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ABSTRACT
This work illustrates the use of artificial neural network modeling in the aerodynamic and aeroacoustic characterization
of optimum hovering rotors over a broad range of design and operating conditions. Design of Experiments was used
to create input feature spaces over eight input factors: the number of rotor blades, rotor radius, rotor rotation rate,
design thrust condition, collective pitch, airfoil camber, the location of maximum camber, and the airfoil thickness.
A low-fidelity tool chain was then used at the discrete data points defined by the designed input feature spaces to
analytically design optimum hovering rotors and simulate aerodynamic and aeroacoustic quantities. This allowed for
the generation of data sets over which to train and test the artificial neural network prediction models. Prediction
models were trained over the data sets for the actual thrust generated by the rotor, power loading, tonal thickness
and loading noise at the fundamental blade passage frequency, and broadband self-noise at seventeen one-third octave
bands between 1 kHz and 40 kHz. These prediction models were validated by testing over data previously unseen
by the models to quantify their capability for generalization to new data within the design feature space. The models
were then used to study the effect each input feature had on the aeroacoustics and aerodynamics of optimum hovering
rotors, and physical insights were gained to further explain the effect of each input. This characterization study showed
that tonal noise and power loading were most sensitive to the number of rotor blades and the rotor rotation rate and
that broadband noise was most sensitive to collective pitch and the design thrust condition.

NOTATION

c(r) Rotor chord length distribution, inches
CT Thrust coefficient, T

ρA(ΩR)2

M Airfoil maximum camber, percentage of chord
N Airfoil location of maximum camber, percentage

of chord
Nb Number of rotor blades
OASPL Overall sound pressure level, dB
PL Power Loading, lb/HP
PT Total (i.e., induced and profile) power, HP
R Rotor tip radius, inches
r Normalized span location, x

R
SPL Sound pressure level, dB
Tdesign Design thrust condition, lb
Tpred Predicted rotor thrust, lb
XX Airfoil thickness, percentage of chord
α(r) Angle of attack distribution, deg
α0 Airfoil zero lift angle of attack, rad
Ω Rotor rotational rate, revolutions per minute

(RPM)
φ(r) Inflow angle distribution, deg
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σ(r) Rotor solidity distribution, Nbc(r)
πR

Θobs Observer angle relative to rotor plane, deg
θtw(r) Rotor twist distribution, deg
θ0 Collective pitch, deg.

INTRODUCTION

Demand for small unmanned aerial systems (sUAS) has in-
creased due to their potential for missions such as package
delivery and aerial surveillance. When comparing sUAS to
traditional helicopters, the relative importance of noise gen-
erating mechanisms differs. For example, it has been shown
that the stochastic (i.e., broadband) portion of the noise ema-
nating from sUAS vehicles lies in the most perceptible range
of human audibility and is a dominant noise source when com-
pared to the deterministic (i.e., tonal) noise, which dominates
for traditional helicopters (Refs. 1 and 2).

Many tools exist for predicting both tonal and broadband
noise (Refs. 1–4). For modeling tonal noise, a wide range
of multifidelity tools exist: panel methods, blade element mo-
mentum theory (BEMT), comprehensive analysis codes, tra-
ditional Navier-Stokes solvers, and scale-resolving flow sim-
ulations. Each of these tools is used to predict unsteady aero-
dynamic forces. The resulting acoustic pressures are prop-
agated to arbitrary observer locations using an implementa-
tion of the Ffowcs Williams and Hawkings (FW-H) equation.
Similar approaches have been used to predict broadband noise

1



directly from unsteady aerodynamic forces using the scale-
resolving Lattice-Boltzmann method, though at great com-
putational cost (Refs. 2 and 3). Lower-fidelity methodolo-
gies for predicting broadband noise have also been estab-
lished, such as the theoretical trailing-edge noise model de-
vised by Amiet (Ref. 5) and the semiempirical self-noise pre-
diction methodology devised by Brooks et al. (Ref. 6). How-
ever, these low-fidelity broadband noise tools lack the abil-
ity to capture more complex aerodynamically induced noise
generation associated with rotorcraft (e.g., atmospheric turbu-
lence ingestion noise and blade wake interaction noise). This
is due to these models having been developed based upon a
wind tunnel campaign of various, fixed, 2-D and 3-D NACA
0012 airfoil sections. Still, self-noise is a dominant broadband
noise source, and its study can be beneficial in preliminary
analysis and design efforts.

The purpose of the present research was to develop aero-
dynamic and aeroacoustic prediction models using machine-
learning-based approaches to characterize representative
sUAS rotors in hover. Specifically, this work focused on rigid
optimum hovering rotors. A four-step approach shown in Fig.
1 was adopted in this work.

Design of Experiments

Low-fidelity Tools

Machine Learning Prediction Modeling

Aerodynamic/Aeroacoustic Characterization Study

xi, xi+1, ..., xn

y j, y j+1, ..., yn

f j(xi,xi+1, ...,xn) = y j,
f j+1(xi,xi+1, ...,xn) = y j+1,
...,
fn(xi,xi+1, ...,xn) = yn

Figure 1: Block diagram representation of technical approach
where xi is the ith input feature, y j is the jth result using the
low-fidelity tools, and f j is the jth machine learning predic-
tion model.

The first step entailed the use of modern Design of Experi-
ments (DoE) to create an input feature space or design space
consisting of discrete combinations of input variable values.
The input feature space consisted of various airfoil and rotor
geometric parameters as well as flight conditions, which were
thought to encapsulate much of the sUAS region of operabil-
ity. Preexisting low-fidelity tools were then used to predict
various aerodynamic and aeroacoustic quantities at the design
points prescribed by the feature space. Once these data were

generated, machine learning was used to develop prediction
models to accurately and quickly predict various aerodynamic
and aeroacoustic quantities of particular interest to rotorcraft.
Lastly, and most importantly, these prediction models were
used in a characterization effort to study the effects of each
input feature on both the aerodynamics and aeroacoustic tonal
and broadband noise.

TECHNICAL APPROACH

Design of Experiments

DoE is a process used for planning an experiment so that
appropriate data can be collected and analyzed by statistical
methods, resulting in valid and objective conclusions (Ref. 7).
DoE is typically used in systems comprised of multiple inputs
when a nonlinear functional relationship between the quanti-
ties of interest, such as force and moment coefficients, and the
regressors, or inputs, and their interactions is required. DoE
can be broken up into two categories: classical and modern.
A comprehensive study of both categories of DoE was per-
formed by the author in Ref. 8, which showed the superiority
of modern DoE in the context of computer-based experiments,
such as those performed in this work.

Modern DoE was used in this work to design a feature space
consisting of the following inputs for the aerodynamic predic-
tion models: Nb, R, Ω, Tdesign, θ0, M, N, and XX. The same
input features were used for the aeroacoustic models; how-
ever, with the inclusion of the angle between the acoustic ob-
server location and the center of the rotor, Θobs. There were
seven discrete observer locations prescribed along an arc lo-
cated 1.896 m away from the center of the rotor, similar to
the observer array used in Ref. 3. The range and type of each
input feature are shown in Table 1.

Table 1: Input feature space. (* indicates categorical factors.
All other factors are continuous.)

Input Feature Range
Nb* 2, 3, 4
R 6 in - 8 in
Ω 3500 RPM - 6000 RPM
Tdesign 1.5 lb - 3.0 lb
θ0 −5◦ - +5◦

M 0% - 9%
N 20% - 50%
XX 6% - 15%
Θobs* −45◦, −30◦, −10◦, 0◦, +10◦, +30◦, +45◦

Since machine learning prediction modeling is an interpo-
lation problem, it is imperative to spread the input feature
design points uniformly throughout the feature space by us-
ing various alphabetically optimal designs or space-filling de-
signs. Alphabetic optimality refers to placing design points so
that some optimality criterion, such as prediction variance or
regressor screening capability, is satisfied. Space-filling de-
signs, such as the Uniform Design (UD), Latin Hyper-Cube
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Design, Sphere-Packing Design, etc., spread the design points
evenly throughout the region of experimentation, adhering to
some measure of uniformity determined by the design being
used (Ref. 9). The purpose of this uniform sampling is to
acquire data in a manner that represents the entire experi-
mental domain while minimizing the difference of the over-
all mean between the prediction model and the experimental
data (Ref. 10).

A space-filling UD was selected for this work, which mini-
mized the centered L2 discrepancy between the design points
and a theoretical distribution (Ref. 11). Since Nb is a discrete
(i.e., categorical) factor, three designs were created, one at
each discrete value of Nb, for a total of 144 design points.
The ensemble of these designs was used as the training set
for the machine learning prediction models. It is common in
machine learning to split the data set into training and testing
data; however, when using DoE, this data split may produce
bias toward specific regions of the design space. For example,
if all split training data are located in a particular quadrant
of the design space, there will be inadequate coverage over
the entirety of the design space to train the prediction model.
For this reason, a separate design space was created over the
same input feature space for the test data, which contained 48
points. The low-fidelity tools discussed in the subsequent sec-
tion were then used to simulate the prescribed design points,
and machine learning was used to create aerodynamic and
aeroacoustic prediction models with functional relationships
to the defined input features.

Low-Fidelity Tools

Throughout this work, various low-fidelity tools were utilized
to allow for rotor designs comprised of the NACA four-digit
airfoil geometric parameters: the camber, M, location of max-
imum camber, N, and thickness, XX, as well as characteris-
tic rotor properties such as the rotor radius, R, number of
blades, Nb, design thrust condition, Tdesign, collective pitch,
θ0, and rotor rotation rate, Ω. The aerodynamic prediction
tool, XFOIL, was used to calculate a zero lift angle of attack,
α0, based upon the airfoil properties. These properties were
used in conjunction with the rotor properties and Eq. 1 from
Ref. 12 to calculate the rotor blade twist distribution of an op-
timum hovering rotor with a tip chord length, ctip, of 0.5 in:

θtw(r) =
1
r

( 4CTdesign

5.73σ(r)
+

√
CTdesign

2

)
−α0, (1)

where r is the normalized span location and CTdesign is the
thrust coefficient calculated using Tdesign.

An optimum hovering rotor can be defined as one that has
both minimal induced power requirements and minimal pro-
file power requirements. Equation 1 is such that the rotor in-
duces uniform inflow, satisfying the induced power require-
ment. To satisfy the profile power requirement, the chord dis-
tribution of the rotor, c(r), follows that of Eq. 2 from Ref. 12,
which allows for each radial station to operate at an optimal
lift to drag ratio:

c(r) =
ctip

r
, (2)

where r is the normalized span location.

Since this optimum chord distribution is generally not phys-
ically realizable, a linear taper ratio of 2.5 to 1 was selected
for this work. This linear taper ratio was thought to best repli-
cate the taper of an optimum hovering rotor over the outboard
25% span of the rotor, as shown in Fig. 2. The chord dimen-
sion in this plot has not been nondimensionalized since c(r) is
constant for all designed rotors.

0.2 0.4 0.6 0.8 1

r=x/R

0.5

1

1.5

2

2.5

c
(r

) 
(i
n
)

Rotor Chord Distribution

Linear Chord Distribution

Optimum Chord Distribution

Figure 2: Comparison of 2.5 to 1 linear taper ratio to the taper
ratio of an optimum hovering rotor.

ANOPP’s Propeller Analysis System (PAS) (Ref. 13) was
used to calculate the aerodynamic thrust generated by the ro-
tor, Tpred , and the total (i.e., induced and profile) power, PT ,
needed by the rotor, tonal (i.e., thickness and loading) noise
on a dB basis at the fundamental blade passage frequency
(BPF), and finally, various rotor inflow parameters, such as
the induced inflow angle distribution, φ(r), and angle of at-
tack distribution, α(r). These inflow parameters were then
used within ANOPP2’s Self-Noise Internal Functional Mod-
ule (ASNIFM) (Ref. 14) to calculate the broadband self-noise,
also on a dB basis. ANOPP’s PAS and ASNIFM, which is an
implementation of the semiempirical prediction methodology
devised by Brooks et al. in Ref. 6, were selected based upon
their promising prediction accuracy. These low-fidelity tools
allowed for the generation of aerodynamic and aeroacoustic
data sets, which were vital to the machine learning prediction
modeling approach used in this research.

Machine Learning Methodology

Artificial Neural Networks (ANNs) were chosen as the pre-
diction models used to fit the data within the design space;
more specifically, Multilayer Perceptrons (MLP) were used.
The MLP aims to replicate the architecture of the neurons in
the human brain, set up in layers as shown in Fig. 3. Each
“hidden” layer consists of a number of activation functions,
or neurons, aligned in parallel. All of the neurons of a partic-
ular layer are activated in unison, with different multiplicative
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weights along the connections between neurons, inputs, and
outputs.

Figure 3: Generic ANN representation where xi is the ith in-
put feature, ω and µ are multiplicative weights, Σ is a sum-
mation operator, γ is the activation function evaluated over the
summed inputs multiplied by their respective weights, θ are
the hidden layers, and f j is the jth ANN prediction model.

The machine learning procedures used throughout this
work were performed using Google’s TensorFlow platform
(Ref. 15). The MLP architecture used for all prediction mod-
els contained two hidden layers consisting of 100 exponential
linear units (ELU) with a linear activation function in the out-
put layer. These ELU were selected over the commonly used
rectified linear unit (ReLU) as they are less prone to vanish-
ing gradients and have better overall convergence trends with
more accurate results (Ref. 16). The number and type of ac-
tivation functions used are heuristically determined. It should
be noted that ANNs of different architectures and consisting
of different activation functions were investigated; however,
those mentioned previously were determined to perform opti-
mally for this work.

It was first imperative to rescale each input feature listed in
Table 1 to a common basis to eliminate any bias in the opti-
mization procedure of the cost function. To achieve a com-
mon basis, each feature was scaled such that it had a mean
of zero and a variance of one. The input layer contained val-
ues of these scaled inputs at each discrete point in the feature
space, which were then passed through the MLP over 1250
epochs, or cycles through the training data. The multiplica-
tive weights along the connections were modified after each
epoch until the specified cost function, in our case, the mean
absolute error (MAE), was sufficiently minimized using the
Adam optimization algorithm (Ref. 17).

Two types of regularization were used on each of the hidden
layers: L2 regularization and a 20% dropout. The L2 regu-
larization acted to constrain the multiplicative weights. The
20% dropout randomly eliminated 20% of the activation func-
tions in each hidden layer during the training procedure at
each epoch (Ref. 18). Regularization is vital to any machine
learning procedure in that it aids in reducing the prediction
model’s bias toward the training data and aids in promoting
better generalization to new data. An early stopping crite-

rion was also imposed on the learning procedure to further re-
duce the possibility of overfitting. A 10-fold cross-validation
method was used where the training data were randomly split
into ten equally sized partitions. Ten prediction models were
then fit over a different set of nine partitions, using the last
partition for accuracy evaluation at each epoch during train-
ing. These ten models were then evaluated over the test data
set, which had not been previously seen by the models, and
the model with the highest prediction accuracy was retained.

Because Nb was a categorical factor, one-hot encoding was
used, which treated this input feature as three binary inputs.
For example, for a two-bladed rotor, the input correspondent
to a two-bladed rotor would hold a value of one and the other
two inputs correspondent to three- and four-bladed rotors, re-
spectively, would hold values of zero. For the aeroacoustic
prediction models, one-hot encoding was also used for Θobs.
Since the data were acquired over all seven observer angles
for each design point in the feature space, all design points
were replicated for each observer location and their ordering
was randomized prior to the training procedure.

Since this work focused on aerodynamic and aeroacoustic
characterization, two prediction models were produced for
aerodynamics, one for Tpred , and one for power loading (PL),
or the ratio of Tpred to PT . Only the prediction model for
PL was used for aerodynamic characterization throughout this
work; however, generating a prediction model for Tpred allows
for the future calculation of aerodynamic quantities of partic-
ular importance to rotorcraft, such as the induced power, pro-
file power, and torque. It should be noted here that Tdesign was
used solely for the design of the rotor and Tpred includes addi-
tional aerodynamic effects caused by the airfoil geometry and
θ0. Two models were created for the tonal noise at the funda-
mental BPF, one for the thickness noise and one for the load-
ing noise, both on an overall sound pressure level (OASPL)
basis. For the broadband noise, separate prediction models
were created for each one-third octave band between 1 kHz
and 40 kHz, totaling seventeen broadband noise prediction
models.

RESULTS

Prediction Model Performance and Validation

An accuracy score produced using Eq. 3 was calculated over
the test data and is shown in Table 2. For brevity, these quan-
tities were averaged over the seventeen prediction models for
the broadband one-third octaves:

Prediction Accuracy = 100∗
(

1− 1
n

n

∑
i=1

∣∣∣∣yi − fi

yi

∣∣∣∣), (3)

where n is the number of test data values, yi is the test data
value, and fi is the predicted value.

Table 2 shows that the prediction accuracy values are
above 95% for all aeroacoustic models (e.g., OASPLthickness,
OASPLloading, and SPL1/3broadband

). This signifies that these
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models have adequately learned the underlying functional
relationships between the inputs and outputs and that they
generalize exceptionally well to new data within the feature
space. Both aerodynamic models (e.g., PL and Tpred) have
prediction accuracy values of approximately 85%, which is
sufficient for the purposes of this study. Since characterization
is the goal of this effort, the aerodynamic models are used to
assess general behavioral trends of aerodynamic performance
with favorable aeroacoustic behavior; therefore, prediction ac-
curacy scores above 80% are thought to be adequate for this
work.

Table 2: Prediction model fit summary.

Prediction Model Prediction Accuracy
PL 85.89%
Tpred 85.62%
OASPLthickness 98.16%
OASPLloading 97.09%
SPL1/3broadband

95.79%

As a further validation, an arbitrary design point within the
feature space was selected to compare predicted results to re-
sults generated using the low-fidelity tools. The aerodynamic
results from the low-fidelity tools were Tpred = 3.43 lb and
PL = 16.47 lb/HP and the results predicted using the ANNs
were Tpred = 3.22 lb and PL = 16.73 lb/HP. The OASPL of
the broadband noise between 1 kHz and 40 kHz was calcu-
lated and Fig. 4 shows the comparison between the ANN pre-
dicted results and the results generated from the low-fidelity
tools for the thickness, loading, and broadband noise at all ob-
server locations. The agreement between the results from the
ANN prediction models and the results generated using the
low-fidelity tools is consistent with the high prediction accu-
racy values shown in Table 2.

Aeroacoustic Rotor Characterization

To compare the effects of each input feature on the rotor
acoustics, the ANNs were used to predict acoustic directivities
of the tonal thickness, tonal loading, and broadband OASPL
at the maximum and minimum values of each input feature
defined in Table 1. All other input features were maintained
at their mean values. These acoustic directivity plots were
generated using the same scaling to allow for a more direct
visual comparison. Predictions using the mean values for all
input features were also plotted to further illustrate the vari-
ation in tonal and broadband noise caused by each input fea-
ture. Additionally, Eq. 1 and ANOPP’s PAS were used to
develop plots for the twist distribution, θtw(r), inflow angle
distribution, φ(r), and angle of attack distribution, α(r), at
the maximum, minimum, and mean values of each input fea-
ture. This was done to provide physical insight as to why the
input features affect the rotor acoustics. Separate plots have
been created for each input feature in Figs. 5–9, which show
the aerodynamic and aeroacoustic quantities. Examining sub-
figures (a) and (b) in Figs. 5–9, it can be seen that for an opti-

40 45 50 55 60 65 70 75

OASPL (dB ref. 20 Pa)

-45

-30

-10

0

10

30

45

O
b
s
e
rv

e
r 

A
n
g
le

 (
°
)

Fundamental BPF Directivity Comparison

Low-fidelity Thickness Noise

Low-fidelity Loading Noise

ANN Predicted Thickness Noise

ANN Predicted Loading Noise

(a) Tonal noise comparison.
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Figure 4: Acoustic directivity comparison between ANN pre-
dicted results and results from low-fidelity tools. Nb = 3, R =
7 in, Tdesign = 2.5 lb, Ω = 5000 RPM, M = 6%, N = 40%, XX
= 12%, and θ0 = 3◦.

mum hovering rotor, tonal noise is dominated by the loading
noise, implying that input features that produce greater vari-
ations to the loading noise are highly influential to the entire
tonal noise signature.

It can also be ascertained by comparing Figs. 5–9 that the
value of Nb has the greatest effect on tonal loading noise with
decreasing values of Nb causing an increase in BPF amplitude.
Since θtw(r) from Eq. 1 has functional dependence on CTdesign
and σ , decreasing the number of rotor blades while maintain-
ing the same value of Tdesign would decrease the value of σ .
Figure 5 shows that decreasing the value of Nb causes an in-
crease in the distributions of θtw(r) and α(r), resulting in in-
creased tonal thickness noise, loading noise, and broadband
noise. Similarly, Fig. 6 shows that increasing the value of R
resulted in a decrease in the value of σ and a decrease in the
distributions of θtw(r), φ(r), and α(r). Increasing the value
of R would also result in an increased tip Mach number for
a fixed value of Ω. The combination of these opposing geo-
metric effects caused by increasing the value of R resulted in
a slight increase to tonal noise and a decrease in broadband
noise. However, both the tonal loading and broadband noise
are less sensitive to R than to Nb. Although θtw(r), α(r), and
the tonal thickness noise vary similarly with increasing values
of R and decreasing values of Nb, the decrease in φ(r) caused
by increasing the value of R was thought to alleviate the effect
of the increased tip Mach number on the tonal loading noise,
explaining why variations of Nb have a greater effect on tonal
loading noise than variations of R. In summary, the value of
σ has a dominant effect on the tonal noise with Nb having a
greater effect when compared to R, regardless of the similar
dependence of σ on both of these input features.
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(a) Tonal thickness noise.
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(b) Tonal loading noise.
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(e) Inflow angle distribution.
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Figure 5: Blade number effect on tonal noise directivity, broadband noise directivity, twist distribution, inflow angle distribution,
and angle of attack distribution. R = 7 in, Tdesign = 2.25 lb, Ω = 4750 RPM, M = 4.5%, N = 35%, XX = 10.5%, and θ0 = 0◦.
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(a) Tonal thickness noise.
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(b) Tonal loading noise.
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Figure 6: Radius effect on tonal noise directivity, broadband noise directivity, twist distribution, inflow angle distribution, and
angle of attack distribution. Nb = 3, Tdesign = 2.25 lb, Ω = 4750 RPM, M = 4.5%, N = 35%, XX = 10.5%, and θ0 = 0◦.

Figure 7 shows that the second most significant input feature
to the tonal noise is Ω. Although increasing the value of Ω

decreases the distributions of θtw(r), φ(r), and α(r) while in-
creasing the tip Mach number, its effect on the tonal thickness
noise is much more pronounced than for variations of Nb and
R, elucidating the high significance of this input feature on the
acoustic results. The effect of varying Ω on the tonal loading
noise, shown in Fig. 7b, can also be seen to have a greater sig-

nificance than for variations of R and lesser significance than
for variations of Nb.

Variations of θ0 affect the tonal loading noise in a similar
fashion to variations of Ω with negligible change to the tonal
thickness noise for changes in the value of θ0. Figure 8b
shows large variations in the tonal loading noise, thought to
be caused by the increasing distributions of θtw(r), φ(r), and
α(r). Figure 8c also shows that variations of θ0 have the
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Figure 7: Rotor rotation rate effect on tonal noise directivity, broadband noise directivity, twist distribution, inflow angle
distribution, and angle of attack distribution. Nb = 3, R = 7 in, Tdesign = 2.25 lb, M = 4.5%, N = 35%, XX = 10.5%, and θ0 = 0◦.

greatest effect on the broadband self-noise. The increased
distributions of φ(r) and α(r) were believed to give rise to
the broadband self-noise mechanism, trailing edge separation
noise (Ref. 6), which could explain the large sensitivity of
broadband noise to variations of θ0. Increasing the value of
Tdesign was seen to have an almost identical trend on the aero-
dynamics and aeroacoustics as increasing the value of θ0, so
plots for Tdesign were omitted.

Increases in the value of M serve to increase α0, which would
increase the thrust generated by the rotor while reducing the
distribution of α(r) for a given thrust value. Figure 9 shows
that increasing the value of M decreases the distributions of
both θtw(r) and α(r), resulting in a slight increase in tonal
loading noise and a minimal decrease in broadband noise. In-
creasing XX was seen to have no impact on the distributions
of θtw(r) and φ(r) with very negligible effects on the distri-
bution of α(r). Increasing the value of XX increased the tonal
thickness noise but resulted in an almost identical trend in the
tonal loading noise and broadband noise as for increasing the
value of M, so these plots were excluded. Lastly, variations of
N had a negligible effect on all aerodynamic and aeroacoustic
quantities so plots for N were also excluded for brevity.

Table 3 shows PL results at the previously defined maximum
and minimum values for each input feature. For reference,
PL = 17.55 lb/HP is the predicted value with all input fea-
tures retained at their mean values. Larger values of PL indi-
cate superior rotor performance since the rotor would require
less power to generate the same amount of thrust. It can be
seen that decreasing the value of Nb not only increases the
acoustic results, but it also significantly increases the value of
PL for a fixed thrust condition. This is due to the decreased
power required to rotate fewer blades, which dominates over

Table 3: Power loading at maximum and minimum input fea-
ture values.

Input Feature PL (lb/HP) Min. PL (lb/HP) Max.
Nb 19.61 16.70
R 18.52 16.61
Ω 20.09 15.23
Tdesign 17.98 17.11
θ0 18.00 17.08
M 17.73 17.36
N 17.42 17.69
XX 17.16 17.94

aerodynamic effects on the required power caused by increas-
ing the distributions of θtw(r) and α(r). Similarly, less power
is required for a lower value of R; however, unlike variations
of Nb, decreasing the value of R has a favorable effect on the
tonal noise with slight adverse broadband noise effects. Table
3 shows that variations of Ω have the greatest effect on PL,
with its reduction significantly increasing the rotor efficiency
while decreasing the rotor noise. Since variations of both θ0
and Tdesign had a direct impact on the distributions of θtw(r),
φ(r), and α(r), decreasing these input features not only de-
creases both tonal and broadband noise, but also increases the
value of PL, signifying increased rotor performance. Varia-
tions of M have a very modest effect on the value of PL, caus-
ing a decrease in rotor performance with an increase in the
value of M. Variations of N and XX also have a minimal effect
on the value of PL with a degradation in rotor performance for
decreasing values of N and XX.
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Figure 8: Collective pitch effect on tonal noise directivity, broadband noise directivity, twist distribution, inflow angle distribu-
tion, and angle of attack distribution. Nb = 3, R = 7 in, Tdesign = 2.25 lb, Ω = 4750 RPM, M = 4.5%, N = 35%, and XX = 10.5%.
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Figure 9: Camber effect on tonal noise directivity, broadband noise directivity, twist distribution, inflow angle distribution, and
angle of attack distribution. Nb = 3, R = 7 in, Tdesign = 2.25 lb, Ω = 4750 RPM, N = 35%, XX = 10.5%, and θ0 = 0◦.

CONCLUSIONS
This research illustrates the use of machine-learning-based
prediction modeling in characterizing the aerodynamics and
aeroacoustics of rigid optimum hovering rotors over a broad
range of design and operating conditions. A low-fidelity
toolchain was established to first allow for the analytical de-
sign of optimum hovering rotors based upon the following in-
put features: Nb, R, Ω, Tdesign, θ0, M, N, and XX. This low-

fidelity toolchain consisted of ANOPP’s PAS (Ref. 13) to cal-
culate the aerodynamic thrust generated by the rotor, the total
(i.e., induced and profile) power needed by the rotor, tonal
(i.e., thickness and loading) noise at the fundamental blade
passage frequency (BPF), and rotor inflow parameters, such as
the distributions of φ(r) and α(r). The toolchain used the ro-
tor inflow parameters to calculate broadband self-noise using
ASNIFM (Ref. 14). Modern DoE was then employed to cre-
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ate two uniform, space-filling input feature spaces consisting
of discrete data points at different combinations of the defined
input features. The low-fidelity tools were used to simulate
the data points defined by the two design spaces to develop
training and testing data sets for the machine learning predic-
tion models.

Artificial Neural Networks (ANNs) were trained over the data
sets to model functional relationships between the input fea-
tures and aerodynamic/aeroacoustic quantities of interest. The
ANNs were used to predict PL, tonal thickness and loading
OASPL values, and broadband OASPL values along an arc
of observers located 1.896 m away from the center of the ro-
tor plane. Equation 1 and ANOPP’s PAS were also used to
develop distributions of θtw(r), φ(r), and α(r) to establish
physical aerodynamic insight. These predictions were con-
ducted at maximum and minimum values of each respective
input feature while maintaining all other features at their mean
values, which allowed for a visual comparison of the effect of
each input feature on the acoustic metrics. Values of PL at
the maximum and minimum values of each input were also
tabulated to gain further insight as to how rotor performance
varied with changing input feature values.

It was shown that for an optimal hovering rotor, the tonal noise
was dominated by loading noise and that the value of Nb had
the greatest effect on the tonal noise. Decreasing the value
of Nb decreased the value of σ for a fixed value of Tdesign,
which increased the distribution of θtw(r) and decreased the
distribution of α(r). These effects significantly increased the
tonal loading noise while also increasing the value of PL, sig-
nifying an increase in rotor performance. Increasing the value
of R had a similar effect on the acoustics as decreasing the
value of Nb since this also decreased the value of σ , but with
a degradation in rotor performance. Increasing the value of Ω

increased both the tonal and broadband noise while decreas-
ing the distributions of θtw(r), φ(r), α(r), and PL, which was
attributed to higher tip Mach numbers. Both variations in θ0
and Tdesign had similar effects on the distributions of θtw(r),
φ(r), and α(r), causing an increase in tonal and broadband
noise with a degradation in rotor performance. It was shown
that the broadband noise was most sensitive to variations of
θ0. The increase in both the distributions of φ(r) and α(r)
was thought to increase broadband trailing edge separation
noise, explaining the large sensitivity of broadband noise to
variations of θ0. Increasing the value of M was seen to reduce
the distributions of θtw(r) and α(r), which caused a minimal
increase in tonal noise while slightly decreasing both broad-
band noise and the value of PL. Increasing the value of XX
had a very similar effect as increasing the airfoil camber, so
plots for this input feature were excluded from this work. The
plots for N were also omitted since variations in N had negli-
gible effects on all acoustic quantities and PL.

It can be concluded from this study that most of the input
features modified the twist distribution of an optimum hov-
ering rotor resulting in changes to both the rotor acoustics and
performance. The tonal noise and PL were most sensitive to
Nb and Ω and the broadband noise was most sensitive to θ0

and Tdesign. Since these ANNs can be used to predict aero-
dynamic/aeroacoustic quantities of interest in a matter of sec-
onds, it is anticipated that they will be used for future design
optimization studies for optimum hovering rotors.
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