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Wise men learn from fools. Fools learn from no man.
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SUMMARY

Recent development of vertical takeoff and landing (VTOL) aircraft has renewed in-

terest in the study of propellers. One metric in particular, the propeller pitching moment,

has been observed to be important to VTOL aircraft stability and control in the past. Pro-

pellers at angles of attack could not be accurately modeled in generations past due to a lack

of computational power, but even with advances in computer technology, modern design-

ers seem to possess insufficient knowledge in this area. In this dissertation, we study the

physics behind propeller pitching moment in the context of an isolated propeller and a pro-

peller upstream of a wing. An unsteady 3D vortex lattice method is developed specifically

to model propellers at angles of attack and is validated by comparing to high-fidelity CFD

analyses. We then use the model to isolate velocity influences to show that the propeller

pitching moment is largely caused by two effects: a skewed wake and the presence of wing

circulation. Generated maps of propeller pitching moment over a range of operational pa-

rameters corresponding to VTOL transition show that the low flight speeds and high angles

of attack encountered during transition lead to significant magnitudes of propeller pitch-

ing moment that would be difficult to trim using passive methods. Also, derivation of a

generalizable metric of significance shows that the peak contribution of propeller pitching

moment to aircraft stability is comparable to a longitudinal displacement of the center of

gravity by several percent of the wing chord. Finally, we give a concluding discussion on

the impact of propeller pitching moment on VTOL aircraft design.

xii



CHAPTER 1

INTRODUCTION

In the conceptual design of conventional propeller aircraft, thrust and torque are the primary

propeller metrics of concern to the designer. Secondary effects such as the longitudinal in-

plane normal force or the lateral out-of-plane yawing moment (sometimes referred to as

the p-factor) may be considered if the aircraft is expected to operate beyond low angles of

attack during maneuvers or during takeoff and landing, but these effects rarely constrain

the aircraft design.

The recently renewed interest in vertical takeoff and landing (VTOL) aircraft has led to

aircraft concepts such as tiltwings and tiltrotors that require operating propellers at much

higher angles of attack during the transition from hover to forward flight. Propellers op-

erated in this way will produce non-negligible secondary forces and moments that may

compromise aircraft stability and controllability if not accounted for early in the design

process. One effect in particular, the propeller pitching moment, has received little atten-

tion due to its insignificance to conventional aircraft, but we suspect that it will be important

for propeller-driven VTOL aircraft based on past experimental observations.

This dissertation studies the propeller pitching moment in the context of both isolated

propellers and wing-mounted propellers operating at nonzero angles of attack. A compu-

tational model is developed to investigate the underlying physics and to explore the condi-

tions under which propeller pitching moment would be most significant to aircraft.

1.1 Background

In the mid-1900s, the US government and aviation industry made a concerted effort to

research and develop VTOL aircraft. Although this effort was largely unsuccessful in re-

alizing production VTOL aircraft, the extensive ground and flight testing performed across
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multiple design programs led to valuable insights into the challenges of VTOL aircraft—

chief among them, stability and control during hover and transition [1]. Of particular in-

terest was a nose-up pitching moment during transition that was observed in concepts that

required tilting the propeller, such as the Curtiss-Wright X-100 tiltprop [1] and the Vertol

VZ-2 tiltwing [2, 3, 4, 5, 6]. Some deflected slipstream concepts, such as the Fairchild

VZ-5 [7], also experienced pitching moment problems while others, such as the Ryan VZ-

3RY [8, 9, 10], did not. Supplemental wind tunnel tests attributed the pitching moment

to the propeller, which was observed to generated a pitching moment when operated at an

angle to the freestream [11]. Furthermore, the pitching moment was magnified when the

propeller was positioned in front of a wing [12]. The presence of this pitching moment

was a hurdle for VTOL aircraft designers because established propeller models of the time

were unable to predict this effect with adequate accuracy.

The aeronautics literature concerning propeller secondary effects has been (and still is)

concentrated on the study of normal force and yawing moment. Works dating to as early as

1909, according to reviews by Ribner [13] and Phillips et al. [14], indicate an understanding

of the advancing-retreating blade effect’s role in the generation of normal force and yawing

moment. One of the earliest analytical models that appropriately accounted for induced

velocity was presented by Ribner [13] for propellers at small angles of yaw. De Young

[15] then expanded Ribner’s work to propellers at higher angles. Modern authors have

continued to improve on analytical models of normal force and yawing moment [14], but

the understanding of the underlying physics has remained unchanged.

In contrast, no satisfactory explanations of propeller pitching moment have been found

despite multiple experiments having documented its existence [16, 17, 18, 19, 20, 21].

Early attempts to reconcile the presence of pitching moment in experimental results with

the lack thereof in theoretical models led to the development of a phase lag angle model

[15, 22, 23] that analogized the propeller blades to a harmonically oscillating wing. How-

ever, the phase lag angle method was shown to perform poorly when validated against

2



experimental results [24]. Another analytical model, by Lehman, was referenced for the

propeller design of the Curtiss-Wright X-19 [25] but was also described as being inaccu-

rate when compared to experimental data. The X-19 designers did suspect, however, that

propeller secondary effects were likely strongly dependent on the induced velocity field

but concluded that modeling the induced velocity field of an inclined propeller was beyond

their capabilities at the time.

Perhaps an artifact of past limitations, modern propeller studies utilizing higher-order

induced velocity models [26], unsteady vortex lattice methods [27], or Navier-Stokes CFD

methods [28] that should be capable of analyzing propeller pitching moment still tend to

omit it from discussion. Some recognition can be found in the horizontal-axis wind turbine

literature [29] under the guise of lateral stability in yawed conditions, or in the quadrotor

literature [30, 31], where the rotors in edgewise flight are essentially propellers at high

angle of attack, but discussions are typically shallow or misguided. Description of similar

effects in rotorcraft literature also exist. For example, helicopters experience a phenomenon

known as “blowback” in which a nose-up pitching moment occurs upon initiating forward

motion from hover [32]. However, discussions based on rotorcraft aerodynamics should

be interpreted with caution because the behavior of rotors with flexible, hinged blades and

cyclic pitch control may not be representative of the behavior of rigid fixed-pitch propellers.

1.2 Organization of Work

The goal of this dissertation is to answer the following two research questions:

RQ1: What are the causes of propeller pitching moment?

RQ2: Under what conditions does propeller pitching become significant for aircraft

flight dynamics?

The subsequent chapters are organized as follows: Chapter 2 first posits hypotheses for

RQ1 based on a first-principles analysis of the problem. Chapter 3 then details the devel-

opment of an unsteady vortex lattice method tailored for modeling propellers at nonzero

3



angles of attack, and Chapter 4 validates said model in terms of convergence characteris-

tics and accuracy. In Chapter 5, the developed model is used to test the hypotheses from

Chapter 2 and to answer RQ1, and in Chapter 6, the model is used to explore a range of

operating conditions corresponding to VTOL transition to answer RQ2. Lastly, Chapter 7

concludes with a discussion on the implications of the presented results on VTOL aircraft

design.

1.3 Limitations and Definitions

The secondary propeller effects of interest to this dissertation are the resulting time-average

of the blades’ cyclic instantaneous loads, sometimes referred to as 1P or Aq loads1. The

unsteady loading of individual blades is important to propeller acoustics and fatigue analy-

sis [33, 34] but is not considered here. Additionally, the analysis herein assumes propellers

to be rigid and to rotate clockwise when viewed from the aft looking forward. Figure 1.1

defines the propeller reference frame and conventions used.

Here,−Fx is thrust andMx is shaft torque. The secondary effects include Fy as the side

force, Fz as the normal force, My as the pitching moment, and Mz as the yawing moment.

11P refers to their once-per-revolution frequency, and Aq derives from the proportionality of these loads
to the product of the inflow angle, A, and dynamic pressure, q, for small inflow angles.

4
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Figure 1.1: Propeller reference frame and component forces and moments generated by a
propeller at an angle of attack. Arrows denote positive convention.
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CHAPTER 2

HYPOTHESES FOR THE CAUSES OF PROPELLER PITCHING MOMENT

The total velocity, Vtot, observed by a blade section of an isolated propeller can be ex-

pressed as a vector sum of components from three sources: the freestream velocity from

forward motion, V∞; the tangential velocity from propeller rotation, ω × r; and the in-

duced velocity from the blades and their wakes, Vi. When the propeller is at an angle of

attack, αp, defined about the y axis as illustrated in Figure 1.1, the contribution of V∞ is not

constant and varies with blade azimuthal position, φ. Consider the velocity diagram shown

in Figure 2.1 for a generic blade section located at radius r and azimuth φ on a propeller at

angle αp to the freestream. The decomposition of V∞ is given by

V∞,x = V∞ cosαp (2.1)

V∞,φ = V∞ sinαp sinφ (2.2)

The presence of sinφ in the magnitude of the tangential freestream velocity component,

V∞,φ, indicates that Vtot will vary with azimuthal position, resulting in unsteady cyclic

loads as the blade revolves. However, if V∞,φ were the only component to vary azimuthally,

then there would be zero pitching moment because the distribution of V∞,φ is symmetric

about the y axis (e.g., V∞,φ at φ = 45◦ is identical to V∞,φ at φ = 135◦). Thus, for pitching

moment to be nonzero, there must exist an asymmetric distribution of Vi about the y axis

over the propeller disk.
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Figure 2.1: Decomposition of the total velocity at a blade section. Adapted from [14].

2.1 Skewed-Wake Effect

For the isolated propeller, consider the cases when αp = 0◦ and αp > 0◦, as illustrated

in Figure 2.2. When αp = 0◦, the wake structure is axisymmetric about the rotation axis

and the tip vortices induce an axial component of velocity, Vi,x, in the +x direction at the

propeller disk. When αp > 0◦, the wake becomes skewed in the direction of the freestream

and the induced velocity distribution at the propeller disk would no longer be symmetric

about the y axis. The vorticity shed from the downwind side (blue arrows) continues to

induce a velocity component in the +x direction at the propeller disk but is now in closer

proximity to the downwind side than the upwind side. Meanwhile, the vorticity shed from

the upwind side (red arrows) is now positioned to induce a Vi,x component in the −x di-

rection on portions of the upwind side of the propeller disk. Consequently, the downwind

side of the propeller disk will experience an overall larger (i.e., more positive) induced ve-

locity component in the axial direction than the upwind side. Figure 2.3 demonstrates the

aforementioned asymmetry as effected by a pair of differential vortex segments, dl, that
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were shed from the φ = 0◦ and φ = 180◦ positions one revolution ago. In the top diagram

of Figure 2.3, the φ = 180◦ vortex segment points into the page, and its influence at two

equiradial points on the propeller disk, PU and PD, results in dV U
i,x and dV D

i,x of oppos-

ing directions. In the bottom diagram, the φ = 0◦ vortex segment points out of the page,

and its influence at the same two equiradial points results in dV U
i,x and dV D

i,x in the same

+x direction. However, dV D
i,x is of larger magnitude than dV U

i,x due to the inverse-square

relationship of the Biot-Savart law with distance, s:

dVi =
Γ

4π

dl× s

s3
(2.3)

where Γ is the strength of vortex segment dl and s is the distance vector from dl to P .

Integrating dVi,x over all dl gives the aggregate effect illustrated in Figure 2.2. Note that

the tangential component of induced velocity, Vi,φ, which is dependent on the wake helix

angle, is assumed to be relatively invariant between the upwind and downwind sides of the

propeller.
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Figure 2.2: Comparison of the axial induced velocity components on a propeller at zero
and nonzero angle of attack.
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Figure 2.3: Asymmetric influence of a skewed wake on the axial induced velocity at the
propeller disk.

The effect of the asymmetric distribution of Vi,x is shown in Figure 2.4, which depicts

the velocities and sectional forces experienced by blade sections at the φ = 0◦ and φ = 180◦

positions on a propeller at αp > 0◦. At these azimuthal positions, V∞,φ vanishes so the

only difference is due to the variation in induced velocity. A variation in Vi,x produces

competing effects on sectional forces; increasing Vi,x increases the magnitude of Vtot but

decreases the effective angle of attack, αeff . In practice, the effect of αeff on sectional

forces is more dominant than that of Vi,x, and thus, the blade at φ = 0◦ produces a lower

sectional lift, L′, and sectional drag, D′, than the blade at φ = 180◦. Projection of the

sectional forces in the axial direction, −F ′x, reveals a thrust asymmetry that would result in

a positive pitching moment about the propeller origin.

Technically, a side force is also generated from the asymmetry in the sectional tangen-

tial forces, F ′φ, but the magnitude would be very small when compared to the propeller

thrust. F ′φ (which is not drawn to scale in Figure 2.4) is usually at least an order of mag-

nitude smaller than −F ′x, and the difference between F ′φ at different azimuthal positions
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would be even less.
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Figure 2.4: Comparison of velocity components and sectional forces on a blade section at
φ = 0◦ and φ = 180◦.

2.2 Advancing-Retreating Blade Effect

For completeness, a discussion of propeller normal force and yawing moment is included

here. Consider the velocities and sectional forces experienced by a blade section at the φ =

90◦ and φ = 270◦ positions on a propeller at αp > 0◦, as depicted in Figure 2.5. At φ = 90◦,

the blade is rotating partly against the freestream direction (i.e., advancing) such that the

component of freestream velocity in the tangential direction, V∞,φ, adds to the rotational

velocity, ωr. In contrast, at φ = 270◦, the blade is rotating partly along the freestream

direction (i.e., retreating) such that V∞,φ subtracts from ωr. The asymmetry in V∞,φ results

in the φ = 90◦ position experiencing a larger αeff and Vtot than the φ = 270◦ position,

both of which serve to increase the L′ and D′ produced at φ = 90◦, assuming stall does

not occur1. Projecting the sectional forces in the axial and tangential directions then shows
1Although it is possible forD′ to decrease with increasing αeff if αeff is below the blade section airfoil’s

minimum drag angle of attack, the blades on most practical propellers would not operate in this regime.
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that a positive yawing moment would be generated about the propeller origin from the

difference in −F ′x and that a positive normal force would be generated from the difference

in F ′φ. In actuality, the physics are complicated by an additional asymmetry—the higher

lift generated by the advancing blade results in stronger vorticity being shed and, therefore,

larger induced velocity components at φ = 90◦ than at φ = 270◦. This asymmetry in

induced velocity partially counteracts the effect of V∞,φ on αeff and is expected to be

important for the accurate modeling of normal force and yawing moment. Omittance of

the asymmetric induced velocity would likely result in overpredictions of both.
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Figure 2.5: Comparison of velocity components and sectional forces on a blade section at
φ = 90◦ and φ = 270◦.

2.3 Influence of a Wing

The influence of a wing behind the propeller can be inferred in a similar manner to that

of the propeller wake. Figure 2.6 shows the asymmetric influence of a wing’s circulation

on a propeller at αp = 0◦, where the wing is represented by a lifting line segment, dl,

of strength Γ pointing into the page. The induced velocities at two equiradial points on
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the propeller are shown with decompositions in the x and z directions. Similar to the top

diagram in Figure 2.3, the circulation about the wing results in a Vi,x in the −x direction

on the upwind side of the propeller and a Vi,x in the +x direction on the downwind side.

The effect of the asymmetric Vi,x on sectional forces would be similar to that described in

Figure 2.4, resulting in a positive pitching moment. The circulation also induces a positive

Vi,z over the propeller disk so the effects associated with the advancing-retreating blade

effect described in Section 2.2 may be produced to some degree. If wing thickness is

modeled, then an additional blockage effect would reduce Vi,x in the immediate upstream

vicinity. A propeller positioned with its hub above the wing would experience a further

increase in positive pitching moment whereas a propeller mounted below the wing would

see a decrease in pitching moment.
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Figure 2.6: Asymmetric influence of a wing positioned behind the propeller on the induced
velocity at the propeller disk.

2.4 Summary

In summary, we hypothesize that:

1) The pitching moment of an isolated propeller at an angle of attack is caused by

the skewed wake generating an asymmetric axial induced velocity distribution over the
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propeller disk.

2) The pitching moment produced by a propeller when positioned in front of a wing

is caused by an asymmetric axial induced velocity distribution generated by the wing’s

circulation over the propeller disk.
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CHAPTER 3

DEVELOPMENT OF AN UNSTEADY VORTEX LATTICE METHOD FOR

MODELING PROPELLERS AT ANGLE OF ATTACK

Historically, vortex lattice methods (VLMs) have seen extensive use in the modeling of

propellers, including conventional air propellers [35, 36], ducted fans [37], contra-rotating

propellers [38], and marine propellers [39, 40]. These implementations have typically used

prescribed helical vortex filament wake structures and are suitable for steady, axial flight

operating conditions. However, vortex filament wake structures cannot accurately model

the wakes of propellers at angle of attack. The unsteady blade loading causes vorticity to be

shed in both the streamwise and radial directions, and vortex filaments would only be able

to capture the streamwise component. More recently, improvements in computing speed

have led to an increase in the popularity of free vortex ring wake formulations. Vortex ring

elements can capture the radial vorticity [27, 41], and the free wake formulation allows for

better wake fidelity under high loading conditions [42].

This chapter presents the development of a 3D unsteady VLM with free wake propa-

gation, dubbed RoBIN (Rotating Blades at Incidence in Nonuniform flow), based on Katz

and Plotkin’s vortex ring formulation (found in Section 13.12 of reference [43]). Since

[43] already provides a detailed discussion of the underlying theory, this chapter will focus

on additions to and deviations from the original formulation. The discussion is given in

the context of rotating propeller blades, but the formulation is easily extended to wings by

omitting the rotational aspect.

3.1 Method Overview

A blade is represented in RoBIN as a structured grid of constant strength quadrilateral

vortex rings bound to the mean camber surface. To generate this bound vortex geometry,
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the physical (mean camber surface) geometry is first discretized into a structured grid with

user-specified numbers of panels in the chordwise and spanwise directions. The leading

segment of a vortex ring is then placed on each panel’s quarter chord line, and the trailing

segment is placed at the quarter chord line of the next chordwise panel. For panels at the

blade’s trailing edge, the trailing segment is placed somewhere in the flow behind the panel

as a lump sum representation of the radially oriented vorticity shed over the last time step

(or of the starting vortex in the case of t = 0). Katz and Plotkin suggest a location on the

path of the trailing edge over the last time step at a distance 0.2-0.3 times the length of

said path away from the trailing edge, and a value of 0.25 was selected for RoBIN. The

side segments connect the leading and trailing segments to form a closed ring. Figure 3.1

illustrates the geometry generation process as described thus far.

leading segment

side segment

trailing segment

leading edge

physical geometry (panels)

bound geometry (vortex rings)

trailing edge path

trailing edge

trailing edge 

position at 

𝑡 − 0.25 ∆𝑡

panel Τ1 4-chord

panel Τ3 4-chord

collocation 

point

𝑤

𝑤/4 inset

Figure 3.1: Generation of bound geometry in RoBIN.

The vortex ring strengths are solved with a system of equations that satisfies the Neu-

mann boundary condition at a collocation point for each ring. This collocation point is

located chordwise at the 3/4-chord location on the respective panel and spanwise at the mid-

point for uniformly spaced panels. James [44] showed this 1/4-chord, 3/4-chord placement

15



of the leading segment and collocation point, known as the Pistolesi approximation [45],

to be highly accurate for its level of simplicity, and although more sophisticated placement

schemes exist [46], they were not employed for the current effort.

At each time step, the geometry is first progressed by a prescribed motion, and the wake

vortex rings’ corner points are propagated (via the first order explicit Euler method) by the

local velocities calculated at the end of the previous time step. Then, a new row of wake

vortex rings is shed with strengths equal to those of the bound trailing edge rings’, filling

the newly formed gap between the bound and wake vortex sheets. Finally, the bound vortex

ring strengths are updated, and the local velocities at the wake corner points are calculated

for the next time step.

3.2 Influence Matrices

An important implication of Katz and Plotkin’s suggested method for placing trailing edge

trailing segments is that the bound geometry will change with blade azimuthal position

when propeller angle of attack is nonzero. Specifically, the vortex rings along the trailing

edge will be stretched in the streamwise direction when the blade is advancing and will

be shortened when the blade is retreating because of the freestream velocity’s azimuthally

varying contribution to the trailing edge’s path. Consequently, a unique influence matrix

will be required for each unique orientation of the propeller. To limit the number of unique

orientations and allow for the pre-calculation of all influence matrices, RoBIN requires a

time step size such that a revolution will be completed in a whole number of time steps.

Pre-calculating the influence matrices trades off computation time for memory storage, but

influence matrix size has not posed a problem for the grid resolutions investigated here.

3.3 Inset Distance

In generating the bound geometry, an inset distance, illustrated in Figure 3.1, is applied

at the blade tip to help increase the convergence rate of the solution with respect to grid
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resolution. While the optimal inset distance depends on the load distribution over the blade

[47], w/4 has been shown to be a good approximation for open-tipped lifting surfaces

[37], where w is the spanwise width of a uniformly discretized panel. For the blade-only

geometry used in Chapter 4, the inset distance was applied at both the tip and root since a

spinner was not present.

3.4 Vortex Core Model

A common issue with free wake methods is that wake vortex segments can come in close

proximity with each other due to wake roll up. Left alone, the nonlinearly increasing ve-

locity influence with decreasing distance from a vortex singularity can lead to wake points

experiencing unreasonably large changes in position over a single time step. RoBIN ad-

dresses this issue with a vortex core model to smooth the velocity influence in the close

vicinity of a vortex segment. The model, presented by Ramasamy [48], combines a vor-

ticity strain model by Anarath et al. [49] with the vorticity diffusion model by Bhagwat

and Leishman [50]. After some rearrangement, Ramasamy’s model gives the vortex core

radius as

rvc(t) =

√
r2

0 + 4αot(ν + a1Γ)

(
l0
l

)
(3.1)

where rvc(t) is the core radius at time t, r0 is the initial core radius, αo is the Oseen constant

with a value of 1.25643, ν is the kinematic viscosity, a1 is Squire’s coefficient with an

estimated value of 2e-4 based on empirical data [48], Γ is the vortex strength, l is the

length of the vortex segment, and l0 is the initial length of the vortex segment. Inside of

rvc, a Rankine vortex model was applied to desingularize the vortex.

Ramasamy suggests a r0 value based on the chord length of the shedding blade section,

but in practice, this approach can cause unintended side effects in VLMs. Testing showed

that small enough time step sizes and panel sizes can cause the load calculation points
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(see Section 3.6) or collocation points of trailing edge panels to fall inside the vortex core

radius of the latest row of wake vortex segments, leading to a perpetual under-prediction

of forces. Instead, r0 was set to an arbitrary constant value small enough to exclude any

locations associated with the bound vorticity at which velocities must be calculated. The

r0 value used for the presented work was

r0 = 0.25V∞dt (3.2)

where dt is the time step size. In cases where a wake would intersect bound vorticity, a

similar smoothing approach was applied to the bound vorticity except without any core

radius growth over time. The bound vorticity was given a constant core radius equal to r0,

which prevented unreasonably large influences when intersecting previously shed wakes

while avoiding an unnecessary reduction of influence on the newest row of wake segments.

3.5 Slow-start Rev-up

The prescribed motion for a propeller is a constant rotation speed combined with a con-

stant forward velocity. If such a motion were initiated impulsively, an abnormally strong

starting vortex would be created because of a lack of wake-induced downwash to reduce

the effective angle of attack seen by the blade. This strong starting vortex causes increased

wake deformation and must be sufficiently convected away from the propeller to achieve

a steady-state solution. To alleviate the effects of the starting vortex, a slow-start rev-

up scheme was implemented whereby the target rotation speed and forward velocity are

achieved via a linear increase from much smaller values over a set number of revolutions

(the studies presented here initiated at one percent of the target values and increased over

two revolutions). Keeping the ratio of rotation speed to forward velocity constant keeps

advance ratio constant and maintains the validity of the bound geometry and influence ma-

trices, discussed in Section 3.2, over the course of the rev-up.
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3.6 Load Calculation

Load calculation was performed using the Kutta-Joukowski method, which gives the total

force produced by the ith chordwise and jth spanwise panel, F tot
i,j , as the sum of a steady

and an unsteady force component:

F tot
i,j = F st

i,j + F unst
i,j (3.3)

The steady force component, F st
i,j , is given by

F st
i,j = ρ∞(Γi,j − Γi−1,j)(Ui,j × li,j) (3.4)

where Γi,j is the strength of the vortex ring associated with panel i, j, li,j is the vector of

said ring’s leading segment, and Ui,j is the local total velocity calculated at the midpoint

of the leading segment. Equation 3.4, in effect, combines the steady force contributions

of ring i, j’s leading segment and the upstream ring’s trailing segment. For panels at the

leading edge, the strength of the upstream ring, Γi−1,j , is set to zero. For panels at the

trailing edge, the equation is unchanged, but note that there is no contribution from the

trailing segment because it is technically part of the wake and should be force-free.

Consistent with many other VLM implementations [41, 51], Equation 3.4 calculates

the force from only the bound spanwise-oriented vorticity contained in the leading and

trailing vortex segments. Such an approach derives from the assumption that the flow at

any point along a blade is two-dimensional and normal to the spanwise direction. The

bound chordwise-oriented vorticity of the side segments would then be aligned with the

flow and produce no appreciable force. This assumption is generally valid for wings in

forward flight or for propellers normal to the freestream but not necessarily for propellers

at a nonzero angle of attack. For example, a blade at φ = 0◦ or φ = 180◦ on a propeller at

αp > 0◦ is effectively at a negative angle of attack with respect to V∞, and a vortex ring on

the blade would be oriented with its side segments normal to V∞. The leading and trailing
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segments will still account for a majority of the total force (being mostly normal to the

dominant rotational velocity, ω × r) but the contribution from the side segments may not

be negligible. Some references [52, 53] have suggested that unsteady VLMs should apply

Equation 3.4 to all of the segments of a vortex ring for better accuracy. However, for the

test case described in Chapter 4, load calculations that included steady force contributions

from all bound vortex segments were less accurate than those made with the established

spanwise-only method, especially for side and normal force.

The unsteady force component, F unst
i,j , is given by

F unst
i,j = ρ∞

∂Γi,j
∂t

Ai,j
Ui,j × li,j
|Ui,j × li,j|

(3.5)

where Ai,j is the area of panel i, j. According to Cole [51], there are two interpretations of

the unsteady force component which agree in magnitude (ρ∞
∂Γi,j

∂t
Ai,j) but differ in direc-

tionality. The first is seen in a work by Drela [54] and is applied in the local lift direction,

normal to the local total velocity; the second is seen in works such as [52, 53] and is ap-

plied in the panel normal direction. After testing both directions, applying the unsteady

force component in the lift direction was found to produce more accurate results. These

findings support Katz and Plotkin’s [43] remark that a normal force based solely on the

pressure difference across the vortex ring overpredicts the induced drag by not capturing

the suction peak.

When aggregating propeller forces, the individual force components can be summed

and decomposed into directional components without regard for their point of application.

When calculating propeller moments, the force components were applied at their respective

leading segments’ midpoints.
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CHAPTER 4

MODEL EVALUATION

A series of studies were performed to evaluate RoBIN’s accuracy and convergence char-

acteristics with respect to simulation time, grid resolution, and time step resolution. The

convergence studies were conducted using an isolated propeller geometry, and accuracy

was tested for both an isolated propeller and a propeller upstream of a wing.

4.1 Geometry

The high-lift propeller (HLP) of the NASA X-57 Maxwell [55] was used as the test pro-

peller because the exact geometry was known and CFD analyses of the blades without a

spinner were readily available. The HLP has a radius of R = 0.2880 m, five blades with a

constant MH 114 airfoil along the radius, and the geometry distributions shown in Figure

4.1 [56]. All studies were conducted at the HLP design condition of 4550 rpm, V∞ = 29.8

m/s (58.0 kts), and ρ∞ = 1.225 kg/m3. The propeller origin about which moments were

taken was defined as the intersection of the blade stacking axes and the rotation axis.

For the propeller and wing case, a cross section of the X-57 wing was extruded to form a

rectangular wing. The wing has a span of 3.048 m (10.00 ft) and a chord of 0.7142 m (2.343

ft). The wing was positioned with its midspan quarter-chord at [X, Y, Z] = [0.437315, 0,

0.108] m ([1.43476, 0, 0.353] ft) relative to the propeller origin and with its chord plane

parallel to the propeller’s x-y plane. The midspan quarter-chord was the reference point for

wing moments. Figure 4.2 shows the propeller and wing geometry as modeled in RoBIN.
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Figure 4.1: HLP blade geometry.

Figure 4.2: X-57 HLP and wing as modeled in RoBIN visualized with a notional prescribed
wake.

4.2 Simulation Time Convergence

The first study investigated RoBIN’s convergence behavior with respect to simulation time,

measured in number of revolutions, Nrev. The geometry was discretized into 20 span-

wise and chordwise panels per blade, and a time step size corresponding to ∆φ = 5◦ (72

steps per revolution) was chosen. Figure 4.3 shows the moving average of the forces and

moments over the last revolution for a wide range of αp. Although most runs converged

smoothly, there exists an unsteadiness in the results that grows to a visually observable
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magnitude by the αp = 60◦ case. The unsteadiness is due to increasingly strong distortions

in the wake, as demonstrated in Figure 4.4. The inclusion of a vortex core model helped

to avoid the worst of the singularity-related instabilities, but the wakes of loaded propellers

will inevitably accumulate more curvature than what its fixed grid resolution can accurately

model. This can lead to unrealistic stretching, improper wake intersection, and a general

loss of geometric fidelity. Attaining cleaner convergence behavior at higher αp would re-

quire a dynamic wake refinement algorithm. The study was repeated for coarser and finer

grid and time step resolution settings with similar results.
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Figure 4.3: RoBIN convergence behavior with respect to number of revolutions.
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Figure 4.4: Demonstration of increasingly strong wake distortions with propeller angle of
attack.

4.3 Grid Resolution and Time Step Resolution Convergence

The second study investigated RoBIN’s convergence behavior with respect to grid resolu-

tion and time step resolution. Grids were constrained to have the same number of chordwise

and spanwise panels, and the time step sizes were constrained to result in a whole number
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of steps per revolution. Figure 4.5 shows the convergence behavior with respect to grid

resolution, measured in number of panels per blade, Nppb, and Figure 4.6 shows the con-

vergence behavior with respect to time step resolution, measured in number of time steps

per revolution, Ntpr. The values shown are for αp = 30◦ and are the average forces and

moments over the last revolution normalized by their respective CFD predictions, denoted

by an asterisk (CFD results are discussed in Section 4.4).
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Figure 4.5: RoBIN convergence behavior with respect to grid resolution. αp = 30◦.

Overall, the convergence is well behaved with most metrics asymptoting towards values

within 10% of the CFD predictions. Fy andMy show the most difficulty in converging with

both measurements seeming to fluctuate from what would be a smooth convergence curve.

Upon closer inspection, these fluctuations are present for all other forces and moments but

are imperceptible when compared to the magnitudes of their unnormalized values. Based

on this observation, these fluctuations are likely caused by the same wake distortions dis-

cussed in Section 4.2 because Fy and My are primarily caused by a wake-induced velocity

asymmetry that, unlike Fz andMz, is not diluted by the asymmetry in tangential freestream
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Figure 4.6: RoBIN convergence behavior with respect to time step resolution. αp = 30◦.

velocity. The 25-35% underprediction in Fy is due to the small magnitude of F ∗y . The im-

pact of any inaccuracy, such as the lack of viscous drag, is exaggerated in the prediction of

Fy.

Fx and Mx are especially insensitive to Ntpr because increasing Ntpr has little effect on

the total amount of vorticity in the wake and, therefore, little effect on the average velocity

induced by the wake at the propeller disk. The increase in each measurement with Nppb is

at least partly due to the inset distance shrinking as the panel size decreases, resulting in

larger modeled blade areas.

4.4 Accuracy Compared to CFD

RoBIN’s accuracy was evaluated by comparing against CFD analyses. The primary reason

for using CFD instead of experimental data was the ability to exclude the nacelle and spin-

ner, which have been shown to generate side and normal forces comparable in magnitude to

those of the blades [57]. Since the mean camber surface representation in VLMs is unsuit-
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able for modeling thick bodies, a blade-only geometry was more appropriate for evaluating

RoBIN’s accuracy. The CFD software used for the evaluation was OVERFLOW.

4.4.1 OVERFLOW Setup

The model geometries were created using Open Vehicle Sketch Pad (OpenVSP) [58] and

exported in a PLOT3D format for gridding. Chimera Grid Tools (CGT) [59] was used

to assemble the overset grid systems. The final grid systems were saved as unformatted,

double-precision, big endian multigrid files for analysis in OVERFLOW.

OVERFLOW (OVERset grid FLOW solver) is a structured, overset grid, Reynolds-

Averaged Navier-Stokes, CFD flow solver developed at NASA [60, 61]. A fifth-order

WENO5M (Weighted Essentially Non-Oscillatory) method [62] with HLLE++ (Harten,

Lax, van Leer and Einfeldt) flux scheme [63] was used to calculate inviscid flux contribu-

tions and second-order central differences were used to approximate the viscous flux. A

k-ω SST-RC-QCR2000 (rotation correction with quadratic constitutive relationship) turbu-

lence model [64, 65] coupled with the Langtry-Menter CFX-v-1.1 transition model [66],

despite not being Galilean invariant, was used to maintain commonality with previous X-57

studies [55, 56]. This method has been successfully used in other situations with rotational

reference frames, e.g., Jain [67, 68]. The propeller analyses used dual time stepping with

20 subiterations and a physical step size corresponding to 1° of rigid body rotation to pre-

dict the time accurate flow field, with at least eight revolutions of propeller travel being

simulated. Total forces and moments were then averaged over the final revolution.

To obtain radial and azimuthal distributions of blade forces and moments, solution files

were generated every 12 degrees following the eighth propeller revolution. The force

and moment distributions were computed along each blade at each position using the

TRILOAD program [69]. TRILOAD slices a triangulation of surface loads into many bins

defined by a binning direction and distance and then outputs the resulting bin loads into

an output file. The binning direction for each flow solution was defined such that each bin
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slice was perpendicular to the blade spanwise direction. Blade section loads were computed

using 100 uniformly spaced bins between the blade root and tip.

4.4.2 Angle of Attack Sweep for Isolated Propeller

Figure 4.7 shows the comparison of RoBIN vs. OVERFLOW isolated propeller results

over a sweep of αp. For these runs, the geometry was discretized into 20 spanwise and

chordwise panels per blade (Nppb = 400), the time step size corresponded to ∆φ = 5◦

(Ntpr = 72), and the simulations were run until Nrev = 6.

RoBIN’s predictions show good agreement with those from OVERFLOW until stall

begins to occur in the OVERFLOW solutions at αp = 40◦. The stall occurs in the upwind

region, and the loss of lift there causes a sharp departure in predicted My and a correspond-

ing departure in predicted −Fx. Prior to stall occurring, −Fx predictions from RoBIN are

approximately 5% larger than OVERFLOW’s predictions. This overprediction is likely due

to a combination of lacking viscous drag in the axial direction and a discrepancy between

the inviscid and viscous lift curve characteristics of the MH 114 airfoil. As shown in Figure

4.8, the viscous lift curve of the MH 114 airfoil is slightly lower than the inviscid lift curve1

due to Reynolds number effects. The viscous lift curve also gradually stalls so regions of

the blades at αeff & 5◦ overpredict lift and, consequently, thrust more in RoBIN. The dis-

crepancy in lift curves also causes RoBIN’s Mz predictions to be approximately 5% higher

than those from OVERFLOW. Since the advancing blades experience higher αeff than the

retreating blades, the advancing side sees a greater overprediction of thrust, resulting in a

higher Mz prediction from RoBIN.

RoBIN’s underprediction of Fz is not entirely unwelcome. The recognized lack of vis-

cous drag effects in RoBIN should result in an underprediction of Fz because the presence

of a V∞,z component in the +z direction would produce a corresponding net parasitic drag

force in OVERFLOW. RoBIN’s Fy predictions are also thought to be reasonable consider-

1The inviscid lift curve was generated by modeling a wing with an aspect ratio of 1000 and extracting the
forces from the middle section.
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ing the lack of viscous effects.

0

100

200

300

400

RoBIN

OVERFLOW

-15

-10

-5

0

0

20

40

60

0 20 40 60
0

5

10

15

20

25

0 20 40 60
0

2

4

6

0 20 40 60
0

5

10

15

20

Figure 4.7: Comparison of RoBIN and OVERFLOW results for the isolated HLP over a
sweep of αp.
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Figure 4.8: Comparison of inviscid (RoBIN) and viscous (XFOIL) lift curves for the MH
114 airfoil.
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4.4.3 Force Distribution Comparisons

For a more in-depth analysis of the errors observed, Figure 4.9 compares contours of sec-

tional thrust, −F ′x and −F ′x
∗, from RoBIN and OVERFLOW, respectively, overlaid on a

colored map of the dimensional error, −F ′x− (−F ′x
∗) for αp = 30◦. The extra lift resulting

from the inviscid lift curve discussed previously is evident by the general overprediction

over most of the disk, and the enlarged RoBIN contours on the advancing side confirm

that the discrepancy is more pronounced there. Interestingly, the region of highest (dimen-

sional) error—the tip region between approximately φ = 30◦ and φ = 90◦—is not aligned

with the peak loading direction of φ ≈ 105◦, indicating that its cause is likely not related

to the discrepancy in lift curves. Figure 4.10 shows the same −F ′x and −F ′x
∗ contours as

Figure 4.9 but overlaid on a colored map of the normalized error, −F
′
x−(−F ′x

∗)
−F ′x∗

. When nor-

malized, the region of highest error is revealed to be a band of overprediction at the tip

between φ = 270◦ and φ = 90◦. Note that the blank area near the root is due to −F ′x
∗

going to zero and the normalized error exceeding the colorbar limits, rather than being a

region of zero error.

The cause for this band of overprediction is thought to be explained by Figure 4.11,

which shows the component of kinematic velocity (i.e., velocity due to rotation and forward

motion) in the spanwise direction2 over a blade at a selection of azimuthal positions. Note

the outward velocity at the blade tips in the downwind region; this crossflow is a result of

the V∞,z velocity component. In reality, outward crossflow at the tip would cause wake

shedding off of the blade tip as if it were a trailing edge, but such shedding is not realized

in RoBIN because wake shedding is prescribed only along the trailing edge. The lack of

shedding at the tips is suspected to result in less downwash on and exaggerated lift from

the adjacent blade sections. That the overprediction is a relatively constant percentage of

−F ′x at the tip supports the hypothesis of a wake-related inaccuracy because the strength

2The spanwise direction is not the same as the radial direction. The spanwise direction is normal to the
blade root and tip edges and is the same across the entire blade for a given φ. In contrast, the radial direction
points toward the propeller origin and would vary over a blade.

30



100

1
0
0

2
0
0

2
0
0

200

2
0
0

2
0
0

300

3
0
0

300

300

4
0
0

4
0
0

4
0
0

-10 0 10 20 30 40 50 60

Figure 4.9: Contours of −F ′x and −F ′x
∗ at αp = 30◦ overlaid on a colored map of the

dimensional error. Solid contours are from RoBIN and dashed contours are from OVER-
FLOW.

of the wake shed, and therefore the strength of the downwash, is proportional to the lift.

A similar tip-shedding effect should occur with the inward crossflow at the blade roots in

the upwind region. However, −F ′x
∗ is near zero here so it is difficult to assess whether the

errors are due to modeling inaccuracy or divide-by-zero exaggeration.

Figure 4.12 shows a plot of F ′y, F
′
y
∗, and the dimensional error, F ′y − F ′y

∗, and Figure

4.13 shows a similar plot of F ′z, F
′
z
∗, and F ′z − F ′z

∗. In both instances, good agreement

is found between the RoBIN and OVERFLOW contours with peak errors occuring in the

root region, where the blade has the highest chord length. The peak errors for both forces

are also consistent with a lack of viscous drag—in Figure 4.12, the leftward sweeping

blade on the downwind side lacks a viscous drag force in the −y direction, and in Figure

4.13, the downward sweeping blade on the advancing side lacks a viscous drag force in

the +z direction. Normalized error plots are not shown for F ′y and F ′z because there were

widespread regions of near-zero F ′y
∗ and F ′z

∗ that made the plots ineffective.
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Figure 4.10: Contours of −F ′x and −F ′x
∗ at αp = 30◦ overlaid on a colored map of the nor-

malized error. Solid contours are from RoBIN and dashed contours are from OVERFLOW.

4.4.4 Angle of Attack Sweep for Propeller and Wing

For the propeller and wing case, the propeller geometry was discretized into 15 spanwise

and chordwise panels per blade (Nppb = 225), and the wing was discretized into 40 span-

wise and chordwise panels. The time step size corresponded to ∆φ = 7.2◦ (Ntpr = 50),

and the cases were run until Nrev = 8. The range of αp was reduced to 0◦ ≤ αp ≤ 30◦

because RoBIN is not capable of predicting the wing stall that occurs for αp ' 15◦.

Figure 4.14 shows the comparison of the propeller forces and moments with results

from the isolated case included for reference. That OVERFLOW’s−Fx and Mx results are

higher in the presence of the wing than in the isolated case is likely because of the blockage

effect from the 18% thick wing. RoBIN’s −Fx and Mx results do not show this increase

and are nearly identical to isolated results because the thin vortex lattice representation

of the wing does not produce thickness effects. Good agreement is seen for My, which

approximately doubles with the wing’s presence. The overprediction at αp = 0◦ is also
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Figure 4.11: Shaded map of the component of kinematic velocity in the spanwise direction
over a blade at various azimuthal positions. Positive values defined as inward toward the
center.

attributed to the lack of blockage effects. Since the wing is positioned behind the upper

(downwind) half of the propeller disk, the presence of blockage would increase thrust there

and add a negative pitching moment that is not captured in RoBIN. As αp increases, the

wing blockage is projected further down the disk (toward the upwind side) so the negative

pitching moment would decrease. The increases in Fz and Mz from isolated results indi-

cate the presence of upwash from the wing, which increases the effective angle of attack

observed by the propeller. The change in effective angle of attack can be estimated from

the horizontal shift between the interacting and isolated results and is relatively consistent

between Fz and Mz over the range of αp. For example, both Fz and Mz at αp = 10◦ in the

presence of the wing are approximately equal to Fz and Mz at αp = 15◦ in isolation.

Figure 4.15 shows the comparison of the wing forces and moments for completeness.

The wing forces and moments were not expected to be as accurate as those of the propeller

because the propeller wake passing through the wing allows many opportunities for exag-
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Figure 4.12: Contours of F ′y and F ′y
∗ at αp = 30◦ overlaid on a colored map of the dimen-

sional error. Solid contours are from RoBIN and dashed contours are from OVERFLOW.

gerated panel forces. If a wake vortex segment passes closely to a load calculation point

on the wing, the vortex segment may induce an unrealistically high velocity (even with the

vortex core model), leading to an exaggerated force from the respective bound segment.

The inconsistency in the moment predictions, which are most sensitive to local peak loads,

seem to reflect this problem. The lift and drag forces are less sensitive to local peak loads

and trend closer with OVERFLOW results. The drag is understandably underpredicted due

to a lack of viscous drag.
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and wing case over a sweep of αp.

4.5 Computation Time

Since the RoBIN and OVERFLOW results presented here were generated using different

computing resources, we will avoid a rigorous comparison and only give an anecdotal

account of the computation time. The RoBIN cases were run in sequence on a server with

two Intel Xeon Platinum 8160 CPUs, but the Biot-Savart calculations were accelerated via

four NVIDIA Tesla P4 GPUs. In the study of grid and time step resolution, the runtimes

ranged from 20 seconds to 170 minutes per case. The resolution settings that were selected

for the subsequent isolated propeller analyses (400 panels per blade and 72 time steps per

revolution) required about 20 minutes per case. The OVERFLOW cases were run in parallel

on the NASA Langley Research Center K3-subcluster using 16 Intel Xeon Processor E5-

2670 CPUs for each case. The OVERFLOW cases all completed in about 60 hours.
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CHAPTER 5

INVESTIGATING THE CAUSES OF PROPELLER PITCHING MOMENT

Although the X-57 HLP validation cases showed that propeller pitching moment could

be modeled accurately, the relatively complicated geometry made it difficult to isolate the

hypothesized induced velocity effects for testing. Thus, in this chapter, a set of simplified

propeller and wing geometries are used to test the effects of a skewed wake and wing

circulation on propeller pitching moment.

5.1 Geometry

The propeller geometry used is based on Leishman’s ideally twisted rotor for hover [70],

which is defined by a constant blade chord and the twist distribution,

θ(r) =
θtip
r/R

(5.1)

where θtip is the blade twist at the tip. In reality, a VTOL propeller would most likely need a

variable pitch mechanism to be efficient over the widely varying conditions between hover

and forward flight. Thus, a collective pitch was added to Equation 5.1 to give

θ(r) =
θtip
r/R

+ θcoll (5.2)

For the following isolated propeller cases, θtip = 7◦, θcoll = 5◦, and R = 0.5 m. The

propeller has two blades of constant 0.15R chord that are constructed from flat plate airfoils

stacked at the quarter-chord. No spinner was included but a hub cutout extending out to

0.2R was applied. The design operating condition was selected to be 3600 rpm at V∞ = 30

m/s, which corresponds to an advance ratio of J = 0.5. For the propeller and wing cases,

the same propeller was positioned in front of a rectangular 5 m span by 0.1 m chord wing
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with flat plate airfoils. The wing was centered behind the propeller with the wing’s quarter-

chord 1R away from the propeller origin in the x direction and with the wing’s chord plane

(initially) parallel to the propeller’s x-y plane.

The propeller blades were modeled with 20 spanwise panels each, the wing was mod-

eled with 40 spanwise panels, and both the propeller blades and wing were modeled with

a single row of chordwise panels. This single row of chordwise panels combined with

the quarter-chord offset of the bound vortex rings from the physical geometry grid (as de-

scribed in Section 3.1) meant that the leading edges of the bound vortex rings would be

aligned along the surfaces’ quarter chords, similar to a lifting line model. A simple lifting

line-like model has two advantages here. First, since we are interested in the influence of

induced velocities on blade forces, which are generated by only the leading edge segments

of the bound vortex rings, we can probe the exact induced velocities along the single row

of lifting vortex segments and avoid having to derive a chordwise average. Second, since

wing circulation can be increased in several ways (chord, camber, angle of attack), a lift-

ing line-like representation allows us to focus on the effect of changing circulation without

having to worry about the variations in the distribution of vorticity associated with changes

in wing geometry. Similar reasoning is behind the selection of a very short wing chord.

The wing’s circulation will be controlled by adjusting the wing inclination, and the short

chord reduces the amount of variation in the wake-shedding location at the trailing edge.

The propeller and wing, as modeled in RoBIN, are illustrated in Figure 5.1.
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Figure 5.1: Generic propeller and wing as modeled in RoBIN visualized with a notional
prescribed wake.

5.2 Testing the Effect of a Skewed Propeller Wake

To isolate the effect of a skewed wake on the propeller pitching moment of an isolated pro-

peller, an ad hoc prescribed wake mode was added to RoBIN. The prescribed wake mode

solved for the wake strength as usual but forced the wake to propagate as axisymmetric

helices in the +x direction at a velocity of V∞cos(αp). This prescribed wake should, in ef-

fect, create an induced velocity distribution at the propeller disk that is asymmetric across

the z axis (due to the advancing-retreating blade effect) but symmetric about the y axis,

similar to the induced velocity distribution used by Ribner [13]. A sweep was conducted

over 0◦ < αp < 60◦ and each simulation was run for eight revolutions with 72 time steps

per revolution.

Figure 5.2 compares the propeller forces and moments resulting from the prescribed

wake and free wake modes. The results show why early propeller induced velocity mod-

els that did not capture skewed-wake effects still tended to be useful; the prescribed wake

predictions of −Fx, Mx, Fz, and Mz agree relatively well with those of the free wake, es-

pecially at lower αp where conventional propellers would operate. However, the prescribed

wake mode severely underpredictedMy and Fy, which are nonzero only because the helical
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wake geometry was not symmetric about the x-y plane.
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Figure 5.2: Comparison of propeller forces and moments over a sweep of αp using pre-
scribed wake and free wake modes.

For a more in-depth analysis, Figure 5.3 compares the x component of the total induced

velocity (due to both bound and wake vortex rings) observed along the blades over the

course of the last revolution from the prescribed and free wake modes at αp = 30◦. The

free wake mode resulted in lower induced velocities on the upwind half of the disk while the

two modes produced nearly identical induced velocities on the downwind side. To better

illustrate the difference, Figures 5.4 and 5.5 decompose the axial induced velocity into

contributions from the bound and wake vortex rings, respectively. The bound contributions

show relatively little difference whereas the wake contributions are clearly more negative

on the upwind half of the disk in the free wake mode. Overall, these results suggest that

the skewed wake effect is the primary cause of propeller pitching moment for an isolated

propeller.
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Figure 5.3: Contours of total axial induced velocity observed by the blades over the last
revolution at αp = 30◦. Prescribed wake mode (left) and free wake mode (right).
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by the blades at αp = 30◦. Prescribed wake mode (left) and free wake mode (right).
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Figure 5.5: Contours of wake vortex rings’ contribution to axial induced velocity observed
by the blades at αp = 30◦. Prescribed wake mode (left) and free wake mode (right).

5.3 Testing the Effect of Wing Circulation

To test the effect of wing circulation, the wing was independently inclined about its quarter-

chord to iw = 0◦, 10◦, and 20◦, which resulted in lift-to-thrust ratios of 0, 3.8, and 7.5,

respectively, when αp = 0◦. A sweep of 0◦ ≤ αp ≤ 30◦ was performed at each iw with

each simulation running for 10 revolutions at 40 time steps per revolution. Figure 5.6

shows the propeller forces and moments from these sweeps. Aside from the clear increases

in Fy and My, increases in wing circulation have almost no effect on the other forces and

moments. Only minute increases in Fz and Mz are observed, which is consistent with an

increase in effective αp induced by the wing’s upwash.

Figure 5.7 shows the total axial induced velocity observed along the blades with the

wing at iw = 0◦ and 20◦, respectively. The increase in iw is seen to shift the contours up-

stream such that the upstream half of the disk experiences less downwash than the down-

wind half, consistent with the increase in pitching moment seen in Figure 5.6. Figures 5.8
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Figure 5.6: Comparison of propeller forces and moments over a sweep of αp with varying
αw.

and 5.9 shows the decomposition of the axial induced velocity into contributions from the

propeller (and its wake) and the wing (and its wake), respectively. Compared to the pro-

peller’s self-induced axial velocity, which is actually slightly less on the downwind side,

the wing’s contributions are more positive on the downwind side and are clearly respon-

sible for the increase in pitching moment observed in Figure 5.6. To summarize, it is not

the wing’s upwash, but rather the “forewash” and “aftwash” that causes an asymmetric ax-

ial induced velocity distribution across the propeller disk, resulting in a propeller pitching

moment.
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CHAPTER 6

INVESTIGATING THE CONDITIONS FOR SIGNIFICANCE

It is evident from aviation history that propeller pitching moment was not a defining con-

straint in the stability and control of conventional takeoff and landing aircraft. The rela-

tively low angles of attack and high flight speeds of CTOL aircraft would result in insignif-

icant magnitudes of propeller pitching moment relative to the aircraft’s control authority.

However, observations from previous VTOL aircraft suggest that the low flight speeds and

high angles of attack encountered by propellers during transition invalidate the assumptions

of insignificance.

In this chapter, we use RoBIN to explore the conditions under which propeller pitch-

ing moment becomes significant for aircraft. First, we explore the characteristic trends

of propeller pitching moment by generating performance maps over ranges of transition

operational parameters. Then, we derive a generalizable metric of significance using the

generated maps and a series of justifiable simplifying assumptions. The studies will be

limited to isolated propellers because the inviscid nature of RoBIN’s analysis precludes

accurate solutions of propeller and wing configurations at high angles of attack where the

wing is fully stalled. However, given the revelations from the previous chapters on the

effect of wing circulation, these results will still serve a useful purpose as a conservative

lower bound for aircraft that have (upstream) propeller-wing interaction.

6.1 Pitching Moment Trends during Transition

Instead of using dimensional metrics, as has been the case thus far, the results presented

here are in terms of nondimensional coefficients so that they may be generalized to pro-

pellers and aircraft of varying scale. Two types of coefficients are used: the “plain” coeffi-

cients (e.g., CFx) are normalized by tip dynamic pressure, whereas the coefficients with an
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infinity superscript (e.g., C∞Fx) are normalized by freestream dynamic pressure. The general

forms of the force and moment coefficients are

CF =
F

ρ∞n2Dp
4 (6.1)

CM =
M

ρ∞n2Dp
5 (6.2)

C∞F =
F

1
2
ρ∞V 2

∞Ap
(6.3)

C∞M =
M

1
2
ρ∞V 2

∞ApDp

(6.4)

where n is the rotation speed in rev/s, Ap is the propeller area, and Dp is the propeller

diameter. A useful property of these nondimensional coefficients is that, in the context

of inviscid analysis, they are constant for a given propeller geometry at a given advance

ratio and angle of attack, regardless of dimensional rotation speed, freestream velocity, or

diameter via geometric scaling. Appendix A demonstrates this property.

Figure 6.1 shows a map of CMy divided by −CFx over J and αp. CMy/−CFx reduces

down to My/(−Fx × Dp), which is the percentage of the diameter by which the thrust

vector must be translated down from the rotation axis to produce a moment about the origin

equal to the propeller pitching moment. The sharp rise in CMy/−CFx in the αp = 0◦ and

J = 0.6 corner is where the propeller rotates too slowly and thrust coefficient goes to zero

in the denominator. At J < 0.3, CMy/−CFx generally tends to increase with J due to the

wake becoming more skewed away from the rotation axis. Since the skewed wake causes

the induced velocity asymmetry over the propeller disk, larger skew angles result in larger

pitching moments. However, CMy/−CFx does not necessarily continue to increase with J .

At higher αp where the propeller maintains positive thrust at J > 0.3, CMy/−CFx is seen

to decrease as J increases. This is because the wake skew is limited by and asymptotes

toward the freestream direction, and the diminishing increases in skew is counteracted by
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the wake stretching further over a single revolution at higher J . Since vortex velocity

influence has an inverse-squared relationship with distance, the difference in the velocity

influence magnitude at any two points on the propeller disk diminishes as the influencing

vortex becomes further removed. Figure 6.2 visualizes the wakes of several αp = 90◦

propellers at varying J to demonstrate the stretching and asymptotic skewing of the wake.
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Figure 6.1: Surface of CMy/−CFx over advance ratio and angle of attack.

AlthoughCMy/−CFx is useful for understanding how propeller pitching moment trends

with different operating conditions, it is not necessarily representative of the propeller

pitching moment’s significance to aircraft. Many modern VTOL aircraft concepts can

achieve trim via passive control surfaces or via differential thrust over distributed propul-

sors. If the propeller pitching moment were to be trimmed by an unblown horizontal sta-

bilizer, whose control authority would be proportional to the freestream dynamic pressure,

C∞My would be the appropriate metric for comparison. Figure 6.3 shows the surface of C∞My

over J and αp, where C∞My rises rapidly as J decreases and αp increases. The trend would

likely continue to an extent as J decreased further, though it is unclear whether C∞My would

ultimately resolve at zero or infinity at the indeterminate condition of J = 0. Figure 6.3

also provides more evidence as to why propeller pitching moment had not received much
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Figure 6.2: Wake visualization at a selection of advance ratios. αp = 90◦, Nrev = 8,
freestream direction left to right.

attention in the literature; C∞My is very low in the αp ≤ 20◦ region where propellers on

conventional aircraft typically operate.

If, instead, the pitching moment were to be trimmed by differential thrust (via another

identical propeller), then the appropriate metric would be similar to CMy/−CFx, shown
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Figure 6.3: Surface of C∞My over advance ratio and angle of attack.

in Figure 6.1, except with the Dp reference length in the denominator replaced by the

moment arm of the trimming propeller relative to the aircraft center of gravity. Unlike

C∞My, the CMy/−CFx surface does not peak at near-zero J because the control authority of

a propeller does not go to zero at static conditions.

6.2 A Generalizable Metric for Significance

To provide generalizable insight into the significance of propeller pitching moment, the

following section describes the development of a metric that expresses propeller pitching

moment as an effective displacement of the center of gravity in percent chord of the main

wing.

Consider a tiltrotor-like VTOL aircraft with Np identical propellers of area Ap that tilt

through a range of αp to transition between hover and cruise. In hover, it is assumed that the

entire aircraft’s weight, W , is distributed evenly amongst the propellers such that the disk

loading in hover is pDL = W
NpAp

. Similarly, in cruise, it is assumed thatW is fully supported

by the lift of a main wing of area Sw so that the wing loading in cruise is pWL = W
Sw

. For

simplicity, the propellers’ thrust, −Fx = −C∞Fxq∞Ap, is assumed to be the only propeller
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force, and the main wing’s lift, L = CLq∞Sw, at any point is assumed to be generated at a

constant lift coefficient. Lastly, we assume a rectangular wing with with aspect ratioA so

that the final expression can be represented in units of percent chord.

Given values of Np, pDL, pWL, CL, andA, start by satisfying the vertical force balance

for a level transition,

W = −C∞Fxq∞ApNp sinαp + CLq∞Sw (6.5)

Solving for the −C∞Fx required at a specific q∞ and αp gives

−C∞Fx =
W − CLq∞Sw
q∞NpAp sinαp

=

pDL −
CLq∞pDL
pWL

q∞ sinαp
(6.6)

Then, use the data in Figure 6.4 to interpolate for the J that satisfies −C∞Fx at the specified

αp.
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Figure 6.4: Surface of −C∞Fx over advance ratio and angle of attack.

The interpolated J and αp are then referenced using the data in Figure 6.3 to find the C∞My
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that would be produced by each propeller. Since

C∞My =
My

q∞ApDp

(6.7)

solve for My and express Dp in terms of Ap,

My = C∞Myq∞Ap2
√
Ap/π (6.8)

Lastly, multiply both sides by Np/Wc and manipulate the right-hand side into expressions

of known values to get

NpMy

Wc
=

2C∞Myq∞
√
Ap/π

pDLc
= 2C∞Myq∞

√
ApWL

πNppDL3
(6.9)

The metric NpMy

Wc
is the total propeller pitching moment expressed in units of aircraft weight

times wing chord, and because propeller-wing interaction was ignored, the metric as pre-

sented would be a conservative estimate in most cases. To demonstrate, Figure 6.5 shows

the surface of NpMy

Wc
for an aircraft that uses the generic propeller with Np = 6, pDL = 5

lb/ft2, pWL = 15 lb/ft2, CL = 0.65, and A = 5. The peak of roughly 0.1 means that

the aircraft center of gravity is effectively shifted ten percent chord aft compared to if the

propellers’ thrust vectors were assumed to be centered at their hubs. However, an actual

transition profile for a tiltrotor is unlikely to pass through the point αp = 90◦, V∞ = 40

m/s, and a more realistic peak would be around eight percent for this aircraft.
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CHAPTER 7

CONCLUSION

In this dissertation, we have shown that propellers operating at an angle of attack experience

a pitching moment about their hub that is primarily caused by an asymmetry in the axial

induced velocity distribution over the disk about the pitch axis. The effect is present for

isolated propellers, but interactions with other components can further increase the pitching

moment. In the case of an isolated propeller, the wake skews in the freestream direction,

resulting in reduced induced velocity on and increased thrust from the upwind half of the

propeller. In the case of a propeller positioned upstream of a lifting wing, the wing’s

circulation similarly reduces the induced velocity on the upwind half while also increasing

the induced velocity on the downwind half of the propeller.

Compared to the shaft torque and yawing moment, propeller pitching moment is the

weakest of the propeller moments. However, the magnitudes are still considerable at low

advance ratios and high angles of attack where VTOL aircraft must operate to transition

between hover and forward flight. A conservative estimate using generic geometries puts

the peak total propeller pitching moment on the order of an effective displacement of the

aircraft center of gravity by several percent of the wing chord. Furthermore, the pitching

moment is destabilizing in nature and, unlike the yawing moment, cannot be counteracted

by a symmetrical placement of propellers about the aircraft.

Since the most significant pitching moments occur at low freestream velocities, pas-

sive stabilizers that depend on airspeed for control authority are not a feasible solution for

stability and control in transition. During the previous VTOL era, later aircraft designs

converged toward a hybrid tiltwing-deflected slipstream approach whereby a large-chord

flap was integrated on a blown tilting wing [71, 72, 73, 74]. The flap, which generated a

large negative pitching moment, would be programmed with a deflection schedule through-
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out transition to counteract the positive propeller pitching moment. Vehicles such as the

Canadair CL-84 [75] and retrofitted VZ-2 [76] demonstrated this approach. Fortunately,

with the advent of distributed electric propulsion, modern VTOLs should not be severely

inconvenienced by the requirement of an active trim mechanism.

Ultimately, we believe that propeller pitching moment is not a particularly crippling

effect for VTOL aircraft. However, the nuanced physics and lack of understanding in the

community are likely to lead to its omittance from consideration during conceptual design.

We hope that the insights given here will help designers realize the importance of propeller

pitching moment earlier and avoid costly changes later in their design process.
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APPENDIX A

CONSTANCY OF AERODYNAMIC COEFFICIENTS WITH ADVANCE RATIO

In the context of an inviscid solution, aerodynamic coefficients are constant for a given ad-

vance ratio regardless of the dimensional freestream velocity, rotation speed, and propeller

diameter. Figures A.1 and A.2 show the thrust and pitching moment coefficients, respec-

tively, of a generic propeller operated at αp = 60◦ over a range of advance ratios. Each

plot contains nine curves for each coefficient, with each curve representing the same ad-

vance ratio sweep achieved by appropriately varying the rotation speed for three different

freestream velocities and with the propeller geometrically scaled to three different diame-

ters. The curves are largely identical with the measurements fanning out gradually at the

lower advance ratios. The fanning out is due to the chaotic nature of the wake propaga-

tion in high loading conditions; slight differences in velocity influence due to numerical

imprecision propagate over time, resulting in wake structure differences significant enough

to affect the induced velocity distribution at the disk. The coefficient variations seem to be

random in nature, inferred by the intersection of curves between different advance ratios,

and can be considered noise in the data. The noise is more pronounced in the pitching

moment coefficients than the thrust coefficients because the wake structure discrepancies

primarily affect the distribution of induced velocity at the disk rather than the average.

Based on this study, we limited the range of advance ratios examined to J ≥ 0.1.

The simulation settings used were Nppb = 225, Ntpr = 60, and Nrev = 8. If compu-

tation time were not an issue, the wake propagation noise could be reduced by increasing

either the grid or timestep resolutions.
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