] J. Rushby, “The interpretation and evaluation of assurance cases,” Comp.
Science Laboratory, SRI International, Tech. Rep. SRI-CSL-15-01, 2015.

[7] R. Bloomfield, P. Bishop, C. Jones, and P. Froome, “Ascad—adelard
safety case development manual,” Adelard, vol. 5, 1998.

[8] OMG, “Structured Assurance Case Metamodel (SACM),” 2015.
[9] C. M. Holloway, “The Friendly Argument Notation (FAN),” 2020.

[10] D. Bareiss, J. R. Bourne, and K. K. Leang, “On-board model-based
automatic collision avoidance: application in remotely-piloted unmanned
aerial vehicles,” Autonomous Robots, vol. 41, no. 7, pp. 1539–1554,
2017.

[11] S. Garg, “Aircraft turbine engine control research at NASA Glenn
research center,” Journal of Aerospace Engineering, vol. 26, no. 2,
pp. 422–438, 2013.

11


