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High-Fidelity Simulation of Turbulent Flow Past a Gaussian Bump

Ali Uzun
National Institute of Aerospace, Hampton, Virginia 23666

Mujeeb R. Malik
NASA Langley Research Center, Hampton, Virginia 23681

Abstract

A spanwise-periodic computation of a turbulent flow past a Gaussian bump is performed in the
form of a hybrid direct numerical simulation and wall-resolved large-eddy simulation. A fourth-order
spatially-accurate flow solver is employed to perform the simulation, using 10.2 billion grid points for
a Reynolds number of 170000 based on the bump height. The key findings from the simulation are
reported in the acceleration and deceleration flow regions associated with the bump shape. Significant
anisotropy in the normal Reynolds stresses, along both the wall-normal and streamwise directions, is
observed within the acceleration region. The ratio between the Reynolds shear stress and turbulent
kinetic energy in that region also experiences significant deviations from the norms of a zero pressure
gradient turbulent boundary layer. The chosen Reynolds number generates strong flow separation in the
adverse pressure gradient region, which is in contrast with a previous simulation at half the Reynolds
number that only indicated incipient separation. An internal layer generated in the acceleration region
evolves into a free shear layer that develops in the deceleration region and separates. Proper modeling of
this inner layer appears crucial to predict the flow separation. Surface curvature effects on the attached
flow development are also discussed.

Nomenclature

C = logarithmic layer intercept constant
C f = time- and spanwise-averaged skin-friction coefficient
Cz

f
= time-averaged skin-friction coefficient at a given spanwise location

Cp = mean surface pressure coefficient
h = speed bump height
k = turbulent kinetic energy
K = relaminarization parameter
L = width of the experimental speed bump model
n = wall-normal distance
N = number of spanwise grid points
p = pressure
R = surface radius of curvature
ReL = Reynolds number based on L, ρ∞u∞L/µ∞
s = surface distance
u = streamwise velocity component in the local orthogonal coordinate system
uτ = wall friction velocity
U = mean streamwise velocity component in the local orthogonal coordinate system
v = wall-normal velocity component in the local orthogonal coordinate system
w = spanwise velocity component
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x = axial direction
y = vertical direction
z = spanwise direction
α f = filtering parameter
δ = boundary-layer thickness
δi = internal layer thickness
∆p = acceleration parameter
∆n = grid spacing along the local wall-normal direction
∆s = grid spacing along the local streamwise direction
∆z = spanwise grid spacing
κ = von Kármán constant
µ = molecular viscosity
ν = kinematic viscosity, µ/ρ
Ψ = stream function
ρ = fluid density
σ = standard deviation
Σ = series summation
τw = wall shear stress
〈 〉 = temporal and spanwise averaging operator
Subscripts

e = boundary-layer edge value
∞ = freestream value
θ = momentum-thickness based value
Superscripts

z = value at a given spanwise location
′ = perturbation from mean value
+ = value in wall units

1 Introduction

The challenges associated with the satisfactory prediction of high Reynolds number turbulent flows
simultaneously subjected to strong pressure gradient and surface curvature effects at an affordable compu-
tational cost have recently motivated the fluid dynamics community to embark on a new benchmark test
case referred to as the “speed bump” flow [1]. This problem investigates the interaction of an incoming
turbulent boundary layer with the strong favorable and adverse pressure gradients generated by a Gaussian
bump, depicted in Figure 1, as the flow passes over it. Surface curvature effects present in the problem bring
additional complications. The Reynolds number of the problem, based on the width of the experimental
model, L, varies from about 1.3 million up to 3.5 million. A detailed experimental investigation is currently
underway in the United States for this test case to generate new validation data for smooth body flow sep-
aration. Williams et al. [2], [3] recently reported the results from a different preliminary experiment for
the same configuration. In their experiment, the ratio of the incoming boundary-layer thickness, defined at
x/L = −0.65, to the bump height varies from about 0.083 to 0.1 as the Reynolds number decreases within
the stated range.

A number of experimental investigations for similar configurations were undertaken in the past but usu-
ally came with certain caveats. For example, Baskaran et al. [4] did a thorough investigation concerning
the interaction of a low-speed turbulent boundary layer, at a momentum-thickness Reynolds number of
Reθ ≈ 6000, with a two-dimensional curved hill, similar in shape to the current bump, and examined the
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formation of an internal layer triggered by the surface curvature discontinuity. The ratio of the upstream
boundary-layer thickness to the hill height was δ/h = 0.4. Even though the flow separated in the adverse
pressure gradient region, the measurements and the analysis in that work were mostly focused on the at-
tached flow upstream of separation and the internal layer developing in it. Webster et al. [5] examined the
passage of a low-speed turbulent boundary layer at Reθ ≈ 4030 over a two-dimensional bump and took
fairly detailed measurements of the flowfield. The ratio of the upstream boundary-layer thickness to the
bump height was δ/h = 1.5. Internal layers were observed to form as a result of the surface curvature dis-
continuity at the leading and trailing edges of the geometry. The flow experienced significant changes in its
mean state and turbulent stresses as it moved over the bump, but did not separate under the adverse pressure
gradient. The lack of separation in this experiment limited its usefulness to computational efforts related
to separation prediction. Another well-known experimental investigation is the NASA wall-mounted hump
flow by Greenblatt et al. [6]. This experiment examined the separation of a low-speed turbulent boundary
layer that started off at Reθ ≈ 6500–7200, corresponding to an inflow δ/h ≈ 0.57, as it moved over a wall-
mounted hump, representative of the upper surface of a subsonic airfoil. Although an extensive experimental
dataset is available for this flow, the use of end plates in combination with a narrow-span model introduced
certain three-dimensionality effects into the flow development that are prohibitively expensive to include in
the simulations. Hence, meaningful comparisons between this experimental dataset and the simulations that
commonly invoke the spanwise periodicity assumption are hard to make for this test case.

Figure 1. Upper, side view; lower, spanwise cross-section; side walls are at z/L = ±0.5, ceiling is at

y/L = 0.5 (courtesy of Dr. Philippe Spalart).

The speed bump experiment, depicted in Figure 1, can be considered a fresh attempt to overcome some of
the shortcomings of the previous investigations and gather high-quality data using modern instrumentation
that can be used in the validation of ongoing computational efforts related to smooth body flow separation.
The tapered model ends used in this test case are intended to minimize the tunnel end-wall effects on the
centerline region of the flow. The experimental measurements by Williams et al. [2] [3] suggest that the
three-dimensionality effects on the centerline region are not particularly strong. To provide further evidence
related to this point, the surface pressure distribution obtained from the present spanwise-periodic simulation
will show reasonable agreement with the corresponding experimental measurement taken on the centerline
at a similar Reynolds number [3].

Several groups have recently studied the speed bump flow problem using various turbulence modeling
approaches, including direct numerical simulation (DNS). For example, spanwise-periodic DNS results have
been recently reported by Uzun and Malik [7], [8], as well as by Balin et al. [9]. Both of these simulations
were performed at a Reynolds number of ReL = 1 million (bump height Reynolds number of 85000),
with a domain span of 0.04L, where L is the width of the experimental model. The comparisons between
the corresponding Reynolds-averaged Navier-Stokes (RANS) calculation predictions and the DNS results
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were found unsatisfactory. Other results from lower-fidelity simulations, in the form of improved delayed
detached eddy simulation (IDDES) by Balin et al. [9], and wall-modeled large-eddy simulation (WMLES)
by Iyer and Malik [10], have also been reported and showed mixed success, once again underlining the need
for improved wall and turbulence models to better predict these types of flows. Wright et al. [11] performed
a hybrid LES-DNS at ReL = 1 million, in which the near-wall region of the flow was computed using DNS,
and LES was employed in the outer region. This hybrid approach worked reasonably well in the attached
flow upstream of separation, but showed some deficiencies in the adverse pressure gradient region where
incipient separation is expected at this Reynolds number.

The current effort is a continuation of our recent work on the speed bump flow. The relatively low
Reynolds number of ReL = 1 million used in our first DNS and the additional stabilizing effect of convex
surface curvature were found to cause a tendency toward relaminarization or stabilization in the acceleration
region. The flow experienced incipient or weak separation in the adverse pressure gradient region. Similar
observations have been reported by Balin et al. [9] in their work. In practical applications, the Reynolds
number is generally high enough to preclude relaminarization or stabilization under acceleration and/or
convex surface curvature. Hence, in order to truly test and improve the turbulence models used in lower-
fidelity simulation tools for high Reynolds number applications, reliable data from a test case that does not
contain any relaminarization are needed. A test case that generates more severe separation under adverse
pressure gradient conditions is also desirable for the evaluation of model performance in such flows. These
needs provide the motivation for the present study, which repeats the simulation at the higher value of
ReL = 2 million (bump height Reynolds number of 170000). Due to limited computational resources,
full DNS resolution cannot be afforded everywhere; hence, the simulation is performed as a hybrid DNS
and wall-resolved large-eddy simulation (WRLES) as described below. A DNS or a WRLES of the full
experimental configuration, at a reasonably high Reynolds number, is highly desirable but would be well
beyond the reach of the currently available computing capability. Although the present spanwise-periodic
calculation cannot duplicate the experimental configuration, the data obtained from this simulation can still
serve as a useful validation benchmark for the lower-fidelity simulation methods performed under similar
conditions, before those tools are applied to more complex cases with better confidence.

The paper is organized as follows. Section 2 gives the details of the computational methodology used in
this study. Analysis of the simulation results are provided in section 3. Section 4 summarizes the findings
and provides the concluding remarks.

2 Computational methodology

Our first DNS for the problem at hand was performed at ReL = 1 million using a new compressible
flow solver developed exclusively for GPUs [7], [8]. For the current simulation at ReL = 2 million, which
requires 10.2 billion grid points for a span of 0.08L, a sufficient number of GPUs was not available to make
use of the GPU flow solver. Therefore, the present simulation is performed with a flow solver developed for
central processing units (CPUs), which was used to study a number of problems in the past. This CPU code
was most recently used for the simulation of the low-speed flow separation around the NASA wall-mounted
hump [12], and for the Bachalo-Johnson transonic shock-induced flow separation problem using as many as
24 billion grid points [13].

The CPU code solves the unsteady three-dimensional compressible Navier-Stokes equations discretized
on multiblock structured and overset grids. It employs an optimized prefactored fourth-order accurate com-
pact finite-difference scheme [14] to compute all spatial derivatives in the governing equations. This opti-
mized scheme offers improved dispersion characteristics compared to the standard sixth- and eighth-order
compact schemes [15]. It is derived from the standard eighth-order compact scheme that has been shown to
possess “spectral-like” resolution [15]. Third-order one-sided and biased schemes, respectively, are used on
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a boundary point and on the point next to the boundary. To eliminate the spurious high-frequency numerical
oscillations that may arise from several sources (such as grid stretching, unresolved length scales and ap-
proximation of physical boundary conditions) and ensure numerical stability, we also employ high-order (up
to tenth-order) compact filtering schemes [16], [17]. The present simulation uses the tenth-order filtering
scheme, with matching one-sided biased formulations near the physical boundaries [16]. Instead of using an
explicit subgrid-scale (SGS) model, the numerical dissipation of the spatial filtering operation is chosen to
serve as an implicit SGS model for LES. A Beam-Warming type approximately factorized implicit scheme
with subiterations is used for the time advancement [18]. More details of the simulation methodology can
be found in publications by Uzun and coworkers [19], [20], [21], [22].

3 Spanwise-periodic flow simulation over the speed bump at ReL = 2 million

The equation describing the full three-dimensional speed bump geometry [1] is given by

y(x, z) =
h

2

[

1 + erf
((

L

2
− 2z0 − |z|

)

/z0

)]

exp
(

− (x/x0)2
)

(1)

where x, y, z respectively, denote the axial, vertical and spanwise directions, L is the width of the exper-
imental model that is taken as the reference length scale, h = 0.085L (bump height), x0 = 0.195L and
z0 = 0.06L. For the present spanwise-periodic simulation that assumes a uniform profile along the span, the
two-dimensional profile shape is given by y(x) = h exp

(

− (x/x0)2
)

.

3.1 Simulation details

The Reynolds number based on the upstream reference velocity, U∞, and L is ReL = 2 million, while
the freestream Mach number is selected as 0.2. The corresponding Reynolds number based on h is 170000.
The periodic domain span is set to 0.08L. A schematic of the computational domain is provided in Figure 2.
The inflow boundary of the domain is at x/L = −0.8 while the outflow boundary is at x/L = 2. The
physical domain ends at x/L = 1. The region from x/L = 1 to 2 forms the sponge zone, in which rapid grid
stretching is applied along the streamwise direction. This zone contains only a few hundred points because
of the significant grid stretching applied. The sponge zone dampens the turbulence in the flowfield before
it reaches the outflow boundary, where standard characteristic outflow boundary conditions are applied.
Viscous isothermal boundary conditions are imposed on the lower boundary, which contains the speed bump
profile. The uniform wall temperature is set the same as the reference freestream value. The outer boundary
in the vertical direction is placed at y/L = 1, on which a nonreflecting characteristic boundary condition is
applied. This choice of a nonreflecting characteristic boundary condition on the outer boundary was made
based on the observation that a spanwise-periodic simulation cannot accurately model the effects associated
with the tapered ends of the experimental model and the tunnel side walls. Therefore, because we are already
not faithfully modeling the entire wind tunnel conditions, the decision was made to simplify the treatment
of the upper boundary.

The domain is discretized using 15360 points along the streamwise direction, 384 points in the vertical
direction and 1728 uniform points along the spanwise direction. The total number of grid points is about
10.2 billion. Figure 3 plots the variation of streamwise, wall-normal and spanwise grid resolutions in terms
of wall units, respectively, denoted as ∆s+, ∆n+ and ∆z+, along the wall. Upstream of the bump, we see that
∆s+ < 9, while 3 < ∆z+ < 4. Once the flow enters the acceleration region, ∆s+ decreases a bit more and
then settles to a value of around 8, while ∆z+ starts to increase and reaches a maximum value of around 6
near the apex. As we have a uniform spacing along the span, the maximum ∆z+ position coincides with the
peak wall skin-friction location, which is found near the apex. These spacings quickly decrease as the flow
starts decelerating past the apex and moves toward separation. In the separated region, the largest values of
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∆s+ and ∆z+ are less than 7 and 2, respectively. Once the flow recovers from the separation, these spacings
start to increase once more. Toward the end of the physical domain, the largest ∆s+ and ∆z+ become about
12 and 3.5, respectively.

Figure 2. Computational domain schematic. Contours denote the instantaneous pressure normalized

by the reference value.
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Figure 3. Near-wall grid spacings in wall units.

The wall-normal grid spacing, ∆n+, on the wall generally varies from 0.5 to 1 in the attached region and
becomes smaller in the separated region. The wall-normal spacing increases with distance from the wall.
In the region upstream of the bump, the largest ∆n+ found in the vicinity of the attached boundary-layer
edge is around 5–7 units. In the acceleration region, the maximum corresponding value is about 14 units.
In the downstream recovery region, the largest ∆n+ values around the boundary-layer edge are found near
the end of the physical domain, and have a value of about 50. These outer region spacings get relatively
larger in the recovery region because the reattached boundary layer is considerably thicker than that prior
to separation, and at the same time, there is a limit on the number of grid points that can be afforded in the
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wall-normal direction. The thickest section of the separation bubble is about 0.057L in height (as measured
from the lower wall), and is discretized using about 305 out of the total 384 points in the vertical direction.
The largest vertical grid spacing at the outer edge of separated region is around 10−3L. The separated region
is covered by nearly 2000 points along the streamwise direction.

The ∆s+ and ∆z+ values in much of the domain are comparable to those used in turbulent boundary-layer
simulations performed using spectral methods. Those methods normally use a ∆s+ of about 10 units, and a
∆z+ of 4–5 units. Their ∆n+ on the wall is typically less than 1, and the largest ∆n+ at the boundary-layer
edge is on the order of the ∆s+. We see that the near-wall grid resolutions used in the present simulation,
performed with a fourth-order accurate compact finite-difference scheme, are not too far off from those used
in spectral methods to perform a DNS. The present simulation approaches DNS or “quasi-DNS” resolution
in almost the entire region prior to separation. However, our outer region resolution in the wall-normal
direction within the downstream recovery zone is several times coarser than what would be needed in a
DNS. Based on these observations, the present simulation can be best categorized as a hybrid DNS-WRLES
(without any explicit SGS model).

The second-order accurate implicit Beam-Warming scheme [18] is used for the time integration. The
time step taken in the simulation corresponds to a maximum Courant-Friedrichs-Lewy (CFL) number of 5.
It takes 178, 955 time steps to compute a time interval of L/U∞. The solution is filtered at every time step
using the tenth-order compact filter with a filtering parameter of α f = 0.49 [16], [17], which is known to
provide a minimal amount of numerical dissipation from an earlier study [23]. For the simulation, nearly
40000 Intel Skylake cores, located at the NASA Advanced Supercomputing Division at the Ames Research
Center, are used. The simulation takes about 40 days of run time to compute a time interval of 13L/U∞.
To minimize the duration of the initial transient period, the simulation is started from the previous solution
available at ReL = 1 million as the initial condition. The initial numerical transients are driven out of the
computational domain during the first 2L/U∞. Statistical data are gathered over the remaining 11L/U∞,
which covers 6.1 physical domain flow-through times.

For the turbulent inflow generation, we employ a version of the rescaling-recycling technique discussed
in Uzun and Malik [13], [8]. The present technique only recycles the turbulent fluctuations while keeping
the mean inflow profile fixed. The mean flow imposed at the inflow boundary is taken from a RANS
calculation performed with the low-Reynolds-number correction version of the Spalart-Allmaras model [24].
The mean inflow boundary-layer thickness at x/L = −0.8 is δin ≈ 0.0055L, giving δ/h ≈ 0.065∗. The
corresponding inflow momentum-thickness Reynolds number is Reθ ≈ 1035. The distance between the
inflow and recycle planes is about 12δin. To check the performance of the inflow generation method, Figure 4
shows the comparison of mean streamwise velocity and Reynolds stress component profiles in wall units at
x/L ≈ −0.709, where Reθ = 1410, with the zero pressure gradient turbulent boundary-layer DNS data of
Schlatter and Örlü [25] at the same Reθ. This station is located about 16.5δin from the inflow plane. In the
figure, u′u′, v′v′,w′w′ and u′v′ represent the streamwise, wall-normal, spanwise and shear components of
the Reynolds stress, respectively. We find very good overall agreement in all profiles. The differences could
be due to the different numerics, and the potential effects of the weak adverse pressure gradient upstream of
the bump, as well as the particular mean inflow conditions taken from the RANS calculation in the present
case.

3.2 Simulation results

We now discuss the main findings. Whenever appropriate, in order to discuss Reynolds number related
effects, reference will be made to our previous results for ReL = 1 million, obtained using a different fourth-
order accurate solver developed for GPUs [7] [8]. To reiterate, the incoming boundary-layer Reθ value

∗Based on the boundary-layer thickness at x/L = −0.65, where the experimental inflow δ is defined, the equivalent value is
δ/h = 0.1.
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1410.

is 1035 for the ReL = 2 million case, and 530 in the ReL = 1 million case. As noted earlier, one of
the motivations for performing a simulation at the present higher ReL value is to have a case that assures
significant flow separation in the adverse pressure gradient region, which would be useful for the evaluation
of lower-fidelity simulation tools. Figure 5 depicts a snapshot of the normalized total vorticity magnitude
contours in an x − y plane for the present simulation at ReL = 2 million and the previous DNS at ReL = 1
million. The flow visualizations show that the flow past the apex in the ReL = 1 million case experiences
very weak separation relative to that observed in the higher ReL case. As discussed in Uzun and Malik [7],
[8], the time-averaged statistics for the lower ReL case verify the incipient or very weak separation in the
range where 0.195 . x/L . 0.268. The separated flow in the ReL = 2 million case is evident in the form
of the shear layer represented by high levels of vorticity, and the reversed flow region beneath this shear
layer, which contains relatively lower vorticity levels. The subsequent reattachment of this separated flow
further downstream generates a thicker boundary layer compared to that found in the same region of the
lower ReL case. Hence, we observe that the chosen ReL = 2 million case is indeed successful in generating
stronger flow separation in the adverse pressure gradient region. The reason for the resistance of the lower
ReL flow against separation is explored in the upcoming analysis. Another important difference between
the two cases is the tendency toward relaminarization or stabilization very near the wall upstream of the
apex in the lower ReL case, which is not clearly visible in the shown vorticity snapshots. The absence of
relaminarization/stabilization in the higher ReL case will also be verified in the upcoming analysis.

3.2.1 Overview of the main flowfield features

We first examine the variation of several quantities that are representative of the main features of the
flow at ReL = 2 million as it moves over the bump. The first quantity of interest is the mean boundary-layer
thickness, δ, scaled by L. This is determined using a procedure based on the mean spanwise vorticity, as
discussed in Uzun and Malik [7], [8]. The second quantity is the boundary-layer edge velocity, Ue, which is
computed from an integral of the mean spanwise vorticity [26], [7], [8], and scaled by U∞. Surface pressure
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and skin-friction coefficients are the other quantities of interest. These coefficients are given by

Cp =
p − p∞
1
2ρ∞U2

∞

and C f =
τw

1
2ρ∞U2

∞

(2)

where ρ∞, p∞, U∞, respectively, are the reference freestream density, pressure and velocity, p is the mean
surface pressure and τw is the mean wall shear stress. The Cp distribution is compared with the data taken
on the centerline of the experiment by Williams et al. [3]. Experimental C f data were not available. The
C f distribution is compared with the data from a compressible RANS calculation performed with the low-
Reynolds-number correction version of the S-A model (low-Re S-A model) [24] under conditions identical
to those in the present simulation.

(a) ReL = 2 million

(b) ReL = 1 million

Figure 5. Instantaneous normalized total vorticity magnitude contours on an x − y plane.

Figure 6 plots the variation of δ/L, Ue/U∞, Cp and C f . All quantities experience significant changes as
the flow moves over the bump. The incoming boundary layer encounters an initially mild adverse pressure
gradient and thus shows a linear growth in δ/L far upstream of the bump. The adverse pressure gradient
becomes progressively stronger as the flow approaches the bump foot, and causes the associated decreases
in Ue and C f in the upstream region. The pressure gradient becomes strongly favorable starting at x/L ≈

−0.29 until very near the bump apex. The accelerated flow sees a significant increase in Ue, which takes
a maximum value of about 1.5U∞ slightly upstream of the apex. The flow acceleration also increases the
C f because of the steepening near-wall velocity gradient, while simultaneously reducing the boundary-layer
thickness, as shown by the corresponding drop in δ/L. The C f peak is reached at x/L ≈ −0.024.
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The pressure gradient becomes adverse immediately after the apex, and slows down the flow. The
deceleration leads to strong separation at about x/L = 0.1, as discussed earlier during the examination of
Figure 5. The flow separation is also verified by the negative C f distribution, which indicates a fairly broad
reversed flow region. The reattachment is at x/L = 0.42. The plateau encountered in the Cp distribution as
the pressure increases from the apex to the tail of the bump is a footprint of the separated flow. The pressure
gradient becomes mildly favorable around the tail of the bump, as the flow recovers from the separation.
Note that Ue/U∞ consistently follows the pressure gradient in the aft region as it does elsewhere. It decreases
as pressure increases and vice versa. The boundary-layer thickness rapidly rises in the deceleration region
and briefly plateaus around the tail of the bump, where the pressure gradient becomes favorable again, before
continuing to increase. The separated flow naturally generates large structures, whose reattachment leads
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to the formation and further evolution of a thick boundary layer in the recovery zone, as depicted earlier
in Figure 5. We should note here that the methods employed to determine the boundary-layer thickness
and the corresponding edge velocity in this study do not distinguish between attached and separated flows.
The notion of a boundary-layer thickness or an edge velocity in the separated region is ambiguous, at best;
nevertheless, these methods provide a seamless transition in these boundary-layer quantities as the attached
flow separates and then reattaches.

The boundary-layer thicknesses found in the deceleration region of the flow past the apex and further
downstream become comparable to and eventually exceed the span of 0.08L used in the simulation. Thus, the
flow development in those regions would be affected to some extent by the constraint imposed by a narrow
span. However, we do not expect this constraint to completely overwhelm the dynamics at play. The flow
would still separate in a simulation performed with a wider span, but the growth rate of the shear layer would
likely be different in such a case. Thus, the wider span would be expected to affect the reattachment point
of the separated flow. Similarly, the statistical properties of the reattached flow recovering from separation
would likely be influenced by the span. Given the limited access to computational resources, repeating the
simulation on a wider domain span was not possible at the time of this writing.

Examining the Cp distribution further, we observe reasonable overall agreement between the present sim-
ulation and the experimental data from Williams et al. [3]. This experiment was performed for a Reynolds
number of about 2 million but at a freestream Mach number of 0.1. The good agreement observed in the
peak Cp between the present simulation and the experiment suggests that any blockage effect of the ceiling
in the experiment is largely countered by the tapered end effects of the 3-D bump geometry. Recall that
neither of those effects were accounted for in the current simulation. The pressure or Cp plateau found in
the separated region, identified in our earlier analysis, is also verified by the experimental observation. The
pressure rise observed after the plateau appears slightly delayed in the simulation relative to the experiment,
which suggests that the reattachment location in the simulation will likely be slightly delayed relative to the
experiment. This difference perhaps should not be a surprise given the upstream Mach number mismatch
and the fact that no attempt was made to model all effects present in the experiment. These observations
also suggest that the end effects on the centerline region of the experimental flow are not particularly strong.
Hence, the separation phenomenon encountered around the centerline of the experimental geometry is not
too fundamentally different from that generated in a spanwise-periodic simulation despite the counterrotat-
ing vortices observed in the experiment.

Comparison of the computed C f distribution with the corresponding RANS result shows that the RANS
prediction is unsatisfactory. In contrast to the present simulation, the RANS C f result indicates very weak or
incipient separation. Upstream of the bump, there is reasonable agreement in the C f predictions. However,
differences start to appear as the flow starts accelerating, and the peak C f in the RANS result is found to be
considerably higher. Such shortcomings of the RANS calculations are not surprising and provide one of the
motivations for the present study.

3.2.2 Examination of the region upstream of the apex

We now examine the region upstream of the apex. We first verify that the present flow at ReL = 2
million does not experience the relaminarization/stabilization encountered at half the Reynolds number [7],
[8] and discuss the curvature related effects. We then analyze the mean streamwise velocity and Reynolds
stress profile evolutions.

Verification of the absence of relaminarization/stabilization: One of the goals of this study is to simu-
late a high enough Reynolds number flow that does not relaminarize or stabilize in the acceleration region
prior to separation. To check whether this goal has been achieved with the present ReL case, Figure 7 plots
the variation of two parameters that could be helpful in detecting relaminarization or reverse transition. The
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first parameter is the acceleration parameter, ∆p, and the second one is the relaminarization parameter, K.
These parameters are defined as

∆p = −
ν

ρu3
τ

∂p

∂s
and K =

ν

U2
e

∂Ue

∂s
(3)

where ν is the kinematic viscosity, ρ is the density, uτ is the wall friction velocity, p is the surface pressure,
Ue is the boundary-layer edge velocity, and s is the surface distance along the wall.
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Figure 7. Variation of acceleration and relaminarization parameters.

We observe that the peak K value stays well below the commonly accepted threshold value of about
3× 10−6 [27], [28], [29]. Similarly, the ∆p parameter never reaches the threshold value of 0.018 determined
by Patel and Head [30], who concluded that “major departures” from the logarithmic layer occur when
this parameter exceeds this value. They believe this major departure to be an indication of the onset of
relaminarization or reverse transition. The analysis presented in Refs. [7], [8] confirmed that this particular
threshold of ∆p is a reasonable predictor of the logarithmic layer disappearance in the acceleration region
of the previous simulation performed at ReL = 1 million, even though the K parameter never reached its
corresponding threshold value in that case. There is also the stabilizing effect of convex surface curvature,
which becomes stronger as the flow approaches the apex. Consequently, in the ReL = 1 million case, the
accelerating flow experiences relaminarization/stabilization over the upstream half of the speed bump, as
discussed in Refs. [7], [8]. For the present higher ReL case, the fact that ∆p never reaches the threshold
value suggests that the turbulence is able to survive the strong acceleration and convex curvature effects
without relaminarization/stabilization.

To provide further verification for the lack of relaminarization/stabilization in the present simulation,
Figure 8 depicts the total velocity magnitude contours near the wall, normalized by the reference freestream
velocity, in the region where −0.5 < x/L < 0.1. On this plane, the wall-normal distance in wall units
varies from about 3 to 6, except near x/L = 0.1 where the flow is about to separate. The region of interest
is shown as two separate subfigures and the maximum value of the contour range differs between the two
subfigures. At this particular ReL, the near-wall streaks are rather narrow; hence, for clarity, a ratio of
two to one between the vertical and horizontal axes has been used in these visualizations. The near-wall

12



streaks shown in the top subfigure verify a fully turbulent upstream boundary layer approaching the bump.
The bottom subfigure shows no evidence of relaminarization/stabilization as the accelerated boundary layer
moves toward the apex. Similar near-wall flow visualizations of the lower ReL flow, which can be found in
Refs. [7], [8], showed clear evidence of relaminarization/stabilization in that case. We also observe localized
spots containing relatively high instantaneous total velocity magnitudes as the accelerated flow approaches
the apex in the present case. This is because the fuller velocity profile of the turbulent boundary layer in the
higher ReL case is able to sustain localized patches of higher instantaneous velocities close to the wall in
that region. The flow separates shortly after it enters the adverse pressure gradient region, at x/L ≈ 0.1, as
evidenced by the very low or nearly zero velocities at that station. As seen in Figure 5, the lower ReL flow
is still fully attached at that location. The reason for the resistance of the lower ReL flow against separation
is explored later.

Figure 8. Normalized total velocity magnitude contours near the wall.
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Surface curvature related effects: Previous work on surface curvature effects on turbulent boundary
layers showed that convex curvature has a stabilizing effect on turbulence and leads to a reduction in
Reynolds stresses and skin friction [31], [32], while concave curvature has a destabilizing effect that in-
creases Reynolds stresses and skin friction [33], [34]. These observations originate from the studies that
maintain negligible or minimal pressure gradient along the flow direction while the surface curvature is in-
troduced to the incoming turbulent boundary layer. The present bump geometry has convex curvature in
the range where −0.138 . x/L . 0.138 and concave curvature elsewhere. Curvature effects in the present
problem are obscured by the favorable and adverse pressure gradients in the corresponding sections of the
bump. For example, in the late stages of flow acceleration toward the apex, the surface curvature becomes
convex once the flow goes past x/L ≈ −0.138, but C f still increases until very near the apex despite the con-
vex curvature, which is supposed to decrease C f under zero pressure gradient. This suggests that the strong
favorable pressure gradient is able to steepen the near-wall velocity gradient magnitude and work against
the opposite effect of convex curvature on C f . As noted earlier, the C f distribution peaks at x/L ≈ −0.024,
and then starts its descent. The favorable pressure gradient begins to ease as the apex is approached. The
decrease in the C f beginning slightly upstream of the apex is likely the combined outcome of the convex
curvature eventually kicking into effect† as the favorable pressure gradient vanishes, and the nascent adverse
pressure gradient effect.

In their review of work related to turbulent boundary layers on concave surfaces, Barlow and Johnston
[35] noted that some of the previous investigators reported large spanwise variations in the statistical prop-
erties of the flow, which were attributed to the formation of longitudinal vortices, also referred to as roll
cells, while others found no such significant variations. These types of structures are believed to be gen-
erated by the same centrifugal instability mechanism that produces the well-known Taylor-Görtler vortices
in a laminar boundary layer over a concave surface [36]. Evidence suggests that the spanwise nonunifor-
mities in the upstream mean flow can have an important effect on the location of roll cells observed over
concave surfaces. Such disturbances on the mean flow can be generated by the turbulence-damping screens
in laboratory experiments, or they can also originate from more deliberate sources, such as an array of small
vortex generators. It is therefore postulated that in cases where no evidence of stationary roll cells were
observed, the upstream mean flow must have been largely free of nonuniformities. The observations made
in their own investigation led Barlow and Johnston [35] to firmly conclude that distinct longitudinal vortices
do not exist in a turbulent boundary layer over a concave surface when the upstream mean flow is free of
spanwise nonuniformities. In such a case, they instead observed unsteady, randomly-distributed “large-eddy
structures” with a streamwise extent of only a few boundary-layer thicknesses that did not cause any sig-
nificant spanwise variations in the mean properties of the boundary layer. They also saw an increase in the
skin friction over the concave surface, attributed to the enhanced mixing by these large-eddy structures that
brings high-momentum fluid closer to the wall. In that experiment, the ratio of the incoming boundary-layer
thickness to the concave radius of curvature, δ/R, was about 0.07.

Based on these findings, the current understanding is that the upstream disturbances in the mean flow
could be amplified by the concave curvature if such disturbances possess a certain spanwise wavelength that
is within the range of the unstable wavelengths. The unstable range of wavelengths is known to be rather
narrow and centered around a wavelength of about twice the boundary-layer thickness [34]. The coherent
structures generated in turbulent boundary layers over concave surfaces can appear in the form of large
steady vortices when the upstream disturbances are organized and of the proper unstable wavelength, and
they could also be in the form of shorter nonstationary, randomly-distributed large eddies when the upstream
boundary layer is uniform in the mean [35].

To see whether any major spanwise variations occur in the corresponding concave portion of the speed

†As will seen shortly, the ratio of the local boundary-layer thickness to the radius of curvature surpasses 0.06 near the apex,
which is believed to be high enough for the strong convex curvature effect to be felt under zero or weak pressure gradient conditions.
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bump flow upstream of the apex, we examine the spanwise distribution of the time-averaged skin-friction
coefficient at several streamwise stations in that region. The formation of any large stationary coherent struc-
tures over the concave surface would manifest itself as significant spanwise variations in the time-averaged
skin-friction distributions. Figure 9 depicts the spanwise variation of the time-averaged skin-friction coeffi-
cient at several streamwise stations and the standard deviation from the mean spanwise-averaged value. The
standard deviation is defined as

σ(Cz
f
) =

√

√

Σ

(

Cz
f
−C f

)2

N
(4)

where Cz
f

is the time-averaged skin-friction coefficient at a given spanwise location, C f is the corresponding
spanwise-averaged value and N is the number of spanwise grid points. The standard deviation is given in
terms of the percentage of the mean spanwise-averaged value. To aid in the discussion, the bottom subfigure
also includes the Cp and C f distributions, as well as the ratio of the local boundary-layer thickness to the
radius of curvature, δ/R. The curvature changes from concave to convex at x/L ≈ −0.138, where R goes to
infinity, giving δ/R = 0 at that location.

We see in Figure 9 that all Cz
f

distributions are fairly uniform along the span, and the maximum standard
deviation is only about 2 percent of the corresponding mean value. According to the δ/R variation shown in
the bottom subfigure, the concave curvature effect would not be felt until the flow approaches x/L ≈ −0.4.
It is interesting to note that the standard deviation peaks at x/L ≈ −0.29, around which the pressure gradient
changes from mild adverse to strong favorable. This location also happens to be fairly close to where the
peak δ/R value of 0.036 is found over the concave surface, at x/L ≈ −0.25. The standard deviation then
decreases once the flow enters the strong-acceleration region and appears to level off in the region between
the start of convex curvature at x/L ≈ −0.138 and the apex.

Hoffmann et al. [34] observed the generation of longitudinal vortices that induce significant changes
to the turbulence structure with values of δ/R = 0.01–0.02 when small vortex generators were used to
introduce organized disturbances upstream of the concave curvature in their experiment. The δ/R values
achieved in the concave region of the present flow are comparable to and greater than the values considered
by Hoffmann et al. [34]. There is a mild adverse pressure gradient region that overlaps with the concave
curvature, which is responsible for the skin friction decrease until x/L ≈ −0.32. Note that δ/R exceeds 0.01
beginning at x/L ≈ −0.38, while the adverse pressure gradient ends at x/L ≈ −0.29, downstream of which
the strong favorable pressure gradient takes over. The boundary-layer thickness, δ/L, grows with streamwise
distance in this region, and its value at x/L = −0.38 and −0.32 is about 0.0154 and 0.0176, respectively. The
distance from x/L = −0.38 to −0.32 is covered by less than 4 times the average boundary-layer thickness
between those two stations. Concave curvature is normally expected to increase the skin friction under
weak or negligible pressure gradient conditions. Because of the relatively short overlap region between the
mild adverse pressure gradient and the concave curvature over which δ/R values are reasonably large, the
concave curvature appears to be mostly ineffective in increasing the skin friction against the opposite effect
of the adverse pressure gradient. As noted above, the rise in the skin friction starts at x/L ≈ −0.32, which
is positioned toward the very end of the mild adverse pressure gradient. It is not clear whether the concave
curvature plays any role in determining the exact location where this rise begins, as we would also expect
an upstream influence of the nearby strong pressure gradient.

The relatively small variations observed in the spanwise skin-friction distributions suggest an absence
of organized, stationary, vortical structures in the present flow. In order to understand why these variations
are rather weak, we need to consider how the upstream fluctuations are generated in the present flow. Our
inflow generation technique assumes a homogeneous fixed mean inflow profile along the span. The turbulent
fluctuations imposed on the inflow plane are generated using the recycling/rescaling with dynamic reflection
(RR+DR) technique introduced by Morgan et al. [37]. In this procedure, a reflection about a randomly
chosen spanwise plane, or spanwise scrambling, is applied to the scaled fluctuations extracted from the
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recycle plane before introducing them at the inflow plane. The spanwise reflection plane is updated at
certain randomized intervals. These practices are intended to break down the coherence between the inflow
and recycle planes, and also prevent the formation of any artificial energetic low-frequency structures in the
flow. The turbulent fluctuations introduced at the inflow are made up of a spectrum of spanwise wavelengths.
These fluctuations can be thought of as a range of disturbances simultaneously applied onto the mean flow,
some of which may be amenable to further amplification by the interaction with the concave curvature.
However, the disturbances generated on the mean flow in such a manner cannot be considered organized
or stationary in the same sense the disturbances generated by the array of small vortex generators in the
experiment of Hoffmann et al. [34] would be.
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Thus, it is plausible that the interaction between the concave curvature and the incoming disturbances
with unstable wavelengths could generate some randomly-distributed structures, but because of the nature of
the upstream disturbances generated in the simulation, such structures would be temporary in nature. They
would appear at scattered locations along the span and disappear as the simulation goes on due to the way
the upstream disturbances are introduced; hence, their overall effect on the spanwise variation of the mean
flow would get smeared out as the statistics are time-averaged, and this could explain the weak variations
observed in the skin friction. Once the flow enters the favorable pressure gradient region, the stabilizing
effect of the favorable pressure gradient, and also of the convex curvature encountered later in the favorable
pressure gradient region, appears to attenuate the spanwise variations. Note that the standard deviation
begins to increase again once the flow enters the adverse pressure gradient region past the apex. The surface
curvature is still convex there, but as will be seen later, a shear layer begins to form within the decelerating
boundary layer. This shear layer generates large-scale structures whose footprint on the near-wall region
would cause the behavior in the standard deviation of the skin friction. To reiterate, the flow separates at
about x/L = 0.1. We should also note that the time-averages in the present simulation were taken over
11L/U∞. With a much longer time-average, the standard deviations in the skin-friction distributions would
likely decrease, although the overall trend with respect to x/L would likely stay the same. In conclusion,
our observations from this analysis seem to largely concur with the previous related observations of Barlow
and Johnston [35].

Evolution of mean streamwise velocity and Reynolds stresses: We now examine the evolution of the
mean streamwise velocity and Reynolds stresses. For this analysis, the mean velocity and Reynolds stress
components originally defined in the Cartesian coordinate system are first interpolated from the simulation
grid onto the local wall-normal line constructed at a given streamwise station. Using the local wall-normal
and surface tangent vectors, the interpolated values are then transformed to the corresponding quantities in
the local orthogonal coordinate system. Figure 10 depicts the evolution of the mean streamwise velocity
profiles in wall units at several stations. Upstream of the acceleration region, at x/L = −0.4, we find that
the von Kármán constant of κ = 0.41 and an intercept constant of C = 4.9 is a good fit to the logarithmic
layer of the profile. The upstream flow approaching the foot of the bump first encounters a mild adverse
pressure gradient region, which is believed to be responsible for the slightly lower C value compared to
that found in zero pressure gradient turbulent boundary layers. The concave curvature in that region might
also have an effect on the logarithmic layer, as discussed further below. The acceleration begins at around
x/L = −0.29. We observe a significant change to the shape of the velocity profiles, as well as to the initial
logarithmic layer, as the accelerated flow approaches the apex. The flow visualizations do not show any
hint of relaminarization or stabilization at ReL = 2 million, yet significant changes to the logarithmic layer
still do happen. At x/L = −0.2 and −0.1, we see that part of the velocity profile shifts above the standard
logarithmic layer, very much like the observation of Fernholz and Warnack [38] in strongly-accelerated
nonrelaminarizing flows.

Some effect of the surface curvature on the law of the wall in the acceleration region is likely. As noted
in the review of Patel and Sotiropoulos [39] on the curvature effects in turbulent boundary layers, under
negligible streamwise pressure gradient, the velocity profiles on a convex surface lie above the standard
logarithmic layer, while those on a concave surface lie below. In our case, the strong favorable pressure
gradient overlaps with the concave curvature from x/L ≈ −0.29 until x/L ≈ −0.138. The velocity profiles in
that region lie above the standard logarithmic layer, which suggests that the favorable pressure gradient effect
overwhelms any potential concave surface effect on the law of the wall. The deviation from the logarithmic
layer increases in the convex region. By the time the flow reaches and passes the apex, where the adverse
pressure gradient takes over, part of the velocity profile shifts back toward the standard logarithmic layer,
as seen at the stations of x/L = 0 and 0.05. The curvature is still convex there, but the observed change in
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the velocity profile suggests that the adverse pressure gradient effect is stronger than the convex curvature
effect on the law of the wall. The flow will soon separate at x/L ≈ 0.1, before the logarithmic layer evolves
further.
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Figure 10. Mean streamwise velocity profiles in wall units.

To make a comparison with the previous ReL = 1 million case, the corresponding apex velocity profile
from that case is also shown in Figure 10. The apex profile at ReL = 1 million, in contrast, looks very
much like those of relaminarizing boundary layers observed in laboratory experiments [40]. Therefore, the
boundary-layer state at the beginning of the adverse pressure gradient region past the apex is significantly
different between the two simulated ReL cases; this “initial state” will determine the severity of downstream
separation, as discussed further in section 3.2.3.

The evolution of the Reynolds stress components, scaled by U2
∞, from x/L = −0.4 to just upstream of

the apex is shown in Figure 11. Here, 〈u′u′〉, 〈v′v′〉, 〈w′w′〉 and 〈u′v′〉, respectively, are the streamwise,
wall-normal, spanwise and shear components of Reynolds stress in the local orthogonal system at a given
station, and the 〈 〉 operator denotes averaging in time and along the span. The wall-normal distance, n, is
normalized by the local δ. The first station at x/L = −0.4 is positioned slightly upstream of the acceleration
region, while the last station at x/L = −0.025 is close to where the C f peak is found. As discussed earlier
in Uzun and Malik [7], [8], an internal layer is triggered by the switch from the mild adverse to strong
favorable pressure gradient at the foot of the bump, at x/L ≈ −0.29. The formation of this internal layer
is signaled by the formation of knee points in the streamwise and spanwise Reynolds stress profiles. The
original peaks of the streamwise and spanwise components of the Reynolds stress are already quite close
to the wall; thus, they become engulfed within this internal layer, while those of the wall-normal and shear
components are located further away from the wall and happen to lie outside this layer. Consequently, we
observe that the original peaks in the streamwise and spanwise stress profiles strengthen considerably as the
internal layer develops further within the accelerating flow. We also see the emergence of inner peaks in the
other two Reynolds stress components within the internal layer in the later stages of the acceleration.

To estimate the thickness of the internal layer generated within the accelerated flow, we employ the
method used by Baskaran et al. [4], which is illustrated in Figure 12. This figure shows the total pressure
versus the stream function, Ψ =

∫ n

0
Udη, where η is the variable of integration along the wall-normal
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direction, at the apex. As seen in the figure, the rate of change of the total pressure with respect to the stream
function is rather fast close to the wall, and slows down further away from the wall. The n/δ location where
the initial fast rate of change transitions to a relatively slower pace can be taken as the approximate edge of
the internal layer. The determination of the internal layer thickness in this matter is admittedly somewhat
ambiguous since the precise location where the said rate of change transitions from a fast to a moderate value
is usually not clear cut. Nevertheless, the method provides a reasonable method of estimating the internal
layer thickness. According to Figure 12, the internal layer thickness scaled by the local δ is δi/δ ≈ 0.18 at
the apex.
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Figure 11. Evolution of the Reynolds stress profiles.

Table 1 provides the approximate δi/δ values extracted at several streamwise stations in the acceleration
region using the described method‡ and the corresponding values scaled by L. We see that the the internal
layer thickness is initially 1.1 × 10−3L, and grows to 2.7 × 10−3L at the apex. The percentage of the local
boundary layer covered by the internal layer is 6 percent at the start of the acceleration, and increases to 18
percent at the apex (while the boundary layer thickness decreases in the favorable pressure gradient region).

‡A clever algorithm that determines the internal layer thickness using this method can be devised and implemented in a com-
puter program to obtain the δi/δ variation over the entire region of interest. This exercise was not attempted in the present study.
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This percentage range falls within the typical wall-modeled portion of a boundary layer in a WMLES.
The internal layer continues to grow in the deceleration region and occupies about 40 percent of the local
boundary layer thickness at the point of separation. As discussed further in section 3.2.3, the upcoming
analysis suggests a close connection between the internal layer generated in the upstream region, and the
free shear layer that develops in the deceleration region and separates. Therefore, if this inner layer is not
modeled correctly, accurate prediction of the downstream smooth body flow separation in this problem may
not be feasible in a WMLES.
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Table 1. Approximate value of the internal layer thickness at several streamwise locations.

x/L δi/δ δi/L

-0.3 0.06 0.0011
-0.2 0.09 0.0017
-0.1 0.13 0.0021

0 0.18 0.0027
0.05 0.24 0.0042
0.1 0.4 0.0095

The steepening near-wall velocity gradient in the wall-normal direction within the accelerating flow is
an important ingredient of the near-wall turbulent kinetic energy production, which additionally depends
on the existence of the Reynolds shear stress. The production of the Reynolds shear stress, on the other
hand, is contingent upon the presence of the gradient of the streamwise velocity in the wall-normal direc-
tion and the wall-normal Reynolds stress. The turbulent kinetic energy production mainly takes place in
the production term of the streamwise Reynolds stress transport equation, and the fluctuating pressure re-
distributes the energy from the streamwise stress to the other two normal stresses. The favorable pressure
gradient is believed to interfere with that energy redistribution process, and this causes the tendency toward
relaminarization/stabilization previously observed in the lower ReL case [7], [8]. This interference naturally
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impacts what portion of the turbulent kinetic energy gets directed from the streamwise component to the
other two normal components. The amount of energy in the wall-normal component then determines the
level of Reynolds shear stress production. Hence, there is a mutual dependence between the production of
the turbulent kinetic energy and that of the Reynolds shear stress.

Figure 11 also shows that the original outer peaks in the wall-normal and shear stress profiles appear
to first strengthen from x/L = −0.3 to −0.2, before starting to weaken, while the outer levels in the other
two components start to decrease monotonically from x/L = −0.3. We do not have an explanation for this
peculiarity. It could be related to the opposing effects of the favorable pressure gradient and the concave
curvature on the Reynolds stresses (stabilizing vs. destabilizing, respectively) in the region where those two
effects overlap. Deep into the acceleration region, all stress components drop significantly in the outer layer,
due to the stabilizing effect of both the favorable pressure gradient as well as the convex curvature, while
the internal layer generates the strong near-wall peaks in all components. These strong near-wall peaks can
be considered another indication for the lack of relaminarization/stabilization at the present ReL. Because
of the relaminarization/stabilization in the previous lower ReL case, all near-wall stress peaks except that
of the streamwise component are much weaker in that case. The flow is able to generate relatively high
levels of streamwise stress near the wall in the lower ReL case, but the energy transfer to the other normal
components becomes hampered by the favorable pressure gradient and the convex curvature, resulting in
mixing suppression along the wall-normal and spanwise directions. This mixing suppression also reduces
the Reynolds shear stress production.

Figure 13 depicts the variation of the peak values of the Reynolds stress components in the region where
−0.3 < x/L < 0.1, which covers the acceleration region and the early part of adverse pressure gradient
region until flow separation. We observe that the peak streamwise component grows remarkably within the
internal layer and reaches its maximum value at x/L ≈ −0.023, which is very near the peak C f location. The
peak streamwise component then starts to decrease as the flow nears the apex and enters the adverse pressure
gradient region. This decrease continues until x/L ≈ 0.066, after which the peak streamwise component
starts to increase again. As will be seen in section 3.2.3, this is due to the weakening of the inner peak in
the early stages of deceleration, and the emergence of an outer streamwise stress peak at the same time. The
strength of the outer peak surpasses that of the inner peak starting at about x/L = 0.066.
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We also see in Figure 13 that the strong growth in the peak values of the wall-normal and spanwise stress
components starts relatively late in the acceleration region, at about x/L ≈ −0.08, while that in the shear
component begins a bit earlier, at about x/L = −0.14. As observed earlier, the original peaks in the wall-
normal and shear components show some growth in the early stages of the flow acceleration. These outer
region peak stresses then start to decay while the new inner peaks emerge within the developing internal
layer. This is why we find a sudden change in the variation of the peak wall-normal and shear components
at x/L ≈ −0.086 and −0.14, respectively, as the inner peak strength surpasses that of the outer peak. As noted
above, the accelerated growth in the peaks of the wall-normal and spanwise stress components within the
internal layer starts at about x/L ≈ −0.08. There is also a significant rise in the peak streamwise component
magnitude by the time the flow reaches x/L = −0.08; hence, in the later stages of the acceleration, the
buildup in the streamwise stress levels appears to be allowing sufficient energy transfer to the other two
normal components that strengthens the near-wall peaks of those components, despite the interference of
the favorable pressure gradient with this transfer.

It is also interesting to note that the peak wall-normal and spanwise components display significant
growth rates as the flow passes the apex and moves toward separation, while the shear component appears
to go through an undulation in that region. At the apex, the streamwise component peak within the internal
layer is positioned very close to the wall, at n/δ ≈ 0.007, while the peaks in the other components are located
in the vicinity of n/δ ≈ 0.02–0.03. As will be seen in section 3.2.3, the inner peak of the streamwise stress
profile weakens in the deceleration region due its close proximity to the wall, and a new outer peak emerges
at about the same wall-normal distance to which the inner peaks of the other stress components shift in that
region. These peaks happen to be positioned within the shear layer developing in the deceleration region.
These observations suggest an inherent link between the internal layer generated in the acceleration region
and the emerging shear layer in the deceleration region.

Figure 14 provides the profiles of the anisotropy parameters, 〈v′v′〉/〈u′u′〉 and 〈w′w′〉/〈u′u′〉, at the same
streamwise stations shown in the Reynolds stress profiles of Figure 11. As expected, we find a high degree of
anisotropy within the internal layer identified earlier. This is not surprising at all, given the close proximity
to the wall. As seen earlier, the streamwise stress profile contains much of the turbulent kinetic energy in
the near-wall region, and the streamwise stress peak within the internal layer is the closest to the wall. There
is little, if any, wall-normal stress relative to the streamwise stress in the very near-wall region, say where
n/δ < 10−2 or so, over the entire acceleration region. The ratio between the spanwise and streamwise stress
levels in the same very near-wall region drops as the internal layer develops, and appears to start increasing
near the apex. The observed downward trend in 〈w′w′〉/〈u′u′〉 very near the wall in much of the acceleration
region is believed to be a consequence of the favorable pressure gradient interfering with the transfer of the
turbulent kinetic energy from the streamwise Reynolds stress to the other two normal components. As noted
earlier in the discussion of Figure 13, the energy transfer process appears to be relatively less impeded in
the later stages of the acceleration.

Both anisotropy parameter values are generally higher further away from the wall. As the accelerated
flow moves toward the apex, we start to see some tendency toward isotropy in the outer region of the
boundary layer, roughly corresponding to where n/δ > 0.1–0.2, as indicated by the values exceeding 0.6 in
that region. This is believed to be due to the stabilizing effect of a favorable pressure gradient and also of
convex streamline curvature in the late stages of acceleration. As the flow nears the apex, a reverse trend
back toward anisotropy is observed in the outer region, presumably due to the adverse pressure gradient
effect. Note that, as seen in the Reynolds stress profiles, starting at n/δ ≈ 0.8 or so, the stresses become very
small near the boundary layer edge. Therefore, 〈v′v′〉/〈u′u′〉 exceeds 1, while 〈w′w′〉/〈u′u′〉 becomes as high
as about 0.8 there. Once the flow enters the favorable pressure gradient downstream of x/L = −0.3, there is
hardly any meaningful collapse of the anisotropy profiles over the portion of the boundary layer containing
the bulk of the turbulent kinetic energy, indicating the complexity of the accelerated flow. The anisotropy
varies quite significantly not only along the wall-normal direction but also in the streamwise direction.
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Figure 14. Anisotropy parameter profiles.

Figure 15 shows the profiles of the Townsend structure parameter, −〈u′v′〉/q2, where q2
= 2k = 〈u′u′〉 +

〈v′v′〉 + 〈w′w′〉 (k is the turbulent kinetic energy), and the streamwise variation of the maximum structure
parameter value in the region of interest. Figure 15(a) shows that at x/L = −0.4, the peak value is nearly
constant at around 0.142–0.146 in the range 0.2 < n/δ < 0.6. This is fairly close to the value of about
0.14 for a zero pressure gradient boundary layer [5]. The stations of x/L = −0.3, −0.2 and −0.15 are
located over the concave curvature. The pressure gradient over much of this region is favorable, except at
x/L = −0.3, where it is close to zero. Over the surface distance covered by these stations, the peak portion
of the profiles sharpens while gaining strength. Figure 15(b) shows that the station of x/L = −0.15 is very
close to where the maximum structure parameter value of 0.194 is found. Recall that the convex curvature
begins at x/L ≈ −0.138, which is not too far off from this location. The maximum structure parameter
value then starts to decrease as the accelerated flow moves onto the convex curvature. As seen earlier in the
discussion of Figure 11, the outer peaks in the wall-normal and shear components of the Reynolds stress
show an increase from x/L = −0.3 to −0.2, before starting to decrease, while the outer levels in the other two
components decrease monotonically from x/L = −0.3. The turbulent kinetic energy in the outer region also
decays monotonically in the entire acceleration region. This initial rise in the outer region Reynolds shear
stress in combination with the monotonic drop in the turbulent kinetic energy explains the growth of the
maximum structure parameter value over the concave surface. The behavior of the peak structure parameter
value is reversed in the convex region, suggesting that the rate of decrease in the outer region Reynolds shear
stress is faster than that in the turbulent kinetic energy over the convex curvature.

As the flow nears the apex, we see deviations in the structure parameter profiles occurring both near the
wall and in the outer regions, relative to the profiles located within the earlier stages of acceleration. As
seen in Figure 11(d), an inner Reynolds shear stress peak emerges within the developing internal layer. This
shear stress peak corresponds to the inner peak observed at x/L = −0.025 in Figure 15(a). The outer peak
in the structure parameter profile weakens as the accelerated flow approaches the apex, which appears to be
a consequence of the convex curvature effect according to the preceding analysis. There is also the adverse
pressure gradient effect anticipated near the apex, which could explain the significant shape differences
observed in the outer region of the structure parameter profiles between the stations of x/L = −0.1 and
−0.025. The strength of the inner peak in the structure parameter profile surpasses that of the outer peak
at x/L = −0.013, which is why the maximum value of the structure parameter in Figure 15(b) begins to
rise starting at that location. We also observe that outside the boundary layer at all stations, the structure
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distance.

parameter generally shows an increase with distance from the wall, which suggests that the decay rate of the
shear stress with outward distance is slower than that of the turbulent kinetic energy, but the stresses in that
region are already very small (see Figure 11); hence, this behavior of the structure parameter outside the
boundary layer does not have much practical significance. The other, more relevant observations concerning
the evolution of the Townsend structure parameter profiles highlight the subtleties of the Reynolds shear
stress behavior relative to the turbulent kinetic energy under the influence of both pressure gradient and
surface curvature.

Finally, on a note related to the structure parameter, Bradshaw et al. [41] derived a differential equa-
tion for the turbulent shear stress from the turbulent energy equation and defined three empirical functions
relating the turbulence intensity, dissipation and diffusion to the shear stress. The equation was solved for
various turbulent boundary layers developing under both adverse and favorable pressure conditions, assum-
ing a uniform structure parameter value of 0.15 for all cases. As seen in the above analysis, a uniform
structure parameter value across an entire boundary layer subjected to a pressure gradient appears far from
a reasonable approximation, and the peak value within the boundary layer can also differ considerably from
0.15, depending on the interaction with the pressure gradient and surface curvature.

3.2.3 Examination of the region downstream of the apex

We now move onto the analysis of the decelerating flow past the apex and the downstream reattachment
region. As noted earlier, one of the motivations behind the present higher ReL simulation is to have a case
that generates stronger flow separation in the adverse pressure gradient region, relative to that observed at
half the Reynolds number. This is an important feature of the flowfield that will be useful in the evaluation
of computationally efficient, lower-fidelity simulation tools. Flow visualizations shown earlier and the C f

distribution confirmed the presence of more severe separation in the present simulation. A natural ques-
tion that may arise at this point is: Why does the present higher ReL case generate more severe separation
relative to that observed at half the Reynolds number? To answer this question, we examine Figures 16(a)
and (b) that depict the evolution of the mean streamwise velocity, U/U∞, and the turbulent kinetic energy,
k/U2

∞, profiles, respectively, within the deceleration region, for the two simulated cases. The adverse pres-
sure gradient slows down both the near-wall and outer regions of the boundary layer, and this leads to the
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formation of an intermediate buffer zone that acts like a free shear layer. In the lower ReL case, the partially
relaminarized/stabilized flow retransitions to turbulence shortly after the apex, as discussed in Refs. [7], [8].
The velocity profiles shown in Figure 16(a) reveal that the retransition in the lower ReL case generates some
near-wall momentum, which then seems to counteract the near-wall deceleration due to the adverse pressure
gradient. We therefore see in Figure 16(a) that the initial near-wall deceleration is not as strong as that in
the higher ReL case. This “supplemental” near-wall momentum creates resistance against separation. The
retransition generates the high peak in k at x/L = 0.05 in the lower ReL case.
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Figure 16. Comparison of profiles between the two simulated cases. Solid lines correspond to ReL = 2

million, dashed lines correspond to ReL = 1 million.

For the higher ReL case, the shape changes in the velocity profiles, coupled with the outward shift in the
peak k location, and the accompanying growth in the peak k, suggest that the shear layer develops quickly.
In that case, the free shear layer spreads wide as the flow reaches x/L = 0.1; subsequently, the near-wall
momentum nearly vanishes and this will soon lead to separation. For the lower ReL case, the shear layer
development is relatively slower, due to the supplemental initial near-wall momentum from the retransition.
As the flow moves deeper into the adverse pressure gradient, the peak k decreases, coupled with an outward
shift of the peak k location into the developing shear layer. The peak k level in the shear layer will begin to
rise shortly after x/L = 0.1, and the flow will eventually undergo very weak/incipient separation over the
range where 0.195 . x/L . 0.268. The adverse pressure gradient magnitude in that region is relatively
milder compared to that right after the apex, which then causes very weak or incipient separation. Such
differences in the shear layer evolution between the two cases, and the severity of separation, are intrinsically
tied to the Reynolds number dependent initial states at the entrance of the adverse pressure gradient region
past the apex.

Figures 17 and 18 depict how the Reynolds stress profiles develop in the region downstream of the apex
for the ReL = 2 million flow. For clarity, the region of interest is divided into two halves. We find some
interesting trends in the evolution of the Reynolds stress profiles. At the apex, the streamwise component
peak within the internal layer is positioned very close to the wall, at n/δ ≈ 0.007, while the peaks in the
other components are located in the vicinity of n/δ ≈ 0.02–0.03. We see a weakening of the streamwise
component peak as the flow decelerates toward separation, while the other component peaks begin to shift
outward into the emerging shear layer. An outer peak also develops in the streamwise stress profile as the
flow decelerates. The weakening of the inner stress peak is due to the reduction in the near-wall streamwise
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velocity gradient by the adverse pressure gradient, which then reduces the streamwise stress production.
The peaks in the other stress components, initially positioned relatively further from the wall, shift outward
without weakening in the deceleration region from x/L = 0 to 0.1. In fact, the wall-normal and spanwise
component peaks display a growth. As the flow reaches x/L = 0.1, which is very near the separation point,
all stress peaks are positioned at n/δ ≈ 0.2. These observations suggest a close connection between the
internal layer that develops upstream within the acceleration region, and the free shear layer that emerges
in the deceleration region, as also observed previously in the ReL = 1 million simulation [7], [8]. As noted
earlier in section 3.2.2, the percentage of the local boundary layer occupied by the internal layer grows
from 6 to 18 percent in the acceleration region. This percentage range falls within the typical wall-modeled
portion of a boundary layer in a WMLES. The internal layer continues to grow in the deceleration region
and covers about 40 percent of the local boundary layer thickness at the point of separation. Thus, proper
physical modeling of this inner layer appears crucial in order for a WMLES to predict the flow separation
in this problem.
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Figure 17. Evolution of the Reynolds stress profiles in the region where 0 ≤ x/L ≤ 0.5.

All stress peaks are positioned at approximately the same location within the separated shear layer. The
peak stress location moves away from the wall, denoted by the increasing n/δ, as the separated shear layer
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evolves, and then moves back toward the wall once the separated flow nears the reattachment location at
x/L = 0.42. All stress peaks show major growth within the separated shear layer. From x/L = 0.1 to 0.2,
the peaks of the normal components increase by as much as a factor of 2, while the shear component peak
displays a more moderate growth. From x/L = 0.2 to 0.3, a different trend is found; the shear component
peak now has the fastest growth with a factor of about 2.6, the wall-normal component peak still shows a
fairly significant growth with a factor of about 1.8, while a more moderate growth is found in the spanwise
component peak along with the least growth in the streamwise component peak. As the separated shear
layer approaches x/L = 0.4, which is near the reattachment point at x/L = 0.42, the peak streamwise
component has already started to decrease, while the peak spanwise component holds steady, and the other
two component peaks are still rising.
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Figure 18. Evolution of the Reynolds stress profiles in the region where 0.5 ≤ x/L ≤ 1.

Another observation we make from Figure 17 is the appearance of considerable streamwise and span-
wise stress levels within the reversed flow region as the reattachment point is approached. The separated
shear layer generates some energetic eddies that impinge on the wall in the vicinity of the reattachment
point. Some of these eddies get diverted into the reversed flow region and move upstream along the wall.
Consequently, high levels of streamwise and spanwise Reynolds stresses are found near the reattachment
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point. These levels drop as the distance from the reattachment point increases within the reversed flow re-
gion because the near-wall eddies slow down as they move further upstream. There is a small rise in the
other two stress components in the reversed flow region near the wall as well, but those increases are not as
significant, as the wall-normal velocity fluctuations are rather small close to the wall.

The energetic eddies of the shear layer impinging on the wall that do not get diverted into the reversed
flow region end up getting dragged downstream by the reattached flow. This is why we also observe signif-
icant near-wall levels in the streamwise and spanwise stresses at x/L = 0.5, which is located downstream
of the reattachment point. These near-wall eddies getting dragged downstream along the wall begin to lose
their coherence, which then reduces the associated near-wall stress levels. At the same time, we also observe
the formation of a new inner streamwise Reynolds stress peak very near the wall, which is an indication of
a new internal layer being generated within the recovery flow. This internal layer is believed to be triggered
by the change from adverse to mild favorable pressure gradient at the tail of the bump. The other Reynolds
stress components are also in the process of generating their respective inner peaks. As our physical domain
ends at x/L = 1, there is not sufficient development length for the inner peak to complete its development
in the Reynolds stress profiles. Meanwhile, the peak stresses found in the shear layer above the wall have
started decaying within the recovering flow. The shear layer gradually disappears as the velocity gradient
within the free shear layer is progressively decreased by the mild favorable pressure gradient in the recovery
region. This naturally decreases the Reynolds stress production there. With a longer recovery domain length,
the outer peaks in all Reynolds stresses would completely disappear, and the inner peaks would complete
their development. We would then expect the Reynolds stress profile shapes to approach those of a fully
developed turbulent boundary layer under zero or mild favorable pressure gradient conditions.

4 Concluding remarks

The findings from a high-fidelity simulation of a narrow slice of the speed bump flow at ReL = 2
million show that the higher Reynolds number flow generates much stronger flow separation, relative to
that previously observed at half the Reynolds number. The present higher ReL is also able to suppress
the relaminarization/stabilization in the acceleration region observed at the lower ReL. An internal layer
is found to develop within the accelerated flow, which is believed to be triggered by the switch from the
mild adverse to strong favorable pressure gradient at the foot of the bump. Strong peaks in all Reynolds
stress components emerge as this internal layer continues its development within the favorable pressure
gradient region. The acceleration region of the flow displays strong anisotropy in the normal Reynolds
stress profiles. The anisotropy varies quite significantly not only along the wall-normal direction but also in
the streamwise direction. Both pressure gradient and surface curvature effects are responsible for the trends
observed in the evolution of the anisotropy profiles. Not surprisingly, there is a high degree of anisotropy
within the internal layer. Toward the apex, there is a tendency toward isotropy in the outer region of the
boundary layer, believed to be due to the stabilizing effect of favorable pressure gradient and also of convex
streamline curvature in the late stages of acceleration. The ratio between the Reynolds shear stress and the
turbulent kinetic energy goes through significant changes via the interaction with the pressure gradient and
surface curvature related effects as well. Analysis of the concave curvature section upstream of the apex did
not reveal a significant spanwise variation in the time-averaged skin-friction distributions, which, in turn,
can be considered evidence for the lack of organized stationary structures over the concave surface.

Comparison of the present ReL = 2 million results with the previous ReL = 1 millions results revealed
that the Reynolds number dependent boundary-layer state at the entrance of the adverse pressure gradient
region past the apex dictates the severity of separation. In the ReL = 2 million case, the turbulent boundary
layer past the apex starts immediately decelerating and separates at about x/L = 0.1, while in the ReL = 1
million case, the partially relaminarized/stabilized boundary layer at the apex first goes through a retran-
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sition to turbulence in the early stages of the adverse pressure gradient. This retransition generates some
supplemental near-wall momentum that creates resistance against separation. Subsequently, the lower ReL

flow undergoes very weak or incipient separation further downstream, where the adverse pressure gradient
is relatively milder compared to that immediately after the apex.

The evolution of the Reynolds stress profiles within the decelerating, separated and reattached portions
of the flow displayed dramatic changes as the flow went through these stages. The analysis suggests a
strong connection between the internal layer generated in the upstream region, and the free shear layer that
develops in the deceleration region and separates. Therefore, if this inner layer is not modeled correctly,
accurate prediction of the downstream smooth body flow separation may not be possible. In any case, the
quality dataset generated by the present simulation provides a valuable resource for evaluating lower-fidelity
simulation tools applied to turbulent flows that develop under curvature and strong pressure gradient effects
and experience smooth-body separation.
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