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B. Banerjee,8 P. Bangale,9 U. Barres de Almeida,9,10 J. A. Barrio,11
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ABSTRACT
The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19
show no association with any known high-energy (HE; E � 10 GeV) or very-high-energy
(VHE; E � 300 GeV) sources. This catalogue motivated follow-up studies by both the
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358 M. L. Ahnen et al.

Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area
Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy
band. In this paper, we report the results from the first joint work between High Altitude Water
Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC
J2006+341, 2HWC J1907+084∗, and 2HWC J1852+013∗. Although no significant detection
was found in the HE and VHE regimes, this investigation shows that a minimum 1◦ extension
(at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated
from HAWC results are required in the case of 2HWC J1852+013∗, whilst a simply minimum
extension of 0.16◦ (at 95 per cent confidence level) can already explain the scenario proposed
by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar
wind nebulae is also investigated in detail.

Key words: pulsars: general – gamma rays: general – astroparticle physics.

1 IN T RO D U C T I O N

The synergy of current gamma-ray observatories is a unique
opportunity to explore the Universe between a few tens of MeV
to hundreds of TeV. The study of such a broad energy band can
be accomplished by means of different detection techniques. At
the highest energies are the Water Cherenkov arrays, such as the
High Altitude Water Cherenkov (HAWC) Observatory, which is
sensitive to cosmic and gamma rays between 100 GeV and 100
TeV. A large effective area and high duty cycle make HAWC an
optimal instrument to perform survey studies on multi-TeV sources.
Other detection techniques achieve a better sensitivity than HAWC
at energies below approximately 10 TeV: the Imaging Atmospheric
Cherenkov Telescope (IACT) technique, as implemented by the
Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC)
telescopes, provides better angular and energy resolution. However,
the duty cycle of such atmospheric Cherenkov telescopes is greatly
reduced by high-intensity background light or non-optimal weather
conditions at night. At even lower energies (∼GeV), detectors on
board satellites, like the Fermi-Large Area Telescope (LAT), are
used to detect gamma rays. This instrument has a high duty cycle,
a wide field of view (FoV) of 20 per cent of the sky and very good
gamma/hadron separation.

HAWC has published two catalogues of TeV sources: 1HWC
for sources in the inner Galactic plane using 275 d of data with a
configuration of approximately one-third of the full array (HAWC-
111; Abeysekara et al. 2016), and 2HWC for almost the entire
sky using 507 d of the completed HAWC detector (Abeysekara
et al. 2017c). The second catalogue improves over the first with
respect to exposure time, detector size, and angular resolution,
resulting in a significant improvement in sensitivity. As done
for the previous catalogue, 2HWC data were analysed using a
binned likelihood method described in Younk et al. (2015). In this
method, a source model needs to be assumed for all sources in
the sky. The model for each source is characterized by the source
morphology and its spectrum. For the 2HWC analysis, HAWC
used two different approaches: (1) a point-like search adopting a

spectrum defined by a power-law function, dN/dE = N0

(
E
E0

)−�

(with N0 the normalization, E0 the pivot energy and � the spectral
index), with spectral index � = 2.7, and (2) extended source
searches with a source morphology modelled as a uniform disc
of 0.5◦, 1◦, and 2◦ in radius and spectral index � = 2.0. The total
number of sources identified in this catalogue was 39, of which
19 were not associated with any previously reported TeV source
within an angular distance of 0.5◦. All 2HWC sources presented

a test statistic (TS) above 25 (equivalent to a pre-trial significance
of ∼5σ ).

The 2HWC catalogue motivated follow-up studies with H.E.S.S.
(López-Coto et al. 2017), VERITAS (Abeysekara et al. 2018), and
also MAGIC and Fermi-LAT. In this work, we focused on the 19
sources with no high-energy (HE; E � 10 GeV) or very-high-
energy (VHE; E � 300 GeV) association in order to provide new
multiwavelength information of candidates without a lower energy
counterpart. After evaluating those sources, a short list of three
targets was selected: 2HWC J2006+341 (RA = 301.55◦, Dec. =
34.18◦), 2HWC J1907+084∗ (RA = 286.79◦, Dec. = 8.50◦), and
2HWC J1852+013∗ (RA = 283.01◦, Dec. = 1.38◦). These sources
were chosen because they lie in the FoV of previous MAGIC
observations, allowing MAGIC to analyse these sources without
performing new dedicated observations.

Even though the HAWC spectra of each source were determined
using a likelihood fit, the 2HWC catalogue did not use a likeli-
hood method to describe multiple sources simultaneously. In the
2HWC catalogue, the asterisk of 2HWC J1907+084∗ and 2HWC
J1852+013∗ indicates that the sources were near another source
with larger significance and thus their characterization may be
influenced by neighbouring sources. 2HWC J2006+340, 2HWC
J1907+084∗, and 2HWC J1852+013∗ were detected in the point
source search with significances of 6.10σ , 5.80σ , and 8.50σ , re-
spectively. The corresponding photon index and flux normalization
values obtained in the 2HWC catalogue are listed in Table 1. Their
corresponding energy range is computed with a dedicated HAWC
analysis (see Section 2.1) and also given in the table.

The paper is structured as follows. In Section 2, the data analysis
for MAGIC and Fermi-LAT observations are presented. Description
of the specific HAWC analysis on the selected sources is also
included. The observations and results, for each source separately,
are shown in Section 3. Discussion and conclusion can be found in
Sections 4 and 5, respectively.

2 DATA A NA LY SIS

2.1 HAWC

The HAWC Observatory is the second generation of ground-based
gamma-ray extensive air shower arrays, located in Sierra Negra,
Mexico (19.0◦N, 97.3◦ W, 4100 m a.s.l.), and successor to the
Milagro Gamma-ray Observatory. The current system, inaugurated
on 2015 March 20, is comprised of 300 water Cherenkov detectors
over an area of 22 000 m2. Science operations began before

MNRAS 485, 356–366 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/1/356/5289894 by N
ASA G

oddard Space Flight C
tr user on 08 April 2021



MAGIC and Fermi-LAT results on HAWC sources 359

Table 1. Coordinates, photon index, flux at the pivot energy (7 TeV), and energy range for the analysed sources. Values are provided in the 2HWC catalogue,
except for the energy range, which was obtained in a dedicated analysis. Only statistical uncertainties are shown. Based on a study of the Crab Nebula by
HAWC (Abeysekara et al. 2017b), the systematic uncertainty can be divided into several components: 0.10◦ in angular resolution, 0.2 in photon index, and
50 per cent in flux normalization.

RA Dec. l b 1σ stat. error Photon index
Flux

normalization Energy range

(◦) (◦) (◦) (◦) (◦)
(× 10−15

TeV−1 cm−2 s−1) (TeV)

2HWC
J2006+341

301.55 34.18 71.33 1.16 0.13 2.64 ± 0.15 9.6 ± 1.9 1–86

2HWC
J1907+084∗

286.79 8.50 42.28 0.14 0.27 3.25 ± 0.18 7.3 ± 2.5 0.18–10

2HWC
J1852+013∗

283.01 1.38 34.23 0.50 0.13 2.90 ± 0.10 18.2 ± 2.3 0.4–50

detector completion, under the HAWC-111 configuration. The
angular resolution of HAWC varies with event size (fraction of
photomultiplier tubes reporting a signal or fhit) from 0.17◦ to 1.0◦

(Abeysekara et al. 2017b). HAWC operates with >95 per cent duty
cycle with a large FoV of 15 per cent of the sky, which allows it to
scan two-thirds of the sky every 24 h.

Information presented here on 2HWC J2006+341, 2HWC
J1907+084∗, and 2HWC J1852+013∗ is taken mostly from the
2HWC catalogue Abeysekara et al. (2017c). The only exception
is the energy range shown in Table 1. The likelihood analysis in
HAWC is computed over fhit bins, which can be considered an
energy estimator. However, the fhit bins depend strongly on the
declination and spectral hardness of each source, and so does this
fhit/energy correlation. The energy range is then given as a constraint
on the photon distribution as a function of fhit for each separate
source. Following Abeysekara et al. (2017c), we take the energy
range as the boundaries within which the events contribute to the
75 per cent of the TS value.

2.2 MAGIC

MAGIC is a stereoscopic system of two 17 m diameter IACTs
situated on the Canary island of La Palma, Spain (28.8◦N, 17.8◦ W,
2225 m a.s.l.). The current system achieves an integral sensitivity
of 0.66 ± 0.03 per cent of the Crab Nebula flux (CU) in 50 h
of observation above 220 GeV (Aleksić et al. 2016). The energy
threshold in stereoscopic mode is as low as 50 GeV at low zenith
angles under dark observational conditions (Aleksić et al. 2012).

The analysis presented in this work is performed using the
standard MAGIC analysis software (MARS; Zanin et al. 2013).
The significance is computed following equation 17 of Li &
Ma (1983). Differential and integral flux upper limits (ULs) are
calculated using the Rolke algorithm (Rolke, López & Conrad
2005) with a confidence level (CL) of 95 per cent, assuming
a Poissonian background and a total systematic uncertainty of
30 per cent.

As mentioned above, the three analysed sources were included
in the FoV of former MAGIC observations. These archival data
were taken using the false-source tracking mode, or wobble-mode:
the telescopes point at four different positions located 0.4◦ from
the nominal source, which allows us to evaluate the background
simultaneously (Fomin et al. 1994). Thus, our observations were not
dedicated to the 2HWC sources and so, their coordinates are shifted
from the camera centre by different distances than the standard offset
of 0.4◦ (see Fig. 1). To account for their location in the camera, the
background used in the calculation of ULs was evaluated through

the off-from-wobble-partner (OfWP) method (Zanin et al. 2013).
Table 2 summarizes the distances between the camera centre and
the 2HWC sources at the four different wobble positions. The total
observation time, after data quality cuts, for each case is also quoted
in Table 2. It is worth highlighting that the MAGIC sensitivity
depends on the angular offset from the pointing direction. However,
after the MAGIC upgrade of 2011–2012, the sensitivity at offset
angles larger than 0.4◦ improved considerably as shown by Aleksić
et al. (2016). For the analysis performed in this work, and given
the range of angular offsets for all the candidates, the sensitivity
remains between ∼0.6 and 1.0 per cent CU.

Observations of 2HWC J1852+013∗ were carried out entirely
under dark conditions, i.e. in absence of moonlight. On the other
hand, 2HWC J2006+341 and 2HWC J1907+084∗ were observed
with nominal high-voltage at background levels ranging between
1 and 8 times the brightness of the dark sky due to different
Moon phases. The higher the moonlight level, the brighter is the
night sky background and therefore, stronger cuts to the signal are
applied during this analysis, following the prescription of Ahnen
et al. (2017). This is taken into account by selecting appropriate
Monte Carlo-simulated gamma-ray and background data to match
the observational conditions. The background data are used for
the computation of the gamma/hadron separation through the
Random Forest, a multidimensional classification algorithm based
on decision trees (Albert et al. 2008).

Since the three HAWC sources each have a maximum signif-
icance in the point-source HAWC maps, they may be point-like
sources for MAGIC as well. Therefore, we analyse the candidates
under two hypotheses: we assume that the sources are point-like
for MAGIC (point spread function (PSF) � 0.10◦, beyond a few
hundred GeV) or are extended with a radius of 0.16◦. Larger
extensions cannot be adopted due to the OfWP method and the
standard 0.4◦ offset applied in the wobble pointing mode, because
the expected region of gamma-ray emission from the 2HWC source
and the background regions selected to compute flux ULs would
overlap.

2.3 Fermi-LAT

The LAT on board the Fermi Gamma-Ray Space Telescope has
continuously monitored the sky since 2008. It is sensitive to HE
gamma rays between 20 MeV and ∼1 TeV (Atwood et al. 2009)
and scans the entire sky every 3 h. For this work, we used data
taken between 2008 August and 2017 February based on the Pass
8 SOURCE photon reconstruction. The Pass 8 data offer two
primary benefits for the study of HE gamma-ray sources: a greater
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360 M. L. Ahnen et al.

Figure 1. MAGIC significance skymaps for the FoV of 2HWC J2006+341 and 2HWC J1907+084∗, searching for sources of ∼0.16◦ radius. The four different
wobble positions, to which MAGIC pointed during the 3FHL J2004.2+3339 and 1HWC J1904+080c observations, are tagged with W1, W2, W3, and W4 in
white colour. MAGIC point spread function is shown in orange at the left bottom in each panel. Left-hand panel: Skymap of the observations at the direction
of 3FHL J2004.2+3339 (yellow diamond). This FoV contains 2HWC J2006+341 (orange diamond) located at ∼0.63◦ from the nominal position of MAGIC
observations. Centred at the position of 2HWC J2006+341, the orange dashed circle corresponds to the assumed extension of 0.16◦ used for the MAGIC
analysis. The HAWC contours (4σ , 5σ , and 6σ ) are shown as green solid lines. Right-hand panel: Skymap for the observations of the 1HWC J1904+080c
(yellow diamond) FoV in which 2HWC J1907+084∗ (orange diamond) is enclosed. Dashed orange circle represents the 0.16◦ MAGIC extended assumption,
whilst HAWC contours (at the level of 5σ ) are shown as green solid lines. The position of the closest Fermi-LAT source, 3FGL J1904.9+0818, is marked as a
red diamond.

Table 2. Distance in degrees between the four MAGIC wobble pointing positions (W1, W2, W3, and W4) and the selected 2HWC sources. The total time
after data quality cuts, in hours, achieved by MAGIC in each case is also shown.

W1 W2 W3 W4
Distance (◦) ttotal (h) Distance (◦) ttotal (h) Distance (◦) ttotal (h) Distance (◦) ttotal (h)

2HWC
J2006+341

0.5 16.0 0.9 14.0 0.4 16.3 1.0 14.8

2HWC
J1907+084∗

0.5 1.0 1.2 1.0 0.7 1.3 1.1 0.9

2HWC
J1852+013∗

1.1 30.8 0.7 28.8 1.2 29.6 0.6 27.5

acceptance compared with previous LAT reconstructions and an
improved PSF with a 68 per cent containment angle less than
0.2◦ above 10 GeV that is nearly constant with increasing energy
(Atwood et al. 2013).

For each source of interest, we analyse energies between 10 GeV
and 1 TeV using the standard binned likelihood framework provided
by the Fermi Science Tools (v10r01p01). Data within a 10◦ radius
of interest were binned into 8 energy bins per decade and a spatial
bin size of 0.05◦. We used the recommended Galactic and isotropic
backgrounds.1

We did not extend our analysis to lower energies for two primary
reasons: for any HAWC source to be detected at lower energies, it
must be detectable at >10 GeV with the LAT, unless the HAWC
and LAT emission is produced by a different component; and

1Galactic interstellar emission model: gll iem v06.f its, Isotropic:
iso P 8R2 SOURCE V 6 v06.txt . Please see http://fermi.gsfc.nasa.gov/
ssc/data/access/lat/BackgroundModels.html.

this high-energy cut suppresses photons from gamma-ray pulsars
and Galactic diffuse emission in the plane. As a source model
for this analysis, we use the Third Catalog of Hard Fermi-LAT
Sources for point sources (3FHL; Ajello et al. 2017) and the Fermi
Galactic Extended Source (FGES) catalogue for extended sources
(Ackermann et al. 2017).

Using ∼8.5 yr of Pass 8 data, we search for new sources
separately testing both a point-like source and an extended source
at the location of the HAWC candidate. The spectrum of the source
is modelled as a simple power law. After initially fitting a putative
point source at the HAWC position, the position is re-localized.
The normalizations of other sources within 5◦ are left as free
parameters in the fit. To search for a possible extended source,
we use a uniformly illuminated disc with a radius of 0.2◦ as the
initial spatial model. The fermipy package (Wood et al. 2017) fits
both the radius and centroid of the possible extended source. If a
statistically significant source is not found, ULs at the position of
the 2HWC source are computed at 95 per cent CL using a Bayesian
method. The assumed spectral indices are 2.0, 3.0, and the index
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MAGIC and Fermi-LAT results on HAWC sources 361

reported in the 2HWC catalogue (see Table 1). Extended source
ULs are computed assuming a radius of 0.16◦ for comparison with
the limits placed by MAGIC.

3 O BSERVATIONS AND RESULTS

In the following section, we describe the different regions of the sky
that contain the three selected sources, along with the corresponding
observations and results. MAGIC differential ULs are listed in
Table 3, whilst Fermi-LAT integral ULs (above 10 GeV) are quoted
in Table 4 for both point-like and extended hypotheses. Fig. 1
presents the MAGIC significance skymaps for 2HWC J2006+341
and 2HWC J1907+084∗ assuming an extended source with a 0.16◦

radius. A smaller 1◦ × 1◦ MAGIC significance skymap centred in
2HWC J1852+013∗ is shown in Fig. 2. The skymap of the entire
FoV for this source will be included in a dedicated MAGIC paper on
the surrounding region that is in preparation. The flat significance
field displayed in all skymaps is compatible with background in the
entire FoV. The multiwavelength spectral energy distribution (SED)
for each 2HWC source is presented in Fig. 3.

3.1 2HWC J2006+341

2HWC J2006+341 is in the FoV (at ∼0.63◦) of the compact
radio/optical nebula G70.7+1.2, which is thought to be powered
by a pulsar–binary system interacting with a surrounding molecular
cloud. An unidentified source, 3FHL J2004.2+3339, was detected
at the position of this putative binary system. Therefore, VHE
gamma-ray emission from the G70.7+1.2 region could be expected
due to the interaction between the pulsar wind with both the stellar
wind of the companion star and the molecular cloud.

MAGIC observed 3FHL J2004.2+3339 with an extended range
of zenith angles from 5◦ to 50◦. The total data sample amounts to
∼61 h of good quality data from 2015 April to 2016 August. No
significant signal is found in the direction of 2HWC J2006+341
as either a point-like or extended source. In order to calculate the
integral flux ULs, MAGIC adopts a power-law distribution with
photon index � = 2.64, following the HAWC results. Under point-
like assumption, the integral UL, computed at 95 per cent CL for
energies greater than 300 GeV, is 4.0 × 10−13 photons cm−2 s−1,
whilst for 0.16◦ radius, it increases to 3.3 × 10−12 photons cm−2 s−1.
On the other hand, the integral UL for a point-like source in the
direction of 3FHL J2004.2+3339 is 4.3 × 10−13 photons cm−2 s−1

for energies above 300 GeV and assuming a power-law index of 2.6.
In the GeV regime, no known Fermi catalogue source is found to be
coincident with 2HWC J2006+341. The closest Fermi-LAT source
is the already mentioned 3FHL J2004.2+3339 (coincident within
the errors with 3FGL J2004.4+338; Acero et al. 2015). This source
has been searched extensively for pulsations (Clark et al. 2017).
Using the analysis method described in Section 2.3, no significant
(TS ≥ 25) source is detected using either the point or extended
source models.

3.2 2HWC J1907+084∗

2HWC J1907+084∗ is located at ∼0.79◦ from 1HWC J1904+080c,
included in the first HAWC survey. 1HWC J1904+080c was
detected with a pre-trial significance of 5.14σ , which motivated
MAGIC follow-up observations. The coordinates were not coinci-
dent with any known TeV source, although it was close (at 0.3◦)
to a Fermi-LAT gamma-ray hotspot (<5σ ), 3FGL J1904.9+0818
(Acero et al. 2015). Nevertheless, its significance was only ∼4σ

after trials in the published 1HWC catalogue (Abeysekara et al.
2016).

MAGIC performed observations in the direction of 1HWC
J1904+080c over six non-consecutive nights from 2015 May 10
to 2015 May 19. After rejecting the data affected by non-optimal
weather conditions, the total amount of time reached in this FoV was
4.20 h. The region was observed at medium zenith angles from 30◦ to
50◦. No excess is found during the analysis of 2HWC J1907+084∗

data. The 95 per cent CL integral ULs for E > 300 GeV and index
� = 3.25 are 2.8 × 10−12 and 4.6 × 10−12 photons cm−2 s−1 for the
point-like and extended hypotheses, respectively. MAGIC does not
find any significant excess at the position of 1HWC J1904+080c
either, which leads to an integral flux UL for energies greater than
300 GeV of 4.1 × 10−12 photons cm−2 s−1, assuming a power-
law spectrum of � = 2.6. From the Fermi-LAT, the Pass 8
analysis yields no significant emission in the direction of 2HWC
J1907+084∗, either during the point-like or the extended analysis.

3.3 2HWC J1852+013∗

2HWC J1852+013∗ is located in the FoV of the W44 SNR, as well
as in the FoV of the established VHE sources HESS J1858+020
and HESS J1857+026 (subdivided in two emission sites MAGIC
J1857.2+0263 and MAGIC J1857.6+0297; MAGIC Collaboration
et al. 2014). The region was thus extensively observed by the
MAGIC collaboration. 2HWC J1852+013∗ is also located at 0.56◦

away from 3FGL J1852.8+0158, which is classified as a probable
young pulsar using machine learning techniques (Saz Parkinson
et al. 2016).

The data set used by MAGIC here comprises approximately 120 h
of dark quality data, taken from 2013 April to 2014 June, with a span
in zenith range from 25◦ to 50◦. MAGIC does not find any excess
in the direction of 2HWC J1852+013∗. Adopting � = 2.90, the
constraining 95 per cent CL integral ULs are 3.8 × 10−13 photons
cm−2 s−1 for the point-like search and 1.7 × 10−12 photons cm−2 s−1

for the extended search. Specific background selection using OfWP
was applied in this case, ensuring that no background control region
overlaps with any of the several VHE emitting sources in the FoV.
As per the previous sources, ULs are given for E > 300 GeV. Neither
catalogued nor new sources from the Pass 8 analysis arises in the
Fermi-LAT analysis of 2HWC J1852+013∗.

4 D ISCUSSION

Given that the largest population of TeV emitters in our Galaxy are
pulsar wind nebulae (PWNe; see e.g. H.E.S.S. Collaboration et al.
2018a), the selected candidates may be expected to be this source
type. However, the lack of a detection by either MAGIC or Fermi-
LAT complicates the identification of these sources. In order to
investigate their possible PWN nature, we look for detected pulsars
near these 2HWC sources using the ATNF catalogue2 (Manchester
et al. 2005). According to the characteristic ages of the pulsars
around the three selected 2HWC sources (all above a few tens of
kyr), if these pulsars had high initial kick velocities, they could
now be significantly offset from their initial positions and have left
behind an old PWN with no compact object powering it. In this case,
the pulsar position is shifted from the PWN, and without injection
of magnetic flux, the nebula’s emission is expected to be dominated
by inverse Compton(IC).

2http://www.atnf.csiro.au/people/pulsar/psrcat/
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Table 3. MAGIC differential ULs (at 95 per cent CL) for 2HWC J2006+341, 2HWC J1907+084∗, and 2HWC
J1852+013∗, assuming a power-law spectrum with spectral index of � = 2.64, 3.25, and 2.90, respectively. ULs for
both point-like (�0.10◦) and extended (∼0.16◦ radius) assumptions are shown in each case. Due to low statistics, ULs
at the highest energy ranges are not always computed for 2HWC J2006+341 and 2HWC J1907+084∗.

Energy range 2HWC J2006+341 2HWC J1907+084∗ 2HWC J1852+013∗
[GeV] (photons cm−2 s−1)

Point-like Extended Point-like Extended Point-like Extended

139.2–300.0 2.6 × 10−11 6.2 × 10−11 7.1 × 10−11 3.1 × 10−10 1.7 × 10−11 4.6 × 10−11

300.0–646.3 1.4 × 10−12 1.0 × 10−11 8.0 × 10−12 1.7 × 10−11 8.6 × 10−13 4.9 × 10−12

646.3–1392.5 2.5 × 10−13 1.3 × 10−12 2.5 × 10−12 2.3 × 10−12 9.0 × 10−14 3.9 × 10−13

1392.5–3000.0 6.0 × 10−14 9.9 × 10−14 1.7 × 10−13 1.0 × 10−12 6.7 × 10−14 1.2 × 10−13

3000.0–6463.3 1.8 × 10−14 2.7 × 10−14 – 1.4 × 10−13 7.6 × 10−15 1.3 × 10−14

6463.3–
13924.8

– 9.5 × 10−15 – 1.3 × 10−14 1.1 × 10−14 5.5 × 10−14

Table 4. Fermi-LAT 95 per cent CL flux ULs, above 10 GeV, assuming point-like source and extended source a radius
of 0.16◦.

�HAWC � = 2.0 � = 3.0
Point-like Extended Point-like Extended Point-like Extended

(× 10−11 photons cm−2 s−1) (× 10−11 photons cm−2 s−1) (× 10−11 photons cm−2 s−1)

J2006+341 2.4 4.4 2.3 4.7 2.4 4.2
J1907+084∗ 3.1 3.1 2.7 2.7 3.2 3.2
J1852+013∗ 2.1 3.7 2.0 3.3 2.0 3.7

Figure 2. 1◦ × 1◦ MAGIC significance skymap, looking for 0.16◦ extended
sources around 2HWC J1852+013∗, whose position is depicted as an orange
diamond. Dashed orange circle shows the extension of 0.16◦ analysed by
MAGIC, whilst the green solid line corresponds to the 8σ HAWC contour.

PSR J2004+3429 is the closest known pulsar to 2HWC
J2006+341 at a separation of 0.40◦, and is the only one within
a 1◦ radius. This pulsar lies at a distance of 10 kpc, displays a spin-
down power of Ė = 5.8 × 1035 erg s−1, and has a characteristic age
of τ = 18 kyr. Although energetic enough to power a TeV PWN (see
H.E.S.S. Collaboration et al. 2018b), the distance between 2HWC
J2006+341 and PSR J2004+3429 makes this connection improba-
ble: given the characteristic age of 18 kyr, an offset of 0.40◦ (∼70 pc)
could only be explained with an improbably large kick velocity for

the pulsar of ∼4000 km s−1. The mean 2D speed for both young and
old (<3 Myr) pulsars was determined to be only 307 ± 47 km s−1

by Hobbs et al. (2005) with a study involving a subsample of
∼50 pulsars’ proper motion. The offset may be considerably less
when considering HAWC systematic and statistical errors on the
2HWC source location of 0.40◦ ± 0.10◦

syst± 0.13◦
stat. Assuming the

most constraining possible value, 0.24◦, the necessary kick velocity
would decrease to ∼2300 km s−1. This value is not far away from
the fastest known pulsar at ∼1500 km s−1 (Hobbs et al. 2005),
though that value is also uncertain given the distance model applied.
The highest speed for a pulsar with a well-measured distance is
only 640 km s−1. Therefore, we conclude that it is unlikely that
PSR J2004+3429 is directly responsible for the emission detected
by HAWC. On the other hand, Linden et al. (2017) evaluated
the probability of random association between 15 2HWC sources
and their nearby pulsars, including 2HWC J2006+341 and PSR
J2004+3429. For this case, they obtained a chance overlap of only
8 per cent (assuming a source extension of 0.9◦ as provided in the
2HWC catalogue by assigning the halo-like structures visible in
the residual skymaps to 2HWC J2006+341, which presents its own
uncertainties).

There are two pulsars within 0.50◦ of 2HWC J1907+084∗: PSR
J1908+0833 at 0.30◦ and PSR J1908+0839 at 0.33◦. The former
is located at a distance of ∼11 kpc, with a characteristic age of
τ = 4.1 Myr and a spin-down power of Ė = 5.8 × 1032 erg s−1.
The very low spin-down power and old age make it unlikely to be
currently powering a TeV PWN. Alternatively, PSR J1908+0839,
at 8.3 kpc and with a characteristic age of τ = 1.2 Myr, is more
energetic with Ė = 1.5 × 1034 erg s−1, so a relation between this
pulsar and the 2HWC source cannot be initially ruled out. As done
for 2HWC J2006+341, we calculate the kick velocity for the pulsar,
now with an offset of 0.33◦ and a characteristic age of 1.2 Myr. The
obtained velocity is ∼40 km s−1, which is low relative to the average
kick velocity observed through proper motion studies but remains
to be a valid possibility (see fig. 4b from Hobbs et al. 2005). This
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Figure 3. SED from 10 GeV up to ∼90 TeV. In all cases, the assumed
spectrum for the sources is a power-law function with photon index � = 2.64
for 2HWC J2006+341 (top), � = 3.25 for 2HWC J1907+084∗ (middle)
and � = 2.90 for 2HWC J1852+013∗ (bottom), as obtained by HAWC
(see Table 1). Fermi-LAT 95 per cent confidence level ULs for 0.16◦ disc
and point-like hypotheses are shown with dashed green and light green
lines, respectively. MAGIC 95 per cent confidence level ULs are displayed
for both a point-like hypothesis (light orange) and a 0.16◦ radial extension
(orange). The HAWC spectrum (dark blue) is obtained for the parameters
given in Table 1. The light blue band indicates the HAWC spectrum taking
into account 1σ systematic errors of 0.2 and 50 per cent in the photon index
and flux, respectively.

velocity stays within the young pulsars’ 2D speed distribution even
considering HAWC uncertainties (0.33◦ ± 0.10◦

syst± 0.27◦
stat). We

can compare PSR J1908+0839 with the pulsar hosted by Geminga,
a well-known TeV PWN detected by Milagro (Abdo et al. 2009)
and recently by HAWC (Abeysekara et al. 2017a). Geminga’s
pulsar displays a spin-down power of Ė = 3.25 × 1034 erg s−1,
very similar to that shown by PSR J1908+0839, but its distance
is ∼30 times smaller (dGeminga = 250 pc). Given the similar spin-
down power, the nebula PSR J1908+0839 powers should also have
a comparable luminosity with respect to Geminga’s PWN, which
would lead to a flux around three orders of magnitude smaller
than the flux of Geminga and undetectable by HAWC. Therefore,
it is unlikely that 2HWC J1907+084∗ and PSR J1908+0839 are
associated with one another.

Finally, the closest pulsar to the source 2HWC J1852+013∗

is PSR J1851+0118, offset by only 0.10◦. This pulsar lies at a
distance of 5.6 kpc and has a characteristic age of ∼100 kyr
(Yao, Manchester & Wang 2017). If both objects are related the
required pulsar velocity is a reasonable value of ∼100 km s−1,
though this may be as high as ∼245 km s−1 when considering the
largest offset given by 0.10◦ ± 0.10◦

syst± 0.13◦
stat. However, this

pulsar has a relatively low spin-down power, Ė = 7.2 × 1033 erg
s−1, which along with its high characteristic age make it unlikely
to accelerate particles that can emit gamma rays in the TeV regime.
To quantitatively test this scenario, we use the NAIMA software3 to
model the relativistic parent population of the non-thermal gamma-
ray emission accounting for different radiative models (see Zabalza
2015). To obtain the emissivity of the electron population that gave
rise to the gamma-ray emission seen by HAWC, we assume that IC
is the dominant radiative process and that the electron spectrum is
defined by a simple power law. The target photon field for this
process is expected to be a combination of cosmic microwave
background (CMB) and infrared (IR) photons. The assumed energy
densities in each case are standard Galactic values of uCMB =
0.25 eV cm−3 and uIR = 0.30 eV cm−3. With such features, the
total energy carried by electrons above ∼10 TeV needed to explain
HAWC detection would be We(> 10 TeV) ∼ 6.0 × 1046 erg.

Alternatively, we consider the cooling time of these electrons
(tcool), which is computed as follows (Aharonian 2004):

tcool = 3 × 108

(
Ee

GeV

)−1 (
u

eV cm−3

)−1

(yr) (1)

where Ee = 10 TeV is the electron energy and u is the total
energy density of the medium. In this case, we account for IC and
synchrotron losses and hence, assuming a temperature of ∼25 K for
the IR photon field (Moderski et al. 2005), u can be described as

u � B2

8π
+ uCMB

(
1 + 0.01 × Ee

TeV

)−3/2

+ uIR

(
1 + 0.1 × Ee

TeV

)−3/2

, (2)

where B is the magnetic field. We use the aforementioned energy
densities for the CMB and IR photon fields, and for the magnetic
field, we assume the minimum possible value given by the interstel-
lar magnetic field, B = 3 μG, as there is no measured value for the
source. Under these assumptions, the cooling time is tcool ∼ 57 kyr.
Given the spin-down power of PSR J1851+0118, Ė = 7.2 × 1033

erg s−1, the total energy released by the pulsar during the tcool period
would be W ′

e ∼ 1.3 × 1046 erg. Consequently, even assuming that
all the energy released by the pulsar was used to accelerate electrons
above 10 TeV, there would not be enough energy to power a PWN
with the gamma-ray brightness detected by HAWC. According to

3naima.readthedocs.org
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our model, such a PWN would require an energy injection greater
than ∼6.0 × 1046 erg, which is already higher than W ′

e. The low
B and uIR used in this calculation of tcool provide maximum values
for both tcool and the injected pulsar energy, W ′

e. Higher uIR value
would produce higher losses and therefore, a smaller We. However,
an extremely high value for uIR (well above 2 eV cm−3, the IR
energy density observed around Cassiopea A and one of the highest
for a Galactic TeV source) would be needed to decrease We below
1046 erg. We do not consider more complex scenarios in which
Ė or B change with time. The same parent population study was
applied to 2HWC J1907+084∗ and we reach the same conclusions
that corroborated the non-relation with the surrounding pulsars.

MAGIC and LAT ULs also help to constrain our understanding of
the spectrum and morphology of these HAWC sources. The SEDs
for the three candidate PWNe are shown in Fig. 3. MAGIC and
Fermi-LAT analyses are computed with the photon index provided
by HAWC (see Table 1). In the cases of 2HWC J2006+341 and
2HWC J1907+084∗, the MAGIC and LAT extended ULs are at the
level of the HAWC spectrum considering HAWC systematic errors
of 0.2 in the photon index and 50 per cent in the flux normalization.
However, point-like hypotheses are in contradiction with HAWC
results below energies of ∼4 TeV and ∼900 GeV, respectively.
Therefore, it is expected that these two 2HWC sources are extended,
with at least a radius of ∼0.16◦. On the other hand, both MAGIC
and Fermi-LAT results on 2HWC J1852+013∗ are incompatible
with the HAWC spectrum below energies of ∼10 TeV.

These results can be understood in two ways: 2HWC J1852+013∗

is much more extended than the assumed radius of 0.16◦, which
would increase MAGIC and Fermi-LAT ULs above the flux es-
timated by HAWC; or the source does not emit in the sub-TeV
regime, consistent with the constraining ULs obtained by both
MAGIC and the LAT. In the latter case, the spectral shaped of
2HWC J1852+013∗ would have a harder spectrum in the sub-TeV
regime, and a minimum energy of around 10 TeV, instead of 400
GeV, should be assumed (see Table 1). To constrain the former case,
we calculated LAT ULs for discs of larger radii. For a disc of 1.0◦

radius the LAT UL at energies >0.2 TeV is within 1σ statistical
errors of the measured HAWC flux, extrapolated to lower energies.
However, this would also require a harder spectrum in the GeV
regime so as to not exceed LAT ULs at lower energies. Additionally,
as reported in the 2HWC catalogue Abeysekara et al. (2017c), there
may be a significant contribution from diffuse Galactic emission
at the location of 2HWC J1852+013∗ to which HAWC would be
sensitive and MAGIC would not.

5 C O N C L U S I O N

After the release of the 2HWC catalogue, MAGIC and Fermi-LAT
performed dedicated analyses on three new TeV sources detected by
the wide FoV observatory HAWC. None of them were detected at
lower energies and no hotspot was found near them. However, owing
to the increased time and good-quality data of most of the MAGIC
and the Fermi-LAT observations, constraints on the extension of
the sources were possible. With this aim, we performed both point-
like and extended source searches. For 2HWC J2006+341 and
2HWC J1907+084∗, a radius of ∼0.16◦ is viable, given limits from
the extended source search by MAGIC. For 2HWC J1852+013∗,
MAGIC and Fermi-LAT results with respect to HAWC spectra
suggest a much larger extension or a harder spectrum below ∼10
TeV. Moreover, we find that none of the known pulsars in the vicinity
of 2HWC J2006+341, 2HWC J1907+084∗ or 2HWC J1852+013∗

are likely to directly power these objects. It may be that these 2HWC

sources are PWN created by as yet un-detected pulsars, or have some
other origin such as a Galactic supernova remnant. More sensitive
observations in the near future will provide valuable information on
the nature of these sources and help to disentangle features in the
crowded regions.
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México, Ciudad de México 04510 Mexico
52Department of Physics and Astronomy, University of Utah, Salt Lake City,
UT 84112 USA
53Santa Cruz Institute for Particle Physics, University of California, Santa
Cruz, Santa Cruz, CA 95064 USA
54Department of Physics, Stanford University – Stanford, CA 94305, USA
55Department of Physics and Astronomy, University of California – Irvine,
CA 92697, USA
56Department of Physics and Astronomy, Clemson University, Kinard Lab
of Physics, Clemson, SC 29634, USA
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