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Abstract 13 

The precipitation flag in the Soil Moisture Active Passive (SMAP) Level 2 passive soil moisture 14 

(L2SMP) retrieval product indicates the presence or absence of heavy precipitation at the time of 15 

the SMAP overpass. The flag is based on precipitation estimates from the Goddard Earth 16 

Observing System (GEOS) Forward Processing numerical weather prediction system. An error in 17 

flagging during an active or recent precipitation event can either (1) produce an overestimation of 18 

soil moisture due to short-term surface wetting of vegetation and/or surface ponding (if soil 19 

moisture retrieval was attempted in the presence of rain), or (2) produce an unnecessary non-20 

retrieval of soil moisture and loss of data (if retrieval is flagged due to an erroneous indication of 21 

rain). Satellite precipitation estimates from the Integrated Multi-satellite Retrievals for GPM 22 

(IMERG) Version 06 Early Run (latency of ~4 hrs) precipitationCal product are used here to 23 

evaluate the GEOS-based precipitation flag in the L2SMP product for both the 6 PM ascending 24 

and 6 AM descending SMAP overpasses over the first five years of the mission (2015-2020).  25 

Consisting of blended precipitation measurements from the GPM (Global Precipitation Mission) 26 

satellite constellation, IMERG is treated as the “truth” when comparing to the GEOS model 27 
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forecasts of precipitation used by SMAP.  Key results include: i) IMERG measurements generally 28 

show higher spatial variability than the GEOS forecast precipitation, ii) the IMERG product has a 29 

higher frequency of light precipitation amounts, and iii) the effect of incorporating IMERG rainfall 30 

measurements in lieu of GEOS precipitation forecasts are minimal on the L2SMP retrieval 31 

accuracy (determined vs. in situ soil moisture measurements at core validation sites). Our results 32 

indicate that L2SMP retrievals continue to meet the mission’s accuracy requirement (standard 33 

deviation of the ubRMSE less than 0.04 m3/m3).  34 

Key words: IMERG-precipitationCal, SMAP, GPM, GEOS, soil moisture, precipitation  35 
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1. INTRODUCTION 47 

Soil moisture is a critical state variable that controls the land surface water and energy 48 

fluxes [Seneviratne et al., 2010, Koster et al., 2004]. There are many applications of remotely 49 

sensed soil moisture measurements, including alerting farmers to crop stress, indicating saturated 50 

areas where rainfall could trigger landslides, early warning signs of impending droughts, and 51 

emergence of dust storms. The National Aeronautics and Space Administration's (NASA) Soil 52 

Moisture Active Passive (SMAP) satellite mission [Entekhabi et al., 2014], which launched on 31 53 

January 2015, is the second mission available to monitor global soil moisture along with the 54 

European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite [Kerr et al., 2012]. 55 

SMAP’s microwave radiometer operates at an L-band frequency of 1.41 GHz to measure near-56 

surface soil moisture (~ 5 cm topsoil) with a global revisit of 2–3 days. Soil moisture retrievals 57 

from passive microwave measurements have been extensively studied during the past ~30 years 58 

[Jackson et al., 1999; Jackson and Schmugge, 1991; Mo et al., 1982; Schmugge and Choudhury, 59 

1981], utilizing both model simulations and measurements from field campaigns using truck-60 

based, airborne, and satellite radiometers. Calibration and validation efforts to improve SMAP soil 61 

moisture retrieval accuracy (accuracy target = 0.04 m3/m3) continue to occur through dedicated 62 

field campaigns, analyses of data from both core sites and spatially distributed in situ stations 63 

[Chan et al., 2016; Colliander et al., 2017; McNairn et al., 2014], global models and comparisons 64 

with soil moisture products from SMOS mission.  65 

The SMAP standard Level-2 (L2) passive soil moisture product (L2SMP) contains 66 

radiometer-derived soil moisture, brightness temperatures, geolocation, ancillary data, and quality-67 

assessment flags. The SMAP Single Channel Algorithm-V-pol (SCA-V) baseline algorithm (and 68 

two other option algorithms: Single Channel Algorithm-H-pol (SCA-H), Dual Channel Algorithm 69 
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(DCA)) are used to retrieve soil moisture if all of the input, ancillary, and land surface condition 70 

data meet the retrievability criteria. The sensitivity of brightness temperature to ancillary data such 71 

as vegetation water content (VWC), surface roughness, surface temperature etc., and their impact 72 

on soil moisture retrieval accuracy are examined in past works [Du et al., 2000; Ferrazzoli et al., 73 

1992; Flores et al., 2009; Neelam et al., 2020; Neelam and Mohanty, 2015; Ulaby et al., 1983; 74 

Wigneron et al., 2017]. However, there have been no studies (at the time of this analysis) using 75 

either real-time observations or model simulations to evaluate the impact of heavy precipitation 76 

on SMAP measurements. A large precipitation event can cause short-term surface wetting of 77 

vegetation and/or ponding of water on the soil surface which affects the radiometer’s sensing depth 78 

due to changes in the dielectric constant of the scene. Therefore, it is desirable to flag any SMAP 79 

observations and retrievals based on ancillary knowledge of recent precipitation at a given location 80 

to avoid overestimation of soil moisture. Since SMAP does not have the ability to detect rain by 81 

an independent means, it relies on outside ancillary data sources. 82 

Currently, SMAP’s L2SMP soil moisture algorithm includes flagging which indicates the 83 

presence or absence of precipitation at the time of a SMAP overpass based on 3 hr time-average 84 

precipitation estimates from the Goddard Earth Observing System (GEOS) Forward Processing 85 

(FP) numerical weather prediction system (https://gmao.gsfc.nasa.gov/GMAO_products). The 86 

algorithm considers a heavy precipitation event to have occurred if the forecast precipitation rate 87 

P ≥ 1mm h-1. This threshold is the pre-launch criteria selected for the SMAP mission based on the 88 

understanding that P ≥ 1mm h-1 may result in higher non-uniform soil moisture profile and/or 89 

surface ponding, and soil moisture retrieval under such circumstances should be used/interpreted 90 

with caution due to potentially inaccurate soil moisture retrieval. In addition to this, it is impossible 91 

to determine the exact timing of the precipitation event during SMAP overpass from 3 hr GEOS-92 
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FP precipitation forecasts. For example, soil moisture profile might vary for the precipitation event 93 

which occurred 2 mins before the SMAP overpass versus an event which occurred 3 hr before the 94 

SMAP overpass. Also, apart from precipitation threshold, the surface ponding also depends on 95 

prior factors such as soil moisture conditions, soil texture, soil compaction etc. For example, a rain 96 

event on dry soils allow water to move quickly through pores and cracks than wet soils. This 97 

movement is further influenced by soil texture i.e., water moves faster through sandy soils due to 98 

large pore sizes than it does through small pores of clayey soil. Nonetheless, the current SMAP 99 

retrieval algorithm does not use any ancillary estimates of prior soil moisture conditions, and 100 

therefore is considered as a scope for future improvements in the algorithm.  101 

 The SMAP mission had a choice early in the prelaunch days whether to base SMAP 102 

precipitation flagging based on numerical weather model forecasts or use collocated data from 103 

other spaceborne instruments capable of detecting rainfall. From a mission risk standpoint 104 

prelaunch, SMAP decided to use GEOS precipitation forecasts internal to SMAP and not rely on 105 

an external ancillary data source like Global Precipitation Mission (GPM). This decision is 106 

reexamined to understand if using GPM IMERG would have produced different soil moisture 107 

retrievals (number and quality of soil moisture retrievals) than we currently get using GEOS.  The 108 

use of an alternate data impacts the SMAP in two different ways: 1) The GEOS data might miss 109 

the precipitation events that might be observed by IMERG.  This “misdetection” would result in 110 

higher error in soil moisture retrievals; 2) The GEOS data might indicate precipitation when none 111 

was occurring. This “false alarm” would result in data loss though it would not directly impact the 112 

SMAP soil moisture assessment statistics.    113 

Precipitation estimates from numerical weather prediction (NWP) models are only as good 114 

as the physical models and assimilated data inputs [Accadia et al., 2003; Charba et al., 2003; Dai, 115 
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2006]. Uncertainties in the global circulation models (GCMs) “moist physics” algorithms that use  116 

3-dimensional modeling of atmospheric dynamics such as temperature, pressure, humidity, and 117 

winds to determine precipitation, land surface models (LSMs), and initial soil moisture distribution 118 

have a major impact on the evolution of thermodynamic variables in the planetary boundary layer 119 

and subsequently on the precipitation forecasts [Koster, 2004; Koster and Suarez, 1995; Case et 120 

al., 2011, Chen and Avissar, 1994,Ookouchi et al., 1984]. The precipitation measurements from in 121 

situ networks such as rain gauges (although provide direct measurements), are prone to errors such 122 

as under-catch caused due to wind effects [Peterson et al., 1998]. In case of weather radars, 123 

backscatter radiation is dependent upon the drop size distribution which varies considerably 124 

influencing number of rain events detected. The inadequate spatial coverage and 125 

representativeness of rain gauge/radar networks are a major drawback to monitor and quantify 126 

precipitation on a global basis [Kidd and Huffman, 2011].    127 

On the other hand, satellite-derived precipitation observations serve as an alternative to 128 

NWP estimates [Sun et al., 2018] and offer an unparallel advantage to observe precipitation on a 129 

global scale. Therefore, frequent, and regular measurements provided by satellites are essential to 130 

satisfy the needs of the user community, even though there may be some concerns about the 131 

accuracy of the measurements. The near-real time precipitation observations from the GPM 132 

satellite mission provides an opportunity for direct grid-to-grid global comparison with GEOS 133 

model precipitation estimates. The successful 17-year operational life of the Tropical Rainfall 134 

Measuring Mission (TRMM) produced significant improvements in satellite rainfall monitoring 135 

[Huffman et al., 2007a]. As a follow-up to TRMM, the GPM Core Observatory (GPM-CO) 136 

satellite was launched in February 2014 [Hou et al., 2014; Skofronick-Jackson et al., 2017]. The 137 

GPM-CO is a key part of the GPM mission and is designed to be the calibration reference standard 138 
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for unifying the data from a constellation of passive microwave (PMW) and infrared (IR) satellite 139 

platforms. The precipitation estimates are merged through the Integrated Multi-satellitE Retrievals 140 

for GPM (IMERG) system [Huffman et al., 2019] to provide PMW-only, IR-only, and merged 141 

precipitationCal rainfall products for different latency periods (IMERG–Early ~4 h; IMERG–Late 142 

~14 h; IMERG–Final ~3.5 months).  143 

 Therefore, in continuation of ongoing efforts to improve the SMAP retrievals, this paper 144 

describes the impact of precipitation flagging error on SMAP passive soil moisture retrievals. The 145 

main objective of this study is to investigate the impact of GEOS-based precipitation forecasts on 146 

the performance of SMAP L2SMP soil moisture retrievals using satellite precipitation 147 

observations from GPM. As mentioned earlier, the current SMAP L2SMP algorithm uses GEOS 148 

precipitation estimates in the retrieval process to flag the areas with coincident precipitation 149 

observations.  Since GEOS precipitation estimates have their own errors that can impact the 150 

performance of the SMAP L2SMP soil moisture retrievals, we wanted to evaluate the assessment 151 

when IMERG is used as an alternate precipitation source. The paper is organized as follows: 152 

following this introduction, Section 2 further introduces the L2SMP algorithm, the IMERG-153 

precipitationCal and GEOS-FP precipitation products, and the SMAP Core Validation Site (CVS) 154 

data.  Section 3 describes the methodologies adopted for this analysis. Results are detailed in 155 

Section 4 in terms of performance metrics, statistical evaluation, and analysis of example events. 156 

Section 5 contains concluding remarks and plans for future studies. 157 

 158 

2. METHODS AND MATERIALS  159 

2.1. SMAP Level 2 Soil Moisture Algorithm 160 
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The Level 2 SMAP passive soil moisture product (L2SMP, Version 6.5), derived using 161 

SMAP L-band radiometer time-ordered observations (L1B_TB product), are provided on the 36-162 

km global cylindrical Equal-Area Scalable Earth Grid 2.0 (a.k.a. EASE-Grid 2.0), and can be freely 163 

downloaded from the National Snow and Ice Data Center (NSIDC) 164 

(https://nsidc.org/data/SPL2SMP). The retrieval of soil moisture from SMAP brightness 165 

temperature (TB) observations under vegetation is based on an approximation of the non-linear 166 

radiative transfer equation, known as tau-omega model [Mo et al., 1982]:  167 

𝑇𝑇𝐵𝐵(𝑝𝑝,𝑓𝑓,𝜃𝜃) =  𝑒𝑒𝑝𝑝,𝑓𝑓,𝜃𝜃.𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 .𝛶𝛶𝑝𝑝,𝑓𝑓,𝜃𝜃 + 𝑇𝑇𝑐𝑐. �1 − 𝜔𝜔𝑝𝑝,𝑓𝑓,𝜃𝜃�. �1 − 𝛶𝛶𝑝𝑝,𝑓𝑓,𝜃𝜃� + 168 

  𝑇𝑇𝑐𝑐.𝛶𝛶𝑝𝑝,𝑓𝑓,𝜃𝜃. �1 − 𝜔𝜔𝑝𝑝,𝑓𝑓,𝜃𝜃��1 − 𝛶𝛶𝑝𝑝,𝑓𝑓,𝜃𝜃�. 𝑟𝑟𝑝𝑝,𝑓𝑓,𝜃𝜃             (1) 169 

𝛶𝛶𝑝𝑝,𝑓𝑓,𝜃𝜃 = exp �− 𝜏𝜏𝑝𝑝,𝑓𝑓

cos𝜃𝜃
� (2) 170 

where 𝑇𝑇𝐵𝐵(𝑝𝑝,𝑓𝑓,𝜃𝜃) is the brightness temperature [K]; 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is the effective surface temperature [K]; Tc 171 

is the effective vegetation temperature [K]; 𝑒𝑒𝑝𝑝,𝜃𝜃,𝑓𝑓 is the emissivity of the (rough) soil surface;  172 

𝑟𝑟𝑝𝑝,𝑓𝑓,𝜃𝜃 is the rough surface reflectivity; 𝜏𝜏𝑝𝑝,𝑓𝑓 is the nadir optical depth; 𝜔𝜔𝑝𝑝,𝑓𝑓,𝜃𝜃 is the single scattering 173 

albedo. And p, θ and f denote polarization, look angle and frequency, respectively. This study 174 

considers V-polarization only, with constant look angle of 40º at 1.4 GHz frequency. The radiative 175 

transfer (equation 1) is essentially approximated as a summation of three components: 1) the direct 176 

emission by soil and one-way attenuation by canopy (the first term), 2) direct upward emission by 177 

canopies (the second term), and 3) emission by plants and reflected by soil and thereafter 178 

attenuated by vegetation (the third term).  179 

The ancillary data used in the soil moisture retrieval process comes from various sources. 180 

For example, soil temperatures are provided by the Goddard Earth Observing System (GEOS) 181 

https://nsidc.org/data/SPL2SMP
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model. The optical thickness is estimated as a product of vegetation water content (VWC) and a 182 

coefficient (b) that characterizes the structure of the canopy. The vegetation water content is 183 

estimated using a Normalized Difference Vegetation Index (NDVI) climatology derived from 184 

Moderate Resolution Imaging Spectroradiometer (MODIS) data  [Jackson et al., 2004].  A more 185 

detailed discussion about soil moisture retrieval using the tau-omega model can be found in 186 

O’Neill et al., 2019. In SMAP L2SMP algorithm, a binary flag is used to provide information on 187 

the retrieval quality and land surface conditions. The surface flag is a 16-bit integer field whose 188 

binary representation consists of bits that indicate the presence or absence of certain surface 189 

conditions at a grid cell that affects soil moisture retrieval. A summary of surface conditions, flags 190 

and their thresholds used in operational production can be found in the SMAP L2SMP ATBD 191 

[O’Neill et al., 2019]. Among other surface condition indicators (dense vegetation, mountainous 192 

terrain, urban region, etc.,), a flag for the presence or absence of heavy precipitation at the time of 193 

the SMAP overpass is provided. The SMAP precipitation flag is the 5th bit in the 16-bit surface 194 

quality flag to indicate the surface condition upon the occurrence of precipitation. The flag is 195 

developed based on 3 hr precipitation rates from the GEOS FP system (Version 5.13.0 through 196 

5.17) (Section 3, describes precipitation flagging). The evaluation of precipitation flags estimated 197 

over 6 hr, 12 hr and 24 hr accumulation periods are also conducted for the five-year period 198 

investigated here. 199 

2.2. IMERG precipitationCal  200 

The IMERG Version 06 (V06) level 3 products at 0.1° × 0.1° (~ 11 km) spatial resolution 201 

and 30-minute temporal resolution are used in this study. A detailed description of the algorithm 202 

and data can be found in Huffman et al. (2019). IMERG is a multi-satellite gridded precipitation 203 

product that unifies precipitation estimates from a network of sensors in the GPM constellation. It 204 
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uses the GPM Core Observatory satellite and as many satellites of opportunity as possible in a 205 

very flexible network. The Core Observatory carries the first spaceborne Ku-/Ka-band dual-206 

frequency precipitation radar (DPR) and the multichannel GPM microwave imager (GMI). The 207 

GMI instrument (frequency from 10 GHz to 183 GHz) is a 13-channel passive microwave imager. 208 

The Combined Radar-Radiometer Algorithm (CORRA) [Olson and Masunaga, 2011] uses data 209 

from GMI and DPR [CORRA, Huffman et al., 2007], and calibrates against the Global 210 

Precipitation Climatology Project monthly Satellite-Gauge product [Adler et al., 2012]. The 211 

Lagrangian time interpolation scheme is applied to the merged constellation estimates using the 212 

cloud motion vectors to produce gridded estimates of rainfall. This process is called morphing and 213 

was first developed for the Climate Prediction Center Morphing (CMORPH) precipitation 214 

estimation algorithm [Joyce et al., 2004; Joyce and Xie, 2011]. When PMW observations are 215 

sparse, calibrated IR precipitation estimates are computed using an artificial neural network 216 

system, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 217 

Networks-Cloud Classification System (PERSIANN-CCS) algorithm [Hong et al., 2004; 218 

Sorooshian et al., 2000].  The PMW observations which are heavily affected by the presence of 219 

ice, in such cases IMERG is estimated, i) PMW observations are masked out over snowy/icy 220 

surfaces, so these regions only have PMW-adjusted IR-based estimates, ii) the PMW adjustment 221 

to the IR depends on adjustments interpolated from surrounding areas to the areas where PMW 222 

observations have been screened out due to snowy/icy surfaces [Huffman, 2019]. IMERG 223 

algorithm utilizes a combination of PERSIANN, CMORPH, and CORRA algorithms. It is worth 224 

mentioning that PERSIANN estimates the precipitation based on infrared brightness temperature 225 

image (as input) and artificial neural network (as a model), while CMORPH is mainly based on 226 

microwave data and only uses infrared data when microwave data are not available. The IR 227 
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precipitation estimates are at higher temporal resolutions, but the accuracy of IR-based estimates 228 

is poor due to the indirect relationship between precipitation and IR observations (such as cloud 229 

temperature). The PMW precipitation estimates are observed at lower temporal resolutions but are 230 

more accurate due to direct association of radiative signatures with precipitation characteristics. 231 

The IMERG system runs twice in near-real time (NRT) to accommodate different user 232 

requirements for latency and accuracy. The IMERG-Early data are available with 4 hr latency 233 

(from the time of observation), where only forward morphing is used, targeting applications such 234 

as potential flood or landslide warnings. The IMERG-Late data are available with approximately 235 

14-h latency, where the forward and backward morphing are used, targeting applications such as 236 

agricultural forecasting. The IMERG-Final data set is available approximately 3.5 months after 237 

the observations and is used for research applications. The IMERG-Final precipitationCal product 238 

is calibrated through the Global Precipitation Climatology Centre (GPCC) monthly precipitation 239 

gauge data infused via the TMPA approach [Huffman et al., 2007b]. Thus, the IMERG-Final 240 

estimates are more accurate and reliable than the Early and Late products [Huffman et al., 2019]. 241 

However, to meet the latency requirement for SMAP (less than 24 hrs of acquisition), the IMERG-242 

Early product is used here. For the sake of brevity, the IMERG precipitationCal product is hereafter 243 

referred to as IMERG.  244 

2.3. GEOS 245 

The GEOS precipitation data provided to the SMAP project are at 3 hr temporal and 0.25-246 

degree (latitude) by 0.3125-degree (longitude) spatial resolution. The GEOS Forward Processing 247 

(FP) system is a global atmospheric data assimilation system [Rienecker, et al., 2008]. It uses an 248 

Atmospheric General Circulation Model (AGCM) with primary focus on 3-dimensional modeling 249 

of atmospheric dynamics such as temperature, pressure, humidity, and winds. As a part of 250 
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modeling, the GEOS-FP system assimilates conventional observations and satellite radiances 251 

related to temperature, humidity and winds, among other variables [Lucchesi, 2018]. The SMAP 252 

L2SMP system regrids the GEOS data to the 36-km EASE2 grid [Brodzik et al., 2012](SMAP 253 

Ancillary Data Report: Precipitation. https://smap.jpl.nasa.gov/documents/). Both the GEOS and 254 

IMERG precipitation products have global coverage.  Since they use different sets of algorithms, 255 

parameterizations, and assumptions, a systematic bias between the two products exists. Generally, 256 

the “raw” model precipitation from atmospheric analysis systems have significant biases, i.e., the 257 

statistical properties of model output may differ from those of the observations [e.g., Vrac and 258 

Friederichs, 2014; Case et al., 2011; Adler et al., 2012; Pyle and Brill, 2018]. That is, the model 259 

precipitation may be either too high or low, or incorrectly simulate the monsoon (i.e., rainfall 260 

starts too early or too late), or overestimate the number of rainfall days and/or underestimate 261 

precipitation extremes.    262 

2.4. SMAP Core Validation Sites  263 

The L2SMP soil moisture at 36 km is primarily validated using ground-based in situ 264 

observations obtained from core validation site (CVS) [Chan et al., 2018], which provide in situ 265 

soil moisture measurements for locally dense sensor networks. That is, each CVS includes multiple 266 

in situ soil moisture stations which are matched up in space and time with the corresponding SMAP 267 

L2SMP resolution grid [Colliander et al., 2017]. These measurements are spatially aggregated 268 

using site-specific and well-established upscaling and calibration functions such that the 269 

aggregated soil moisture estimates are representative of the spatial average soil moisture 270 

conditions across the EASE-Grid 2.0 grid cell in which the CVS is located [Colliander et al., 2017]. 271 

This in situ average soil moisture can then be compared to SMAP L2SMP soil moisture retrievals 272 

during the validation process [Chan et al., 2018]. Each of these sites is selected such that they 273 

https://smap.jpl.nasa.gov/documents/
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cover different geographical locations, climate regimes, and land cover types. The in situ data used 274 

for the analysis are checked for quality control (QC), where any sudden spikes, drops, missing data 275 

etc., are removed before determining the upscaled soil moisture value for each grid cell [O’Neill 276 

et al., 2019]. Of 15 CVS’s located globally, 13 sites are used in this analysis with measurements 277 

taken between April 1, 2015 and March 31, 2020. The remaining two sites (Twente and HOBE) 278 

are dropped due to failure to satisfy retrieval quality flags (proximity to water body and urban 279 

region). In spite of the dense sensor networks at CVS, we acknowledge that the spatial discrepancy 280 

between satellite retrieved and in situ soil moisture may introduce uncertainties in soil moisture 281 

validation.   282 

3. Methodology  283 

The IMERG half-hourly precipitation estimates originally at 0.1° × 0.1° resolution are 284 

converted to 36 km × 36 km EASE-2 grid spatial resolution. A binary (0 and 1) mask is applied 285 

while interpolating IMERG to avoid any extrapolation due to no observations. The quality of 286 

IMERG and GEOS precipitation data is first assessed using rain gauge data from USDA 287 

Agricultural Research Service (ARS) sites [Bosch et al., 2007; Coopersmith et al., 2015; Hanson, 288 

2001; Moran et al., 2008; Steiner et al., 2014]. After assessing the quality of IMERG and GEOS 289 

data, the GEOS-based precipitation flag was evaluated against the IMERG-based precipitation flag 290 

both globally and during SMAP ascending and descending overpasses using skill scores and 291 

performance statistics. This analysis is restricted to 60° N – 60° S, the region within which IMERG 292 

provides a consistent coverage. The grid cells representing ocean, large inland water bodies, 293 

coastlines, and glaciated surfaces (e.g., Greenland) are excluded from the analysis. An EASE-Grid 294 

2.0 Land-Ocean-Coastline-Ice mask derived from MODIS MOD12Q1 V004 1 km land cover 295 

product is used for masking [Friedl et al. 2002]. MOD12Q1 utilizes the 17 International Geosphere 296 
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Biosphere Programme [IGBP, Belward, 1996] land cover classes. For each grid cell, the percent 297 

land is calculated by summing the percent of IGBP non-water classes (1-16). The grid cells >= 298 

50% ice are classified as ice, while cells with >= 50% land and < 50% ice are classified as land, 299 

and any remaining cells are classified as ocean (including lakes and inland water).  300 

The skill scores which are frequently used in the precipitation community to verify the 301 

accuracy of precipitation estimates over reference data are used for evaluation [Accadia et al., 302 

2003; Charba et al., 2003; Gerrity, 1992; Pyle and Brill, 2018]. The skill scores are obtained from 303 

the four elements of a standard contingency table: the number of hits H (GEOS = Yes Rain; 304 

IMERG = Yes Rain), misses M (GEOS = No Rain; IMERG = Yes Rain), false alarms F (GEOS 305 

= Yes Rain; IMERG = No Rain), and correct rejections C (GEOS = No Rain; IMERG = No Rain).  306 

A rain event is considered to be occurring at a given time step if the precipitation rate P is greater 307 

than 1mm h-1 and is considered to not be occurring if P is less than or equal to 1mm h-1.  The ability 308 

of the GEOS precipitation estimates to identify the rain events are calculated using four scores: 309 

the probability of detection, the false alarm ratio, the threat score, and the Gilbert skill score. The 310 

elements of the contingency table and skill scores are computed for every 3 hr window, which are 311 

accumulated to represent seasonal [December to February, March to May, June to August, and 312 

September to November] and annual skill. A brief description of the skill scores is given below.  313 

The probability of detection (POD) or hit rate (HR) denotes the fraction of the observed 314 

precipitation events correctly estimated (ranges from 0 to 1).  315 

POD/HR = H
H+M

     (3) 316 

The false alarm ratio (FAR) represents the fraction of precipitation events that did not occur 317 

but were incorrectly estimated as rain (ranges from 0 to 1).  318 
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FAR =  F
H+F

      (4) 319 

The threat score (TS), also known as the critical success index (CSI), measures the fraction 320 

of observed and/or estimated events that are correctly predicted ignoring the correct rejections 321 

(ranges from 0 to 1).  322 

TS = CSI = H
H+M+F

     (5) 323 

The Gilbert skill score (GSS) measures the fraction of observed and/or estimated events 324 

that are correctly predicted, adjusted for the frequency of hits associated with random chance 325 

(ranges from -1/3 to 1). 326 

GSS = H−HR
H+M+F−HR

, where HR = (H+M)(H+F)
H+M+F+C

  (6) 327 

where H = number of hits; M = number of misses/misdetections; F = number of false alarms; C = 328 

number of correct rejections; 𝐻𝐻𝑅𝑅 = number of hits with random chance.  329 

Performance metrics such as unbiased root mean square error (ubRMSE), root mean square 330 

error (RMSE), bias (B), and correlation coefficient (R) are calculated for SMAP soil moisture 331 

retrievals using in situ soil moisture from core validation sites [Chan et al., 2018]. The performance 332 

statistics are computed for the SMAP retrievals with the originally (GEOS-based) precipitation 333 

flag and again when misses/ misdetections (GEOS = No Rain; IMERG = Yes Rain) are removed. 334 

This performance assessment is conducted for the five-year period April, 2015 - March, 2020, and 335 

separately, for ascending (6 PM) and descending (6 AM) SMAP overpasses. The performance 336 

assessment is tested for three algorithms, the Single Channel Algorithm-H-pol (SCA-H), the 337 

Single Channel Algorithm-V-pol (SCA-V) and Dual Channel Algorithm (DCA), though only the 338 

metrics for the SMAP baseline SCA-V are reported here [O’Neill, et al., 2019]. The basic 339 



17 

 

assumptions of the retrieval algorithm such as uniformity of the temperature profiles [Jackson et 340 

al., 2010; Owe et al., 2001] are expected more likely to be satisfied by the descending overpass 341 

than the ascending overpass. Moreover, precipitation also has a diurnal cycle and 6 PM local time 342 

observations are likely to be more impacted due to convective storms especially in warm and 343 

humid climates. For this reason, SMAP soil moisture retrievals are separated for ascending and 344 

descending overpasses.   345 

4. RESULTS AND DISCUSSION  346 

The performance evaluation of GEOS and IMERG will be discussed in two sections: i) a 347 

global spatial and temporal (seasonal) skill score assessment, and ii) soil moisture accuracy 348 

assessment for SMAP ascending and descending overpasses.  349 

4.1. Global Evaluation of IMERG and GEOS Precipitation  350 

 The general distribution of precipitation is similar for IMERG and GEOS (Fig. 1). There 351 

are significant differences in details observed both spatially and temporally, with intensity of 352 

precipitation greatest by far in GEOS precipitation forecasts than in IMERG measurements. The 353 

precipitation areas on the path of Inter-tropical Convergence Zone (ITCZ) varies predictably 354 

throughout the year, as ITCZ migrates latitudinally on a seasonal basis, Fig. 1.  For example, the 355 

west coast of India, and the coast of the Asian Pacific show significant precipitation zones in JJA 356 

(NH, summer). A strong precipitation band in the North Pacific and North Atlantic is noticed 357 

always, which extends eastward in the SON and DJF. Although ITCZ remains near the equator, it 358 

moves farther north or south over land than over the oceans because it is drawn toward areas of 359 

the warmest surface temperatures. It moves toward the Southern Hemisphere (SH) from September 360 

through February and reverses direction in preparation for Northern Hemisphere (NH) Summer. 361 
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This movement is expected due to the differential warming of the hemisphere following the sun. 362 

An elaborate discussion on the spatial and temporal variability in the precipitation patterns are 363 

discussed in past studies [Adler et al., 2017, 2012; Hou et al., 2014; Huffman et al., 2015, 2007c; 364 

Maggioni et al., 2016; Reichle et al., 2017]. Regions with significant precipitation differences (Fig. 365 

1) i.e., Amazonia, central Africa, and Southeast Asia show poor correlation between IMERG and 366 

GEOS (Fig. 2), while regions over eastern USA, Europe, and parts of China and Australia show a 367 

strong correlation (R>0.8). The correlation between IMERG and GEOS also show a seasonal 368 

migration with poor values in DJF (JJA) over NH (SH). The precipitation forecasts from GEOS 369 

show higher rainfall estimates especially over tropical regions than the satellite based IMERG 370 

precipitation. This overestimation by GEOS compared to IMERG especially over the tropics can 371 

be attributed to the large land surface heterogeneity uncertainties in the GCM, LSM and initial soil 372 

moisture distribution which impact the planetary boundary layer and hence the precipitation 373 

forecasts [Koster, 2004; Koster and Suarez, 1995; Case et al., 2011, Chen and Avissar, 1994; 374 

Ookouchi et al., 1984]. Studies by Maggioni et al., 2016; Xu et al., 2017, have also shown that 375 

regions with complex terrain and high‐elevation regions show poorer rain detection. The 376 

percentage of detecting very low rain intensities is higher in IMERG and could potentially be 377 

related to the more frequent data collected by the constellation of GPM satellite observations used 378 

in estimating the IMERG product. Many uncertainties in IMERG data can mainly be attributed to 379 

IR morphing to improve the global coverage, which is based on cloud temperature i.e., cold cloud 380 

tops suggest more rain. A relationship between cloud top brightness and temperature is used to 381 

indicate precipitation rate. This indirect relationship may introduce uncertainties associated with 382 

the height, thickness, and type of cloud, and this relationship is uncertain especially over land 383 

regions [Sun et al., 2018].   384 
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The impact of ITCZ migration is also noticed on skill scores estimated globally Fig. 3(a). 385 

For example, in Fig. 3(b) a higher HR is noticed over Eastern USA and Indian Sub-Continent in 386 

NH for JJA, while over Central Amazonia and Australia in SH for DJF. As seen in Fig. 4 and 387 

Table 1.II, in NH the HR increased for 3 hr and 6 hr precipitation accumulation periods after which 388 

it decreased, and this remains true for all four seasons, while for SH, the HR consistently improved 389 

with increase in precipitation accumulation period. The FAR followed a U-curve both in SH and 390 

NH, where a higher FAR is noticed at 3 hr and 24 hr accumulation periods, except for winter in 391 

NH where it decreased consistently with the precipitation accumulation periods. A trend that is 392 

like HR is also observed for TS and GSS. The latitudinal distribution of HR and FAR follow an 393 

M-curve (Fig. 5) i.e., lowest (highest) HR (FAR) noticed in the ± 20° latitudinal band, a region 394 

with high precipitation frequency and intensity. A clear seasonal difference in the latitudinal 395 

distribution of HR/FAR is observed over NH than in SH, where the variability within HR/FAR is 396 

more random.  397 

The differences between the IMERG precipitation product and GEOS precipitation 398 

forecasts are expected given the variability in physical processes, and assumptions used in the 399 

respective algorithm development. IMERG generally observes lower precipitation intensities and 400 

higher spatial variability than GEOS. Also, the ability to detect light rainfall events is superior in 401 

IMERG than GEOS [Sunilkumar et al., 2019; Xu et al., 2017]. A comparison between IMERG 402 

and GEOS is conducted with ARS rain gauges at three SMAP CVS (the only SMAP CVS where 403 

rain gauge data are available for this analysis), Table 1.I, where a higher HR is observed for 404 

IMERG-ARS compared to GEOS-ARS.  405 

 4.2. Accuracy Evaluation for SMAP Ascending and Descending Overpasses 406 
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In general, rainfall maxima are reported in the mid- to late afternoon for land regions [Yang 407 

and Smith, 2006]. This is because during afternoon/evening time when the land surface is still 408 

warm there is a rapid upward convection of hot air which collides with the cool upper air in the 409 

atmosphere, resulting in a rain event. A higher HR and lower FAR during afternoon/evening can 410 

also be noticed from SMAP ascending overpass than from SMAP descending overpass (morning), 411 

Fig. 6. Similarly, the number of correct rejections, i.e., no rain events, are also found to be lower 412 

during ascending overpasses, and higher during descending overpasses.  413 

The key results from this analysis, i.e., evaluation of misdetections (section 3) on soil 414 

moisture retrieval accuracy are summarized in Table 2 (I and II). Among the three algorithms 415 

(SCA-H, SCA-V, DCA), SCA-V shows superior performance and was able to deliver the best 416 

overall retrieval results, achieving an average ubRMSE of 0.0362 m3/m3 (6 AM descending) and 417 

0.0350 m3/m3 (6 PM ascending). With misdetections removed, the ubRMSE slightly improved to 418 

0.0359 m3/m3 (6 AM descending) and 0.0347 m3/m3 (6 PM ascending). Correlations of 0.811 for 419 

6 AM descending overpass show a marginally increase to 0.812, while for 6 PM ascending 420 

overpass the correlation remain same at 0.815 even after misdetections are removed. These results 421 

remain true for different precipitation accumulation durations. For SMAP ascending (descending) 422 

overpasses, the number of misdetections decreased (increased) with increase in precipitation 423 

accumulation periods i.e., 3 hr, 6 hr, 12 hr and 24 hr as shown in Fig. 7(a)-b. This may be because 424 

the probability of convective storms which are more likely to occur during SMAP ascending 425 

overpasses (6 PM) gets diminished with an increase in the accumulation period. In the case of 426 

SMAP descending overpass (6 AM) which typically observe less rain events, the accumulation 427 

period increases the probability of rain events. For both SMAP ascending and descending 428 

overpasses, the number of misdetections generally decreased with an increase in precipitation 429 
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threshold i.e., 0.5 mm, 1 mm, 2 mm, and 3 mm (Fig. 7(b)). The number of misdetections is similar 430 

for ≤ 1 mm/hr threshold i.e., 0.5 mm/hr and 1 mm/hr and for ≥ 1 mm/hr i.e., 2 mm/hr and 3 mm/hr 431 

thresholds, except for few agricultural (temperate) and grasslands (semi-arid) sites such as 432 

Remedhus, Reynolds Creek, Little River and Walnut Gulch where sudden highly convective 433 

storms are developed during SMAP ascending overpasses. Generally, a consistent decrease in 434 

ubRMSE is noticed across all sites Table 2 (I and II). Due to the time, it takes for a wetting front 435 

to travel from the soil surface to soil sensors at depth, there may be times that SMAP receives a 436 

surface wetness signal before the signal reaches in situ soil sensors. Our results also concur with a 437 

recent study conducted at field scale by Colliander et al., 2020, using precipitation gauge data to 438 

evaluate the impact of precipitation events on SMAP soil moisture. Their results showed, the 439 

ubRMSE of soil moisture improved by 0.008 m3/m3, while the correlation increase by 0.01 by 440 

increasing the length of the precipitation time window from 3 hr to 36 hr. It is also worth 441 

mentioning that the analysis was conducted using the IMERG-PMW (microwave-only, section 442 

2.2) product, and a similar effect on retrieval accuracy was observed, although the IMERG-PMW 443 

product had spatial gaps in its coverage which changed the number of observations used in the 444 

analysis. In the case of bias, an average of 0.0092 m3/m3 (6 AM descending) and 0.0118 m3/m3 (6 445 

PM ascending), changed to 0.0093 m3/m3 (6 AM descending) and 0.0121 m3/m3 (6 PM ascending) 446 

after accounting for misdetections. An increase in soil moisture bias is expected if SMAP wrongly 447 

retrieves soil moisture during a rain event due to the lack of a precipitation forecast from GEOS. 448 

If a rain event occurs during a SMAP overpass, SMAP will sense all types of surface wetness such 449 

as ponded rainwater on the soil or vegetation surfaces before the wetting front percolates and the 450 

wetness signal from the rain event is detected by the in situ soil moisture sensors at depth.  This 451 

potential mismatch at times between the “soil moisture” SMAP retrieves from the wet surface and 452 
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the typically drier soil moisture measured by in situ sensors at ~5 cm depth at the time of the rain 453 

event (close to the overpass) can cause biased retrieval. Apart from bias caused due to precipitation 454 

events which generally are higher during SMAP ascending overpasses, the differences in the bias 455 

for 6 PM ascending and 6 AM descending SMAP overpasses [Chan et al., 2018] can also be 456 

attributed to higher uniformity in the vertical temperature profile both in the soil and between the 457 

soil and the air and vegetation layer immediately above the soil at 6 AM [O’Neill et al., 2019]. 458 

Further refinements in the correction procedure for the effective soil temperature described in 459 

[Chan et al., 2016; Choudhury et al., 1982] are expected to improve the observed biases and reduce 460 

the small performance gap between the ascending and descending soil moisture estimates.  461 

In spite of the relatively higher performance of IMERG in detecting rain events, there are 462 

several reasons to reasonably argue why the skill of the IMERG does not contribute towards 463 

improving the retrieval accuracy of SMAP soil moisture or lessening the number of non-retrievals 464 

compared to using GEOS precipitation forecasts: i)  the number of precipitation events (hits + 465 

misses) do not significantly change with respect to the total number of observations used in 466 

estimating SMAP soil moisture retrieval accuracy when using IMERG compared to GEOS. 467 

Because, SMAP has a revisit time of ~2-3 days this reduces the number of rain and no-rain 468 

observations. If a rain event occurs outside the overpass window, i.e., either before or after the 3 469 

hr time window used to calculate precipitation flagging, then a no-rain event (correction rejection) 470 

is considered; ii) the spatial discrepancy between the in situ observations, SMAP soil moisture, 471 

and spatial aggregation of IMERG. And each of these datasets have their uncertainties/limitations 472 

with respect to sparsity in coverage, parameterizations used in land surface models, IR morphing 473 

in IMERG, models used in the retrieval algorithm, etc. The combination of these possible factors 474 
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does not demonstrate a strong case for the use of IMERG precipitation measurements over GEOS 475 

precipitation forecasts in setting the precipitation flags used in SMAP soil moisture retrievals. 476 

 477 
5. CONCLUSION 478 

The Global Precipitation Mission (GPM) (observation) precipitation data provide a unique 479 

opportunity for direct grid-to-grid global comparison with GEOS (model) precipitation estimates 480 

to evaluate SMAP precipitation flagging. The assessment has been conducted using the half-hourly 481 

merged (microwave and infrared) rainfall estimates from IMERG-E for the period of April 2015 482 

– March 2020. Based on comparison with in situ soil moisture observations from CVS, the SMAP 483 

36-km radiometer-based soil moisture (L2SMP) data product continues to perform within the 484 

targeted SMAP mission requirements accuracy (0.04 m3/m3) with the current specifications for 485 

precipitation quality flags based on GEOS precipitation estimates. The ubRMSE of the SMAP soil 486 

moisture product improved slightly from 0.0362 m3/m3 (6 AM descending) and 0.0350 m3/m3 (6 487 

PM ascending) to 0.0359 m3/m3 (6 AM descending) and 0.0347 m3/m3 (6 PM ascending), because 488 

of removing precipitation events as detected from IMERG but not forecast by GEOS. This 489 

improvement in performance metrics was not significantly large enough to warrant a switch at the 490 

present time from the use of GEOS forecasts to IMERG measurements in setting SMAP 491 

precipitation flags. For future work, a synthetic experiment can be performed to understand 492 

precipitation flagging and its impact on soil moisture accuracy beyond CVS sites.  Nevertheless, 493 

the studies using synthetic precipitation dataset should be interpreted cautiously for the 494 

uncertainties (model/algorithms and input variables) associated in the process. 495 

 496 

 497 
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 722 

 723 

Figure 1: The seasonal [DJF, MAM, JJA, and SON]   precipitation accumulation for IMERG (left) 724 

and GEOS (right), 2019. 725 
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 727 

Figure 2: The seasonal variability in correlation between IMERG and GEOS precipitation products 728 

estimated from April 2015 – March 2020.  729 
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 737 

Figure 3(a): Global variations in skill scores estimation from April, 2015-March, 2020: I) Hit Rate 738 

(HR), II) False Alarm Ratio (FAR), III) Threat Score (TS) over DJF, MAM, JJA and SON. 739 

 740 

 741 
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 742 

 743 

Figure 3(b): Spatial variability in hit rate (HR) in JJA over two regions in Northern Hemisphere 744 

(NH) i.e., Eastern USA, Indian sub-continent, and in DJF over Central Amazonia and Australia in 745 

Southern Hemisphere (SH) regions.   746 

 747 

 748 
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 749 

Figure 4: The Hit Rate (HR) and False Alarm Ratio (FAR) obtained over four different 750 

precipitation accumulation periods (3 hr, 6 hr, 12 hr, 24 hr) for Northern Hemisphere (Top) and 751 

Southern Hemisphere (Bottom).  752 

 753 
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 754 

Figure 5: The latitudinal distribution in the Hit Rate (Left) and False Alarm Ratio (Right) plotted 755 

for four seasons; DJF, MAM, JJA, and SON.  756 
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Figure 6: Global variations in the hit rate (HR) and false alarm ratio (FAR)  observed for SMAP 

descending (6 AM) and ascending (6 PM) overpasses for June to August, 2018. The red squares 

represent the core validation sites (CVS). 
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Figure 7(a): The variability in number of misdetections/misses for different precipitation 

accumulation periods for SMAP ascending (6 PM) (Left) and SMAP descending (6 AM) (Right) 

overpasses from April 2015- March 2020.  

 

Figure 7(b): The variability in number of misdetections/misses for different precipitation 

thresholds for SMAP ascending (6 PM) (Left) and SMAP descending (6 AM) (Right) overpasses 

from April 2015- March 2020.  
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Table 1: The mean estimates of skill scores (Hit Rate = HR; False Alarm Ratio = FAR; Threat Score = TS; Gilbert Skill Score = GSS) 

are presented for 5 years (April, 2015 – March, 2020)  of analysis, I) for GEOS-ARS, IMERG-ARS and GEOS-IMERG using three 

Agricultural Research Sites (ARS) which are also Core Validation Sites (CVS) for SMAP, II) seasonally for GEOS-IMERG for Northern 

Hemisphere (0°- 60°N), Southern Hemisphere (0°- 60°S), land-only pixels. 

Table 1.I 

Precipitation 
Accumulation Data Sets 

Little Washita  Fort Cobb Little River 
HR FAR TS GS HR FAR TS GS HR FAR TS GS 

3 hr 

GEOS-ARS 0.26 0.72 0.14 0.16 0.22 0.76 0.12 0.13 0.11 0.85 0.05 0.07 
IMERG-

ARS 0.32 0.75 0.14 0.16 0.30 0.77 0.14 0.15 0.17 0.87 0.06 0.08 

GEOS-
IMERG 0.28 0.61 0.18 0.19 0.28 0.61 0.18 0.19 0.24 0.57 0.17 0.18 

6 hr 

GEOS-ARS 0.31 0.67 0.18 0.19 0.30 0.68 0.17 0.18 0.14 0.80 0.07 0.09 
IMERG-

ARS 0.43 0.67 0.21 0.23 0.43 0.69 0.20 0.22 0.20 0.84 0.07 0.10 

GEOS-
IMERG 0.33 0.55 0.22 0.24 0.33 0.50 0.23 0.25 0.25 0.53 0.18 0.20 

12 hr 

GEOS-ARS 0.36 0.62 0.21 0.23 0.37 0.58 0.23 0.25 0.20 0.71 0.12 0.14 
IMERG-

ARS 0.57 0.56 0.31 0.33 0.55 0.56 0.30 0.32 0.37 0.71 0.17 0.19 

GEOS-
IMERG 0.34 0.53 0.22 0.24 0.36 0.49 0.25 0.27 0.26 0.53 0.19 0.20 
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24 hr 

GEOS-ARS 0.45 0.60 0.25 0.27 0.49 0.55 0.29 0.31 0.31 0.69 0.17 0.18 

IMERG-
ARS 0.62 0.53 0.34 0.36 0.61 0.56 0.32 0.34 0.67 0.67 0.27 0.28 

GEOS-
IMERG 0.38 0.54 0.24 0.26 0.41 0.46 0.28 0.30 0.26 0.45 0.20 0.22 

 

 

Season Precipitation 
Accumulation 

Northern Hemisphere Southern Hemisphere 
HR FAR TS GS HR FAR TS GS 

DJF 3 hr 0.170 0.785 0.095 0.087 0.245 0.744 0.139 0.107 
6 hr 0.185 0.763 0.103 0.095 0.273 0.731 0.151 0.118 
12 hr 0.192 0.738 0.105 0.098 0.298 0.736 0.155 0.120 
24 hr 0.187 0.720 0.099 0.092 0.313 0.766 0.144 0.110           

MAM 3 hr 0.232 0.749 0.127 0.117 0.234 0.741 0.135 0.112 
6 hr 0.246 0.733 0.133 0.122 0.260 0.726 0.148 0.123 
12 hr 0.231 0.736 0.125 0.114 0.283 0.725 0.154 0.127 
24 hr 0.194 0.754 0.100 0.090 0.296 0.748 0.144 0.118           

JJA 3 hr 0.248 0.718 0.146 0.130 0.192 0.770 0.110 0.100 
6 hr 0.266 0.701 0.156 0.140 0.217 0.751 0.122 0.111 
12 hr 0.264 0.701 0.151 0.135 0.234 0.741 0.126 0.115 
24 hr 0.232 0.732 0.123 0.110 0.228 0.756 0.112 0.102 
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SON 3 hr 0.291 0.733 0.152 0.143 0.213 0.752 0.124 0.106 
6 hr 0.308 0.717 0.160 0.150 0.236 0.737 0.136 0.116 
12 hr 0.297 0.716 0.151 0.141 0.254 0.739 0.139 0.119 
24 hr 0.267 0.726 0.130 0.121 0.255 0.773 0.124 0.104 
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Table 2: Comparison between SMAP L2SMP soil moisture performance metrics (April, 2015 – March, 2020) estimated with (top 

row) and without (bottom row) accounting for misdetections based on 3 hr precipitation window for different IGBP land covers using 

CVS in situ stations soil moisture observations conducted for SMAP, I) ascending and II) descending orbits between April 2015 and 

March 2020 for Single Channel Algorithm (SCA-V). 

Site Name Location Latitude, 
Longitude 

Climate 
Regime IGBP Land Cover 

SCV- Ascending 

ubRMSE Bias RMSE 
R N 

(m3/m3) (m3 
/m3 ) 

(m3 
/m3) 

Remedhus Spain 41.3° N, 
5.4° W Temperate Croplands 0.039 0.007 0.039 0.831 693 

0.038 0.008 0.039 0.833  
Reynolds 

Creek USA (Idaho) 31.72° N, 
110.68° W Arid Grasslands 0.043 0.027 0.051 0.636 237 

0.043 0.028 0.051 0.639  

Yanco Australia 34.8° S, 
146.11° E Semi-Arid Croplands/Grasslands 0.041 -0.016 0.044 0.905 563 

0.039 -0.015 0.041 0.914  

Carman Canada 49.62° N, 
97.98° W Cold Croplands 0.061 0.065 0.090 0.574 308 

0.061 0.066 0.090 0.576  
Walnut 
Gulch 

USA 
(Arizona) 

31.72° N, 
110.68° W Arid Shrub open 0.025 -0.012 0.027 0.765 471 

0.024 -0.011 0.027 0.768  
Little 

Washita 
USA 

(Oklahoma) 
34.97° N, 
97.97° W Temperate Grasslands 0.022 0.011 0.024 0.913 442 

0.022 0.011 0.024 0.915  

Fort Cobb USA 
(Oklahoma) 

35.36° N, 
98.55° W Temperate Grasslands 0.030 0.047 0.056 0.897 597 

0.030 0.047 0.056 0.897  

Little River USA 
(Georgia) 

31.64° N, 
83.65° W Temperate Cropland/natural 

mosaic 
0.037 -0.068 0.078 0.779 642 
0.037 -0.068 0.077 0.773  
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South Fork USA (Iowa) 42.44° N, 
93.44° Cold Croplands 0.041 0.060 0.073 0.818 139 

0.042 0.060 0.073 0.805  

Monte Beuy Argentina 32.96° S, 
62.52° W Arid Croplands 0.040 0.000 0.040 0.882 325 

0.039 0.001 0.039 0.886  

Kenaston Canada 50.45° N, 
106.38° W Cold Croplands 0.026 0.000 0.026 0.882 285 

0.026 0.000 0.026 0.882  

TXSON USA (Texas) 30.5° N, 
98.5° W Temperate Grasslands 0.019 0.015 0.024 0.936 731 

0.019 0.015 0.024 0.937  

Mongolia Mongolia 
46.063° 

N,106.774° 
E 

Cold Grasslands 
0.031 0.017 0.035 0.777 439 

0.031 0.017 0.035 0.773  
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Site Name Location Latitude, 
Longitude 

Climate 
RegimeII 

IGBPIII Land Cover SCV- Descending 
ubRMSE Bias RMSE R N 

(m3 /m3) (m3 
/m3 ) 

(m3 
/m3 ) 

Remedhus Spain 41.3° N, 
5.4° W 

Temperate Croplands 0.039 -0.006 0.040 0.830 544 
0.039 -0.006 0.040 0.830  

Reynolds 
Creek 

USA (Idaho) 31.72° N, 
110.68° W 

Arid Grasslands 0.040 0.021 0.045 0.667 170 
0.040 0.021 0.045 0.672  

Yanco Australia 34.8° S, 
146.11° E 

Semi-Arid Croplands/Grasslands 0.038 -0.018 0.042 0.902 530 
0.038 -0.018 0.042 0.903  

Carman Canada 49.62° N, 
97.98° W 

Cold Croplands 0.061 0.061 0.087 0.682 328 
0.061 0.061 0.087 0.677  

Walnut 
Gulch 

USA 
(Arizona) 

31.72° N, 
110.68° W 

Arid Shrub open 0.027 -0.026 0.037 0.772 254 
0.027 -0.026 0.037 0.773  

Little 
Washita 

USA 
(Oklahoma) 

34.97° N, 
97.97° W 

Temperate Grasslands 0.021 0.015 0.026 0.917 550 
0.021 0.015 0.026 0.916  

Fort Cobb USA 
(Oklahoma) 

35.36° N, 
98.55° W 

Temperate Grasslands 0.029 0.046 0.054 0.896 652 
0.028 0.047 0.055 0.899  

Little River USA 
(Georgia) 

31.64° N, 
83.65° W 

Temperate Cropland/natural 
mosaic 

0.035 -0.066 0.075 0.800 715 
0.036 -0.066 0.075 0.797  

South Fork USA (Iowa) 42.44° N, 
93.44° 

Cold Croplands 0.045 0.053 0.070 0.742 349 
0.045 0.053 0.069 0.741  

Monte Beuy Argentina 32.96° S, 
62.52° W 

Arid Croplands 0.046 0.013 0.048 0.845 299 
0.045 0.013 0.047 0.846  

Kenaston Canada 50.45° N, 
106.38° W 

Cold Croplands 0.029 0.000 0.029 0.793 259 
0.029 0.000 0.029 0.793  

TXSON USA (Texas) Temperate Grasslands 0.021 0.016 0.026 0.933 688 
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30.5° N, 
98.5° W 0.021 0.016 0.026 0.934  

Mongolia Mongolia 46.063° 
N,106.774° 

E 

Cold Grasslands 0.039 0.009 0.040 0.766 110 

0.037 0.010 0.039 0.775  
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