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Supermassive Binary Black Holes
• Binary AGN are a primary multi-messenger source for 

LISA (inspirals, mergers, ringdowns) and PTA (inspirals). 

•Likeliest EM-bright binary black hole system.

•Best candidate for exploring plasma physics in the 
strongest and most dynamical regime of gravity.

• GWs with LISA aid localization, & with smart pointing 
strategies with fast-slewing X-ray telescopes (e.g. 
Transient Astrophysics Probe) one may find O(1-5) 
systems before merger.  
Dal Canton++, ApJ 886 (2019).  

•Only (?) likely opportunity to see EM/GW through all 
phases: inspiral to merger to ring-down. 

• Rubin Observatory will identify 100k’s of AGN, so even a 
“small” binary fraction implies many sources.

• EM identification will be critical for detection and 
characterization—> realistic simulations and their EM 
output are needed!
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Figure 3. Snapshots of surface density Σ during quasi-steady state after t ≈ 460tbin ≈ 1.5tvis. Surface density is normalized by the maximum value at t = 0 and
plotted on a logarithmic scale. For each snapshot, we plot both the inner ±6a (top panel in each pair), and the inner ±1.5a (bottom panel in each pair). Mass ratios
are, from left to right and top to bottom, q = 0.026, 0.053, 0.11, 0.25, 0.43, 0.67, 0.82, and 1.0. Orbital motion is in the counterclockwise direction. Green arrows
represent fluid velocity.
(A color version of this figure is available in the online journal.)
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In each of our simulations, we evolve for ∼1.5tvis(2a). We
find that this is sufficient in order to reach a quasi-steady
state in the inner region of the disk, as reflected in relatively
steady density profiles that we achieve after t ! tvis. The mass
ratios and time averaged accretion rates for each simulation
are summarized in Table 1. Time averaged accretion rates are
normalized by the time averaged accretion rate onto a single
BH, Ṁ0. We note that although the normalized accretion rate
tends toward unity for small q as expected, it remains greater
than unity for all cases considered. We caution that while these
accretion rates remain steady over hundreds of orbits, we expect
them to slowly relax to unity over much longer timescales as
the outer regions of the disk relax to their quasi-equilibrium
state. Thus, Table 1 should not be interpreted as evidence for
binaries causing an enhancement in accretion. Rather, it should
be interpreted as evidence that binaries are unable to fully clear a
cavity and significantly suppress accretion, contrary to previous

Table 1
Summary of Mass Ratios and Average Accretion Rates

Mass Ratio q 〈Ṁ〉/〈Ṁ0〉
0.026 1.06
0.053 1.56
0.11 1.76
0.25 1.68
0.43 1.62
0.67 1.60
0.82 1.58
1.0 1.55

arguments (Milosavljević & Phinney 2005). We note that such
arguments may underestimate the role that non-axisymmetric
accretion streams play in allowing gas to penetrate into the
cavity. Furthermore, binary torques may be responsible for
moving gas near the inner disk edge onto more eccentric orbits,
causing them to be captured by one of the BHs, thus increasing
the accretion rate relative to that of a single BH.

Snapshots from each simulation are shown in Figure 3. In
each case, a low density cavity is maintained surrounding the
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Fig. 9.— Fourier decomposed power spectrum of the

accretion through the inner boundary of a q = 1 binary

(top panel) and a q = 0.1 binary (bottom panel).

stand this result. The first point to raise is that
it is unlikely ✏ > 1 can persist for a long period
of time. If it were to do so, the inner region of
the circumbinary disk (r & 2a) would be drained
of mass, inevitably leading to a reduction in the
accretion rate onto the binary. Thus, the better
way to think about the values of ✏ seen in our sim-
ulations, a few tens of percent greater than unity,
is that the spiral waves excited in a circumbinary
disk by the members of the binary create a su�-
cient enhancement of the Reynolds stress to raise
the accretion rate per unit mass in the inner disk
by a few tens of percent. By this means, an ac-
cretion rate equal to that injected at large radius
can be sustained by a surface density somewhat
smaller than required when the potential is due to
a point-mass. Over longer times than we can fol-
low with this kind of simulation, we expect that
the surface density in the inner disk will decline
to this level, leaving the disk in true inflow equi-
librium.

With that clarification, it is time to consider
the question of why 2D and 3D simulations consis-
tently see substantial accretion from circumbinary
disks onto the central binary despite the contrary
prediction made by 1D studies. One clue to the

answer comes from the structure of the accretion
flow through the cavity: narrow streams.

4.1. Stream Structure

Fig. 10.— Left column: Time averaged midplane

density (top), midplane (middle) and inner bound-

ary (bottom) accretion rate ⇢vrr
2
sin ✓, both for the

q = 0.1 binary over the last 50⌦
�1
bin of the simulation.

All figures in a frame comoving with the binary. Right

column: same as left, but for q = 1 binary. Here neg-

ative means inflow. The plus symbols in the midplane

plots mark the L2 and L3 points. Summed separately,

regions of inward and outward mass flux have compa-

rable magnitude; their net, although smaller in mag-

nitude, is consistently inward.

In the body of an accretion disk, the inflow
speed is generically much slower than the orbital
speed, ⇠ ↵(H/r)2vorb, where ↵ is the usual ratio of
vertically-integrated stress to vertically-integrated
pressure, and H is the local scale height. On
the other hand, this flow, although only ⇠ H

thick in the vertical direction, takes place, on av-
erage, around the entire circumference of the disk,
through an area 2⇡r wide.

By contrast, the flow across the cavity (see
Fig 10) is restricted to very narrow streams. Along
the central density maximum of the streams, they
are typically ⇠ 2–3H wide if measured sideways
from the maximum to where the density drops by
90%. Moreover, the density in the streams as they
approach the inner boundary is⇠ 3–10 times lower
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Hopkins, Hernquist, Di Matteo, 
Springel++ 

Noble++2012–15
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Strategy & Techniques

Farris++2014, d’Orazio++2015—,
Munoz, Miranda, Lai (2017-2020), 
Moody++(2019), Tang++(2017-2019)
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Viscous Hydro. MHD GR MHD GR MHD
Newtonian Newtonian Post-Newtonian

Matter:
Gravity: Numerical Relativity

Bowen++2018, 2019
Combi++2021

•  Use well-tested GRMHD code for accretion disks: HARM3d;
•  Novel methods tailored for accuracy and affordability: 
•  Dynamic warped grids;
•  Perturbative solutions for gravity consistent with Einstein’s equations in our 
regime;

➡ Key Challenges: Ability to evolve accreting binaries while resolving the MRI 
and MHD dynamics at the scale of the event horizons in the inspiral regime—
key for establishing pre-merger conditions.
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sion of the metric that can be calculated e�ciently by
Pandurata as a post-processor of the MHD data. As
described in [95], the binary four-metric can be instan-
taneously described by a three-metric �ij , lapse ↵, and
shift �i, according to:

gµ⌫ =

 
�↵2 + �

2
�j

�i �ij

!
. (22)

Following [96], we use ↵ = 2/(1 +  
4), �j = 0, and �ij =

�ij 
4. The conformal factor  is given by

 = 1 +
m1

2r1
+

m2

2r2
, (23)

with r1 and r2 being the simple Cartesian distances be-
tween the spatial coordinate and the primary/secondary
masses. For the Christo↵el-symbol components �⇢

µ⌫ we
take the spatial and temporal metric derivatives analyt-
ically based on the puncture trajectories calculated by
the apparent horizon finder used in our GRMHD simu-
lations. One advantage of using this simplified metric is
that we can easily calculate the photon trajectories “on
the fly” and thus do not need to rely on the fast light
approximation used by many ray-tracing codes.

Even though Pandurata uses a slightly di↵erent met-
ric than that of the GRMHD simulations, the quali-
tative properties of the spacetime are expected to be
very similar. We can avoid some potential numerical
problems by normalizing the IllinoisGRMHD fluid 4-
velocity everywhere by using the coordinate 3-velocity
from IllinoisGRMHD and then using the analytic metric
to solve for ut via gµ⌫u

µ
u
⌫ = �1.

Given the fluid velocity at each point and for each data
snapshot, a local tetrad can be constructed as in [56],
from which photon packets are launched and then propa-
gated forward in time until they reach a distant observer
or are captured by one of the black holes. Those that
reach the observer are combined to make images, light
curves, and potentially spectra. We ignore scattering or
absorption in the gas, so that all photon packets travel
along geodesic paths.

One of the challenges with this approach is the inherent
uncertainty of what emission mechanism is most appro-
priate, and even then, the electron temperature Te is not
known explicitly from the simulations, so it can only be
approximated with an educated guess. For this paper, we
focused on a single simplified emission model of thermal
synchrotron, where the emissivity is isotropic in the local
fluid frame with bolometric power density given by

Psyn =
4

9
nr

2

0
c�

2
�
2
B

2
, (24)

with r0 the classical electron radius, n the electron num-
ber density, � ⌘ v/c, and �2

�
2 ⇡ Te/me (see, e.g. Chap.

6 of [97]). We use the magnetic field strength and fluid
density specified by IllinoisGRMHD, along with the code-
to-cgs conversion described above. We estimate the elec-
tron temperature from the simulation pressure, assuming

FIG. 17. Snapshots from Pandurata post-processing of the
simulation data at a separation of 10M (about 1000M be-
fore merger), viewed by an observer edge-on to the orbital
plane. Top panel: thermal synchrotron emission; middle
panel: magnetic contribution only (/ B2); bottom panel:
gas contribution only (/ ⇢T ).

a radiation-dominated fluid with p = aT
4

e , reasonable for
the � = 4/3 polytrope used here. Thus the synchrotron
power scales as

Psyn / B
2
⇢
4/3 / ⇢

7/3
0

, (25)

since B
2 ⇠ ⇢.

In the top panel of Fig. 17 we show the observed syn-
chrotron intensity on a log scale for a single snapshot of
IllinoisGRMHD data when the binary separation is 10M .
The observer is located edge-on to the orbital plane and
the black hole on the left is moving towards the observer,
resulting in a special relativistic boost.
In an attempt to understand the features seen in

Fig. 17, we repeat the Pandurata calculations with two
other emissivity models, in one case focusing just on the

e.g., Sayeb, Blecha, Kelley, 
Gerosa, Kesden, and 
Thomas, MNRAS (2020)

Kelly++2017, 
Farris++2012, Gold++2014ab, 
Kahn++2018, Paschalidis++2021, 
Cattorini++2021 
Review: Gold, Galax, 7, 63, (2019)
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• Accretion variability becomes 
lump-dominated for mass-ratios 
above ~0.2

uniformly reduced density scale (compare upper and lower
panels). Eventually (t∼1000Pb), the circumbinary torus
becomes severely depleted, and the accretion rate onto the
binary drops to a few per cent of its peak value at earlier times.

We show the evolution of an accreting torus in Figure 8.
During the transient phase (t100Pb), the accretion rate rises
rapidly as the cavity is filled; later on (t100Pb), the accretion
rate decreases steadily (top panel). A clearer picture of the
long-term trend is provided by the running average � §Mb 30�
(thicker line). At later times, � §Mb 30� can be compared to the
accretion rate onto a central point mass Mc� from a viscously
evolving disk of initial mass Md,0 and initial characteristic
radius Rd,0 (Hartmann et al. 1998; Andrews et al. 2009),
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where the prescribed viscosity profile is O O� HR R0 d,0( ) and
Ot ,0 is the viscous time at �R Rd,0. At later times, and for

γ=1/2, we have r �M tc
4 3� , which is in rough agreement

with the evolution of � §Mb 30� . In the middle panel of Figure 8,

Figure 5. Normalized power spectral density for the four simulations depicted in Figure 4. For qb�0.6, the variability is clearly dominated by the frequency
X _ 81

5 b. For qb=0.5, however, there is significant power at ω;Ωb.

Figure 6. Dominant frequency Xpeak, max obtained from the spectral analysis of
Mb� for different values of qb (Figure 5). The size of the markers measures the
relative power at this frequency relative to other peaks found in the PSD. The
dominant frequency is _ 81

5 b for qb�0.5, although its power decreases with
decreasing qb. For qb=0.4, the accretion rate time series is dominated by the
harmonic with X 8peak b�

Figure 7. Accretion eigenvalue l0 (top), accretion rate ratio η (middle), and
binary migration rate � §a ab b� (bottom) for a range of values in mass ratio qb
obtained from infinite disks in a steady state (see Figure 4). As evidenced by
the positive values of � §ab� , binaries with qb0.3 expand while accreting.
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Noble et al. (2020). This longer-timescale variability is
indicative of episodic accretion from a build-up of mass at
the cavity edge, which falls onto the binary all at once,
approximately every five orbits. This is relevant for observa-
tions of variable quasars such as PG-1302, for which a binary
might explain variability on orbital timescales (as already
suggested by D’Orazio et al. 2015b) but this would also predict
a longer-timescale variability that is only observable after many
orbits (Charisi et al. 2015; D’Orazio et al. 2015a).

The five-orbit accretion cycle is shown in Figure 7. One can
clearly see variability on the half-orbit timescale, in addition to
the five-orbit variations, which resemble a sawtooth pattern.
The accretion cycle is quite distinct, and makes specific
predictions for binary quasars; one expects a very rapid rise,
followed by a slow decay (never the other way around). This
rapid rise also provides a possible explanation for changing
look quasars, which shift very rapidly from low-luminosity to a
high-luminosity state (MacLeod et al. 2016, 2019). One can
model this pattern using the following form:

� � 8�M t M B1 tan tan t 5 , 12B0
1( ) ( ( ( ))) ( )� �

where B=0.25 (the form �tan tan x1( ( )) is merely a convenient
way of achieving the sawtooth pattern). The amplitude B
captures the jump in luminosity, which should be proportional
to the variability measured on the five-orbit timescale.

This sawtooth pattern could be a possible smoking gun for
AGN variability being connected to binary-disk dynamics. If
the system is observed for long enough, one expects to see a
sharp rise in the accretion rate every five orbits. For example, in
the case of PG-1302, a speculative possible light curve is
plotted in the lower panel of Figure 7, accompanied by
observations from the Catalina Real-time Transient Survey
(CRTS; Graham et al. 2015a) and ASAS-SN (Shappee et al.
2014; Kochanek et al. 2017; Liu et al. 2018), along with data
from photographic plates over the past century, which have
been digitized as part of the the Digital Access to a Sky
Century at Harvard (DASCH; Grindlay et al. 2009). If the four-
year variability observed in PG-1302 is indicative of a binary,
then we predict a sharp rise in the luminosity by about a

magnitude, possibly peaking around the year 2027. Observa-
tions of this quasar over the next decade will be able to
determine whether this binary accretion model is accurate.
Additionally, PG-1302 was just one of many short-period

variable quasars that have been discovered, some of which
have shorter periods (Graham et al. 2015b; Charisi et al. 2016;
Liu et al. 2019). It is possible this sawtooth pattern might be
discovered in another example.

4. Discussion

This study measured accretion onto each component of a
binary system, its accretion variability, and the total torque felt
by the binary due to the circumbinary accretion disk. This
information can be used to determine how the binary will
evolve as mass is accreted and to make predictions for a variety
of observed astrophysical binary systems. For example, as the
accretion drives the binary toward equal mass, one can ask how
much mass one needs to accrete to make a twin binary, which
is relevant for observations of binary stars that suggest a
significant population of twins with mass ratio q>0.95 (e.g.,

Figure 7. Top panel: five-orbit variability roughly follows a sawtooth pattern in
time as mass piles up at the cavity edge and falls onto the binary all at once
every five orbits. If this long-term variability is responsible for deviations from
sinusoidal behavior in PG-1302, then we predict a sharp rise in the accretion
rate at the end of the five-orbit cycle. Bottom panel: a possible variability
scenario for PG-1302, assuming the observed short-term variability is on the
half-orbit timescale. This scenario predicts a rapid rise, peaking in magnitude
around the year 2027. This is only one possible scenario, but if this rapid rise
were observed, it would be strong evidence in favor of PG-1302 housing a
binary.

Figure 6. 2D periodogram showing variability with respect to different
timescales. Longer timescale (4 to 5 orbit) variability occurs for �q 0.2. EM� is
calculated at each frequency via Equation (11).
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(2020). 

• Binaries with mass-ratios above 
~0.05 - 0.1 may spiral apart!
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• Eccentricity evolves with the inspiral rate; 
• Sweeping over eccentricity, fixed points at e=0, 0.4; 
• Careful attention to e=0.4 case shows it inspirals!
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Figure 4. The time evolution of ȧ and ė during transitions to and from the symmetric, apsidally locked state and the asymmetric, precessing
state. Log-surface-density snapshots are taken at times indicated by the vertical grey lines. Top: For fixed binary eccentricity e = 0.4, starting
from the quasi-steady state output of a e = 0.3 run. The disk and binary response transition after ⇠ 700 binary orbits. Bottom: For a fixed
binary eccentricity of e = 0.3, starting from the quasi-steady state output of a e = 0.4 run. The disk and binary response transition after
⇠ 1900 binary orbits. Smoothing is carried out over ⇡ 200 orbits to show oscillations due to disk precession.

Figure 5. Binary orbital evolution near the transition eccentricity
e⇤, as modeled by Eqs. (10). The black lines are the analytic aver-
age expectations for a(t) given by Eqs. (11) (top), and hei (bottom).
We choose a density scaling of ⌃0a

2/M = 10�5. Note that hei can
differ from e⇤, marked by the grey-dashed line.

to two attracting solutions: (i) expanding circular orbits for
initial eccentricities e0 . 0.1, and (ii) decaying orbits with
orbital eccentricity oscillating around e ⇡ 0.4 for initial ec-
centricities e0 & 0.1. Importantly, we have linked this be-
havior to a transition in the disk response that results in an
apsidally locked, symmetric disk state for 0.2 . e . 0.4.
Hence, the robustness of these relatively simple results can
be vetted by better understanding this disk transition.

Miranda et al. (2017) find a similar disk transition in their
2D isothermal hydrodynamical calculations, which sample
a few different eccentricities and use the same fiducial disk
parameters but cut out the region of the domain contain-
ing the binary. They attribute the existence of precessing-
asymmetric and locked-symmetric states to eccentricity exci-
tation at eccentric Linblad resonances (ELRs; Lubow 1991)
competing with viscous damping. If this is the case, then fu-
ture analytical work can predict the change in onset of the
locked symmetric state for different disk viscosity and Mach
number. For example, Tiede et al. (2020) show that the ex-
pansion of e = 0, q = 1 binary orbits reverses for Mach
numbers between 25 and 40. Hence, the robustness of our
results should be understood in light of resonant theory and
numerical calculations like those presented here, but for dif-
ferent disk Mach number and viscosity.

Our results are in good agreement with comparable stud-
ies for q = 1 binaries (using different codes). Figure 1
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Figure 14. Accumulated SNR of the deviation due to average torques in the
α = 0.1 runs, shaded up to our detectability threshold of ρδφ ≥ 8. Higher
viscosity generally produces stronger torques; hence the imprint is detectable
at lower disc densities.

event (a relative SNR, ρδφ /ρ), as a function of disc surface density.
This illustrates that the accumulated deviation for inspirals that are
chirping faster (dashed lines) is weaker than for the inspirals that
are observed at earlier times (solid lines). Nevertheless, we see in
Fig. 12 these weaker deviations are more detectable due to the
larger overall SNR. Fig. 10 clearly illustrates the reason: these tighter
binaries are observed at frequencies close to the minimum of LISA’s
sensitivity curve. Louder events – ideally intermediate mass ratios at
low redshift − are the most promising candidates for detecting gas
imprints.

Adopting a detectability threshold of ρδφ ! 8, we conclude that
the gas imprint is detectable for all simulated mass ratios if the
disc density exceeds %0 ! 104−6 g cm−2. For an inspiral beginning
at 10rS, this threshold corresponds to a local disc mass of Menc ∼
πr2%0 = 10−3

(
r

10rS (M1)

)2 (
%0

105 g cm−2

)
M$ within the vicinity of the

secondary BH. The surface density required for detectability depends
on the strength of the torque, which varies for each value of the mass
ratio.3 Given that the gas torque on the q = 3 × 10−4 binary is an
order of magnitude weaker than for the higher mass ratios, it requires
a correspondingly higher %0 for detectability. The detectability of
gas for lower mass ratios at earlier stages suffers from weaker GW
emission and more modest frequency evolution, and gas torques are
less detectable even for the highest disc densities.

For higher viscosities, where torques are stronger for each mass
ratio, the detectability of a deviation is improved (see Fig. 14), and an
SNR deviation of ρδφ ! 8 can be reached with lower disc densities,
%0 ∼ 104 g cm−2.

One may wonder how our choice of primary mass affects the
detectability of the gas imprints. In principle, IMRIs can occur for
more or less massive primary MBHs while still emitting GWs within
the LISA frequency band. We demonstrate the effect of our choice
of primary mass M1 for a fixed mass ratio q = 10−3 in Fig. 15.
Higher mass binaries emit louder gravitational waves, but they merge
at lower frequencies due to their increasingly large ISCO (rS∝M).

3Compared to Paper I, the phase shift for q = 10−3 requires a slightly higher
%0 for detectability. This is primarily because we fit Tg/T0 to a constant
(rather than the decreasing polynomial shown in Paper I) which results in a
weaker estimate for the torque strength. Additionally, we are using a more
conservative observation time of 4 yr (rather than 5).

Figure 15. Top panel: Characteristic strain versus observed frequency for
4-yr observations of q = 10−3 binaries at z = 1, varying the primary mass M1
from 105M$ to 107M$. The solid lines correspond to early stages of evolution
where the binary reaches a rest-frame separation of 10rS. The dashed lines
correspond to observing the final coalescence, ending when the binary merges
at rISCO = 3rS. In the legend we provide the accumulated SNR for the early
(‘A’) and late (‘B’) observations, respectively. For lower binary mass, the
merger occurs at a smaller rISCO and correspondingly higher frequencies.
This affects the detectability of the event. Bottom panel: SNR of gas deviation
as a function of disc surface density given the observation windows depicted
above, and using the average dimensionless gas torque from the q = 10−3 and
α = 0.03 runs. A binary with M1 = 105M$ accumulates a stronger waveform
deviation as it spans a larger frequency range. Note that the vertical line
for the %β estimate corresponds to a disc around an M1 = 106M$ BH; see
equation (13) for the weak scaling of the disc surface densities with BH
mass.

Taking the mass ratio q = 10−3, we plot the strain and corresponding
detectability of the phase shift, adopting the dimensionless gas
torque from our fiducial run (q1e3a03, where 〈Tgas〉/T0 = 0.21).
We fix each observation window to the binary reaching 3rS in a
4 yr observation. In this case the lower mass binary can exhibit
more detectable gas torques, given that the coalescence occurs at
frequencies where LISA is most sensitive. However, the overall
SNR of the event (and consequently the SNR of the deviation)
will depend on the range of observed frequency of the binary and
its relation to the peak sensitivity – notice that the coalescence of
the 106M$ IMRI attains the highest total SNR (dashed purple line,
ρB), while the 105M$ merger occurs at higher frequencies, reducing
the total SNR (dashed orange line, ρB). Additionally, lower mass
binaries span a larger frequency range in a fixed observation time,
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Figure 14. Accumulated SNR of the deviation due to average torques in the
α = 0.1 runs, shaded up to our detectability threshold of ρδφ ≥ 8. Higher
viscosity generally produces stronger torques; hence the imprint is detectable
at lower disc densities.

event (a relative SNR, ρδφ /ρ), as a function of disc surface density.
This illustrates that the accumulated deviation for inspirals that are
chirping faster (dashed lines) is weaker than for the inspirals that
are observed at earlier times (solid lines). Nevertheless, we see in
Fig. 12 these weaker deviations are more detectable due to the
larger overall SNR. Fig. 10 clearly illustrates the reason: these tighter
binaries are observed at frequencies close to the minimum of LISA’s
sensitivity curve. Louder events – ideally intermediate mass ratios at
low redshift − are the most promising candidates for detecting gas
imprints.

Adopting a detectability threshold of ρδφ ! 8, we conclude that
the gas imprint is detectable for all simulated mass ratios if the
disc density exceeds %0 ! 104−6 g cm−2. For an inspiral beginning
at 10rS, this threshold corresponds to a local disc mass of Menc ∼
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secondary BH. The surface density required for detectability depends
on the strength of the torque, which varies for each value of the mass
ratio.3 Given that the gas torque on the q = 3 × 10−4 binary is an
order of magnitude weaker than for the higher mass ratios, it requires
a correspondingly higher %0 for detectability. The detectability of
gas for lower mass ratios at earlier stages suffers from weaker GW
emission and more modest frequency evolution, and gas torques are
less detectable even for the highest disc densities.

For higher viscosities, where torques are stronger for each mass
ratio, the detectability of a deviation is improved (see Fig. 14), and an
SNR deviation of ρδφ ! 8 can be reached with lower disc densities,
%0 ∼ 104 g cm−2.

One may wonder how our choice of primary mass affects the
detectability of the gas imprints. In principle, IMRIs can occur for
more or less massive primary MBHs while still emitting GWs within
the LISA frequency band. We demonstrate the effect of our choice
of primary mass M1 for a fixed mass ratio q = 10−3 in Fig. 15.
Higher mass binaries emit louder gravitational waves, but they merge
at lower frequencies due to their increasingly large ISCO (rS∝M).

3Compared to Paper I, the phase shift for q = 10−3 requires a slightly higher
%0 for detectability. This is primarily because we fit Tg/T0 to a constant
(rather than the decreasing polynomial shown in Paper I) which results in a
weaker estimate for the torque strength. Additionally, we are using a more
conservative observation time of 4 yr (rather than 5).

Figure 15. Top panel: Characteristic strain versus observed frequency for
4-yr observations of q = 10−3 binaries at z = 1, varying the primary mass M1
from 105M$ to 107M$. The solid lines correspond to early stages of evolution
where the binary reaches a rest-frame separation of 10rS. The dashed lines
correspond to observing the final coalescence, ending when the binary merges
at rISCO = 3rS. In the legend we provide the accumulated SNR for the early
(‘A’) and late (‘B’) observations, respectively. For lower binary mass, the
merger occurs at a smaller rISCO and correspondingly higher frequencies.
This affects the detectability of the event. Bottom panel: SNR of gas deviation
as a function of disc surface density given the observation windows depicted
above, and using the average dimensionless gas torque from the q = 10−3 and
α = 0.03 runs. A binary with M1 = 105M$ accumulates a stronger waveform
deviation as it spans a larger frequency range. Note that the vertical line
for the %β estimate corresponds to a disc around an M1 = 106M$ BH; see
equation (13) for the weak scaling of the disc surface densities with BH
mass.

Taking the mass ratio q = 10−3, we plot the strain and corresponding
detectability of the phase shift, adopting the dimensionless gas
torque from our fiducial run (q1e3a03, where 〈Tgas〉/T0 = 0.21).
We fix each observation window to the binary reaching 3rS in a
4 yr observation. In this case the lower mass binary can exhibit
more detectable gas torques, given that the coalescence occurs at
frequencies where LISA is most sensitive. However, the overall
SNR of the event (and consequently the SNR of the deviation)
will depend on the range of observed frequency of the binary and
its relation to the peak sensitivity – notice that the coalescence of
the 106M$ IMRI attains the highest total SNR (dashed purple line,
ρB), while the 105M$ merger occurs at higher frequencies, reducing
the total SNR (dashed orange line, ρB). Additionally, lower mass
binaries span a larger frequency range in a fixed observation time,
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• Gravitational torque from gas can affect SNR of EMRI LISA sources;
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Figure 3. Snapshots of surface density Σ during quasi-steady state after t ≈ 460tbin ≈ 1.5tvis. Surface density is normalized by the maximum value at t = 0 and
plotted on a logarithmic scale. For each snapshot, we plot both the inner ±6a (top panel in each pair), and the inner ±1.5a (bottom panel in each pair). Mass ratios
are, from left to right and top to bottom, q = 0.026, 0.053, 0.11, 0.25, 0.43, 0.67, 0.82, and 1.0. Orbital motion is in the counterclockwise direction. Green arrows
represent fluid velocity.
(A color version of this figure is available in the online journal.)

at the radius of the cavity wall at r/a ∼ 2

tvis(r) ∼ 2
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)3/2
tbin. (26)

In each of our simulations, we evolve for ∼1.5tvis(2a). We
find that this is sufficient in order to reach a quasi-steady
state in the inner region of the disk, as reflected in relatively
steady density profiles that we achieve after t ! tvis. The mass
ratios and time averaged accretion rates for each simulation
are summarized in Table 1. Time averaged accretion rates are
normalized by the time averaged accretion rate onto a single
BH, Ṁ0. We note that although the normalized accretion rate
tends toward unity for small q as expected, it remains greater
than unity for all cases considered. We caution that while these
accretion rates remain steady over hundreds of orbits, we expect
them to slowly relax to unity over much longer timescales as
the outer regions of the disk relax to their quasi-equilibrium
state. Thus, Table 1 should not be interpreted as evidence for
binaries causing an enhancement in accretion. Rather, it should
be interpreted as evidence that binaries are unable to fully clear a
cavity and significantly suppress accretion, contrary to previous

Table 1
Summary of Mass Ratios and Average Accretion Rates

Mass Ratio q 〈Ṁ〉/〈Ṁ0〉
0.026 1.06
0.053 1.56
0.11 1.76
0.25 1.68
0.43 1.62
0.67 1.60
0.82 1.58
1.0 1.55

arguments (Milosavljević & Phinney 2005). We note that such
arguments may underestimate the role that non-axisymmetric
accretion streams play in allowing gas to penetrate into the
cavity. Furthermore, binary torques may be responsible for
moving gas near the inner disk edge onto more eccentric orbits,
causing them to be captured by one of the BHs, thus increasing
the accretion rate relative to that of a single BH.

Snapshots from each simulation are shown in Figure 3. In
each case, a low density cavity is maintained surrounding the
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Fig. 9.— Fourier decomposed power spectrum of the

accretion through the inner boundary of a q = 1 binary

(top panel) and a q = 0.1 binary (bottom panel).

stand this result. The first point to raise is that
it is unlikely ✏ > 1 can persist for a long period
of time. If it were to do so, the inner region of
the circumbinary disk (r & 2a) would be drained
of mass, inevitably leading to a reduction in the
accretion rate onto the binary. Thus, the better
way to think about the values of ✏ seen in our sim-
ulations, a few tens of percent greater than unity,
is that the spiral waves excited in a circumbinary
disk by the members of the binary create a su�-
cient enhancement of the Reynolds stress to raise
the accretion rate per unit mass in the inner disk
by a few tens of percent. By this means, an ac-
cretion rate equal to that injected at large radius
can be sustained by a surface density somewhat
smaller than required when the potential is due to
a point-mass. Over longer times than we can fol-
low with this kind of simulation, we expect that
the surface density in the inner disk will decline
to this level, leaving the disk in true inflow equi-
librium.

With that clarification, it is time to consider
the question of why 2D and 3D simulations consis-
tently see substantial accretion from circumbinary
disks onto the central binary despite the contrary
prediction made by 1D studies. One clue to the

answer comes from the structure of the accretion
flow through the cavity: narrow streams.

4.1. Stream Structure

Fig. 10.— Left column: Time averaged midplane

density (top), midplane (middle) and inner bound-

ary (bottom) accretion rate ⇢vrr
2
sin ✓, both for the

q = 0.1 binary over the last 50⌦
�1
bin of the simulation.

All figures in a frame comoving with the binary. Right

column: same as left, but for q = 1 binary. Here neg-

ative means inflow. The plus symbols in the midplane

plots mark the L2 and L3 points. Summed separately,

regions of inward and outward mass flux have compa-

rable magnitude; their net, although smaller in mag-

nitude, is consistently inward.

In the body of an accretion disk, the inflow
speed is generically much slower than the orbital
speed, ⇠ ↵(H/r)2vorb, where ↵ is the usual ratio of
vertically-integrated stress to vertically-integrated
pressure, and H is the local scale height. On
the other hand, this flow, although only ⇠ H

thick in the vertical direction, takes place, on av-
erage, around the entire circumference of the disk,
through an area 2⇡r wide.

By contrast, the flow across the cavity (see
Fig 10) is restricted to very narrow streams. Along
the central density maximum of the streams, they
are typically ⇠ 2–3H wide if measured sideways
from the maximum to where the density drops by
90%. Moreover, the density in the streams as they
approach the inner boundary is⇠ 3–10 times lower
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•  Use well-tested GRMHD code for accretion disks: HARM3d;
•  Novel methods tailored for accuracy and affordability: 
•  Dynamic warped grids;
•  Perturbative solutions for gravity consistent with Einstein’s equations in our 
regime;

➡ Key Challenges: Ability to evolve accreting binaries while resolving the MRI 
and MHD dynamics at the scale of the event horizons in the inspiral regime—
key for establishing pre-merger conditions.

16

sion of the metric that can be calculated e�ciently by
Pandurata as a post-processor of the MHD data. As
described in [95], the binary four-metric can be instan-
taneously described by a three-metric �ij , lapse ↵, and
shift �i, according to:

gµ⌫ =

 
�↵2 + �

2
�j

�i �ij

!
. (22)

Following [96], we use ↵ = 2/(1 +  
4), �j = 0, and �ij =

�ij 
4. The conformal factor  is given by

 = 1 +
m1

2r1
+

m2

2r2
, (23)

with r1 and r2 being the simple Cartesian distances be-
tween the spatial coordinate and the primary/secondary
masses. For the Christo↵el-symbol components �⇢

µ⌫ we
take the spatial and temporal metric derivatives analyt-
ically based on the puncture trajectories calculated by
the apparent horizon finder used in our GRMHD simu-
lations. One advantage of using this simplified metric is
that we can easily calculate the photon trajectories “on
the fly” and thus do not need to rely on the fast light
approximation used by many ray-tracing codes.

Even though Pandurata uses a slightly di↵erent met-
ric than that of the GRMHD simulations, the quali-
tative properties of the spacetime are expected to be
very similar. We can avoid some potential numerical
problems by normalizing the IllinoisGRMHD fluid 4-
velocity everywhere by using the coordinate 3-velocity
from IllinoisGRMHD and then using the analytic metric
to solve for ut via gµ⌫u

µ
u
⌫ = �1.

Given the fluid velocity at each point and for each data
snapshot, a local tetrad can be constructed as in [56],
from which photon packets are launched and then propa-
gated forward in time until they reach a distant observer
or are captured by one of the black holes. Those that
reach the observer are combined to make images, light
curves, and potentially spectra. We ignore scattering or
absorption in the gas, so that all photon packets travel
along geodesic paths.

One of the challenges with this approach is the inherent
uncertainty of what emission mechanism is most appro-
priate, and even then, the electron temperature Te is not
known explicitly from the simulations, so it can only be
approximated with an educated guess. For this paper, we
focused on a single simplified emission model of thermal
synchrotron, where the emissivity is isotropic in the local
fluid frame with bolometric power density given by

Psyn =
4

9
nr

2

0
c�

2
�
2
B

2
, (24)

with r0 the classical electron radius, n the electron num-
ber density, � ⌘ v/c, and �2

�
2 ⇡ Te/me (see, e.g. Chap.

6 of [97]). We use the magnetic field strength and fluid
density specified by IllinoisGRMHD, along with the code-
to-cgs conversion described above. We estimate the elec-
tron temperature from the simulation pressure, assuming

FIG. 17. Snapshots from Pandurata post-processing of the
simulation data at a separation of 10M (about 1000M be-
fore merger), viewed by an observer edge-on to the orbital
plane. Top panel: thermal synchrotron emission; middle
panel: magnetic contribution only (/ B2); bottom panel:
gas contribution only (/ ⇢T ).

a radiation-dominated fluid with p = aT
4

e , reasonable for
the � = 4/3 polytrope used here. Thus the synchrotron
power scales as

Psyn / B
2
⇢
4/3 / ⇢

7/3
0

, (25)

since B
2 ⇠ ⇢.

In the top panel of Fig. 17 we show the observed syn-
chrotron intensity on a log scale for a single snapshot of
IllinoisGRMHD data when the binary separation is 10M .
The observer is located edge-on to the orbital plane and
the black hole on the left is moving towards the observer,
resulting in a special relativistic boost.
In an attempt to understand the features seen in

Fig. 17, we repeat the Pandurata calculations with two
other emissivity models, in one case focusing just on the

e.g., Sayeb, Blecha, Kelley, 
Gerosa, Kesden, and 
Thomas, MNRAS (2020)

Kelly++2017, 
Farris++2012, Gold++2014ab, 
Kahn++2018, Paschalidis++2021, 
Cattorini++2021 
Review: Gold, Galax, 7, 63, (2019)
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:

LBZ ⇠ 1043 erg s�1 (a)2
✓

M

106 M�

◆2 ✓
B

106 G

◆2

(38)
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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2
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0
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0
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models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:

LBZ ⇠ 1043 erg s�1 (a)2
✓

M

106 M�

◆2 ✓
B

106 G

◆2

(38)
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M

2

8 erg s�1.)
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contribution from the magnetic field, and in the other
case on the electron density and temperature. As can be
seen in Fig. 3, the gas forms two very small, thin disks
with magnetically dominated cavities above and below
each black hole. From this picture alone, it is not clear
where most of the synchrotron flux might originate.

However, when comparing the three panels of Fig. 17,
we see that the gas contribution is almost uniformly dis-
tributed, and even the thin disks evident in Fig. 3 are
almost indiscernible when all the relativistic ray-tracing
is included. The reason for this is two-fold. First, the
disks are quite small in extent, and the gas is moving
almost entirely radially, so the emitted flux is beamed
into the horizon, and thus the disks themselves are not
clearly visible in the ray-traced image. Second, the over-
density of gas in the disks is only a factor of a few or
at most ten greater than the background density. On
the other hand, in the funnel regions, B2 can be more
than four orders of magnitude greater than the ambient
or initial pressure, yielding much more significant spatial
variations. Thus the synchrotron image (top panel) most
closely traces the magnetic field, with a slight enhance-
ment of emission where the gas density and temperature
rise near the black holes.

FIG. 18. Bolometric luminosity generated in the region
r < 30M for the X1 d14.4 configuration, assuming the canon-
ical initial density ⇢0 = 10�13 g cm�3. We model local syn-
chrotron emissivity, also showing the development of two con-
tributing components as described in the text.

In Fig. 18 we show the light curve generated by syn-
chrotron emission along with analogous traces computed
from the density and magnetic-field components for the
X1 d14.4 configuration. To calculate these curves, mil-
lions of photons must be launched at each time step, so
for e�ciency’s sake, we use a relatively coarse time sam-
pling of 200M . We only consider emission from inside
r < 30M , consistent with the Poynting flux extraction
radius.

Figure 18 shows that, unlike the Poynting flux, the lo-

cally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst
of luminosity preceding merger, followed by a dip of al-
most 50% for the synchrotron light curve, but the other
models show almost no discernible sign of the merger
at all. The dip is caused by the sudden expansion of the
horizon volume at merger, rapidly capturing the gas with
the highest temperature and magnetic field.
Another curious result of the Pandurata calculation is

that, for a single snapshot, there is very little di↵erence in
the flux seen by observers at di↵erent inclination angles
or azimuth (of order ⇠ 10%), suggesting that variability
in the EM light curves on the orbital time scale will be
minimal.
In principle, Pandurata can also be applied to study

the spectra of EM emissions including e↵ects, such as
inverse-Compton scattering as photons interact with hot
atmospheric plasma, that have been found to be impor-
tant in modeling black hole accretion disk spectra [98].
Our present simulations, however, do not provide a re-
alistic treatment of atmospheric densities and tempera-
tures. Future studies with more detailed physics may
reveal more interesting time development in spectral fea-
tures of the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability
of direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynt-
ing flux. In addition, the synchrotron flux is roughly
isotropic, while significant beaming is observed in Poynt-
ing flux. There is no contradiction in these measures;
Poynting luminosity may manifest as photons far down-
stream from the GRMHD flows, whereas these direct
emission estimates originate in regions of high fluid den-
sity and magnetic field strength in strong-gravitational-
field zones.
When comparing these direct emissions with results

from circumbinary disk simulations, the most similar
simulation is in [53, 54]. They estimated a form of di-
rect emission, derived from a cooling function based on
hydrodynamic shock heating. The implied cooling lu-
minosity was more than an order of magnitude larger
than the Poynting luminosity, while our results sug-
gest that Poynting luminosity is larger than direct syn-
chrotron emission, at least for the canonical density of
10�13 g cm�3. We have not incorporated a similar cool-
ing function for a more direct comparison, though we
note that our gas does not exhibit strong shocks.

V. CONCLUSIONS AND FUTURE WORK

To deepen our understanding of the interplay of grav-
ity, matter, and electromagnetic forces in the vicinity of a
merging comparable-mass black-hole binary, we have car-
ried out a suite of equal-mass non-spinning BBH merger
simulations in uniform plasma environments. We con-
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show the state of the evolved (squared) magnetic field
strength b2 1100M after merger, evaluated on the x-z plane.
As seen in the top panel, b2 is greatly amplified at and near
the polar axis of the post-merger hole. The lower panel
shows that this region is dominated by magnetic pressure.
This region shares some features of a relativistic jet, as both
are magnetically dominated and contain a helical magnetic
field structure. We show in Fig. 8 that the structures we
observe yield a strong Poynting flux directed outward. As
with our disk however, through the course of these
simulations the fluid flow through these jetlike structures
is predominantly inward-directed. Nonetheless, over longer
temporal and larger spatial scales and in plausible astro-
physical environments, the strong Poynting flux could
drive relativistic outflows and strong EM emissions. We

further explore this as a source of energy to eventually
power EM counterparts in the next section.3

FIG. 6. Magnetic field streamlines in the polar region, around
1100M after merger. The field lines are twisted into a helical
pattern, concentrated at the origin. This helical structure prop-
agates outward at the ambient Alfvén speed vAlf ¼ 0.07433,
replacing the initially vertical B fields (still visible at large z).

FIG. 7. Top panel: Magnetic field squared magnitude b2 about
1100M after merger for the high-resolution d ¼ 14.4M configu-
ration. Bottom panel: Magnetic-to-gas pressure ratio β−1 ≡
b2=2pgas for the same time and configuration.

3There is no direct contradiction between inward fluid flows
and outward Poynting flux. A simple expression relating Poynt-
ing flux to velocity is Lz

Poynt ¼ B2vz⊥, where v
z
⊥ ¼ vz − vz∥ is the

component of fluid velocity perpendicular to the magnetic field
lines. For a specified Poynting flux, the parallel component of
velocity vz∥ is not directly constrained and may be negatively
directed and large enough to overcome a positive vz⊥.
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Second, we also consider mechanisms for direct emission
from the fluid flows near the black holes, ignoring the
absorbing properties of matter farther out.
Our canonical configuration is an equal-mass BBH with

initial coordinate separation d ¼ 14.4M, initial fluid den-
sity ρ0 ¼ 1 in a polytrope with κ ¼ 0.2, Γ ¼ 4=3, and
initial magnetic field strength b0 ¼ 0.1. We present these
and derived parameters in Table I.

A. Large-scale structure of fluid and fields

We begin by presenting an overview of the major field
structures that develop through MHD dynamics during the

merger process, using our canonical case as a representative
example.
The canonical simulation begins about 3500M before

merger, with an initially uniform fluid and a uniform
vertical magnetic field. After some time the fluid has fallen
mostly vertically along the field lines, concentrating in a
nearly axisymmetric thin disk (h ≪ M) of dense material
about each black hole. Figure 3 shows a snapshot of
the fluid density ρ on the x-y (orbital) and x-z planes
during the late inspiral (about 1100M before merger) for
the d ¼ 14.4M configuration.
By late times, those disks have merged into a common

disk around the final, spinning black hole. The structure of
the post-merger disk is shown in Fig. 4, where we again
plot ρ on the x-y and x-z planes. By this time fluid has
fallen in to form a thin disk (h ≪ M) of dense material with
radius of 2–3 gravitational radii (the BH horizon radius is
approximately 1M here). Above and below the disk, gas is
largely excluded by magnetically dominated regions.
Focusing just on the x-y plane, the top panel shows that
some asymmetric structure persists long after merger.

FIG. 2. LPoynt for original WHISKYMHD run of [34] (black,
solid), compared with the new ILLINOISGRMHD runs for the
same initial separation (red, dashed). All luminosities have been
time-shifted by the time of merger for that run, and scaled to
reflect the canonical case in [34]: a plasma of uniform initial
density ρ0 ¼ 10−11 g cm−3 and magnetic field strength
B0 ¼ 3.363 × 104 G, in the vicinity of a black-hole binary of
total mass M ¼ 108 M⊙. An ILLINOISGRMHD simulation keep-
ing the polytropic coefficient κ fixed to its initial value every-
where (i.e., disabling shock heating) shows very similar behavior
(blue, dotted).

TABLE I. Initial parameters and derived quantities for the
canonical configuration: initial puncture separation d, puncture
mass mp, Bowen-York linear momentum components Ptang &
Prad, finest grid spacing dx, merger time tmerge, initial fluid
density ρ0, magnetic field strength b0, polytropic constant κ0,
fluid pressure p0, specific internal energy ϵ0, ratio of magnetic to
fluid energy density ζ0, specific enthalpy h"0, and ambient Alfvén
speed vAlf .

dðMÞ mp PtangðMÞ PradðMÞ dxðMÞ

14.384 0.4902240 0.07563734 −0.0002963 1=48

tmergeðMÞ ρ0 b0 κ0 p0 ϵ0 ζ0 h"0 vAlf

3514.333 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.07433

FIG. 3. Fluid density ρ during inspiral at time t ¼ 2400M
(about 1100M before merger) for the d ¼ 14.4M configuration.
At this time the holes are centered at ðx; yÞ ≈%ð5.53M; 0.08MÞ.
The regions inside the BH horizons have been masked out. Note
that in all configurations the BHs are orbiting in a counter-
clockwise motion around the positive z axis
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In Fig. 18 we show the light curve generated by
synchrotron emission along with analogous traces com-
puted from the density and magnetic-field components for
the X1_d14.4 configuration. To calculate these curves,
millions of photons must be launched at each time step,
so for efficiency’s sake, we use a relatively coarse time
sampling of 200M. We only consider emission from inside
r < 30M, consistent with the Poynting flux extraction
radius.
Figure 18 shows that, unlike the Poynting flux, the

locally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst of
luminosity preceding merger, followed by a dip of almost
50% for the synchrotron light curve, but the other models
show almost no discernible sign of the merger at all. The
dip is caused by the sudden expansion of the horizon
volume at merger, rapidly capturing the gas with the highest
temperature and magnetic field.
Another curious result of the PANDURATA calculation is

that, for a single snapshot, there is very little difference in

the flux seen by observers at different inclination angles or
azimuth (of order ∼10%), suggesting that variability in the
EM light curves on the orbital time scale will be minimal.
In principle, PANDURATA can also be applied to study the

spectra of EM emissions including effects, such as inverse-
Compton scattering as photons interact with hot atmos-
pheric plasma, that have been found to be important in
modeling black hole accretion disk spectra [101]. Our
present simulations, however, do not provide a realistic
treatment of atmospheric densities and temperatures.
Future studies with more detailed physics may reveal
more interesting time development in spectral features of
the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability of
direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynting
flux. In addition, the synchrotron flux is roughly isotropic,
while significant beaming is observed in Poynting flux.
There is no contradiction in these measures; Poynting
luminosity may manifest as photons far downstream from
the GRMHD flows, whereas these direct emission esti-
mates originate in regions of high fluid density and
magnetic field strength in strong-gravitational-field zones.
When comparing these direct emissions with results from

circumbinary disk simulations, themost similar simulation is
in [55,56]. They estimated a form of direct emission, derived
from a cooling function based on hydrodynamic shock
heating. The implied cooling luminosity was more than an
order of magnitude larger than the Poynting luminosity,
while our results suggest that Poynting luminosity is larger
than direct synchrotron emission, at least for the canonical
density of 10−13 g cm−3. We have not incorporated a similar

FIG. 18. Bolometric luminosity generated in the region r <
30M for the X1_d14.4 configuration, assuming the canonical
initial density ρ0 ¼ 10−13 g cm−3. We model local synchrotron
emissivity, also showing the development of two contributing
components as described in the text.

FIG. 17. Snapshots from PANDURATA postprocessing of the
simulation data at a separation of 10M (about 1000M before
merger), viewed by an observer edge-on to the orbital plane. Top
panel: thermal synchrotron emission; middle panel: magnetic
contribution only (∝ B2); bottom panel: gas contribution only
(∝ ρT).
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.

FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M
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contribution from the magnetic field, and in the other
case on the electron density and temperature. As can be
seen in Fig. 3, the gas forms two very small, thin disks
with magnetically dominated cavities above and below
each black hole. From this picture alone, it is not clear
where most of the synchrotron flux might originate.

However, when comparing the three panels of Fig. 17,
we see that the gas contribution is almost uniformly dis-
tributed, and even the thin disks evident in Fig. 3 are
almost indiscernible when all the relativistic ray-tracing
is included. The reason for this is two-fold. First, the
disks are quite small in extent, and the gas is moving
almost entirely radially, so the emitted flux is beamed
into the horizon, and thus the disks themselves are not
clearly visible in the ray-traced image. Second, the over-
density of gas in the disks is only a factor of a few or
at most ten greater than the background density. On
the other hand, in the funnel regions, B2 can be more
than four orders of magnitude greater than the ambient
or initial pressure, yielding much more significant spatial
variations. Thus the synchrotron image (top panel) most
closely traces the magnetic field, with a slight enhance-
ment of emission where the gas density and temperature
rise near the black holes.

FIG. 18. Bolometric luminosity generated in the region
r < 30M for the X1 d14.4 configuration, assuming the canon-
ical initial density ⇢0 = 10�13 g cm�3. We model local syn-
chrotron emissivity, also showing the development of two con-
tributing components as described in the text.

In Fig. 18 we show the light curve generated by syn-
chrotron emission along with analogous traces computed
from the density and magnetic-field components for the
X1 d14.4 configuration. To calculate these curves, mil-
lions of photons must be launched at each time step, so
for e�ciency’s sake, we use a relatively coarse time sam-
pling of 200M . We only consider emission from inside
r < 30M , consistent with the Poynting flux extraction
radius.

Figure 18 shows that, unlike the Poynting flux, the lo-

cally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst
of luminosity preceding merger, followed by a dip of al-
most 50% for the synchrotron light curve, but the other
models show almost no discernible sign of the merger
at all. The dip is caused by the sudden expansion of the
horizon volume at merger, rapidly capturing the gas with
the highest temperature and magnetic field.
Another curious result of the Pandurata calculation is

that, for a single snapshot, there is very little di↵erence in
the flux seen by observers at di↵erent inclination angles
or azimuth (of order ⇠ 10%), suggesting that variability
in the EM light curves on the orbital time scale will be
minimal.
In principle, Pandurata can also be applied to study

the spectra of EM emissions including e↵ects, such as
inverse-Compton scattering as photons interact with hot
atmospheric plasma, that have been found to be impor-
tant in modeling black hole accretion disk spectra [98].
Our present simulations, however, do not provide a re-
alistic treatment of atmospheric densities and tempera-
tures. Future studies with more detailed physics may
reveal more interesting time development in spectral fea-
tures of the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability
of direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynt-
ing flux. In addition, the synchrotron flux is roughly
isotropic, while significant beaming is observed in Poynt-
ing flux. There is no contradiction in these measures;
Poynting luminosity may manifest as photons far down-
stream from the GRMHD flows, whereas these direct
emission estimates originate in regions of high fluid den-
sity and magnetic field strength in strong-gravitational-
field zones.
When comparing these direct emissions with results

from circumbinary disk simulations, the most similar
simulation is in [53, 54]. They estimated a form of di-
rect emission, derived from a cooling function based on
hydrodynamic shock heating. The implied cooling lu-
minosity was more than an order of magnitude larger
than the Poynting luminosity, while our results sug-
gest that Poynting luminosity is larger than direct syn-
chrotron emission, at least for the canonical density of
10�13 g cm�3. We have not incorporated a similar cool-
ing function for a more direct comparison, though we
note that our gas does not exhibit strong shocks.

V. CONCLUSIONS AND FUTURE WORK

To deepen our understanding of the interplay of grav-
ity, matter, and electromagnetic forces in the vicinity of a
merging comparable-mass black-hole binary, we have car-
ried out a suite of equal-mass non-spinning BBH merger
simulations in uniform plasma environments. We con-
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show the state of the evolved (squared) magnetic field
strength b2 1100M after merger, evaluated on the x-z plane.
As seen in the top panel, b2 is greatly amplified at and near
the polar axis of the post-merger hole. The lower panel
shows that this region is dominated by magnetic pressure.
This region shares some features of a relativistic jet, as both
are magnetically dominated and contain a helical magnetic
field structure. We show in Fig. 8 that the structures we
observe yield a strong Poynting flux directed outward. As
with our disk however, through the course of these
simulations the fluid flow through these jetlike structures
is predominantly inward-directed. Nonetheless, over longer
temporal and larger spatial scales and in plausible astro-
physical environments, the strong Poynting flux could
drive relativistic outflows and strong EM emissions. We

further explore this as a source of energy to eventually
power EM counterparts in the next section.3

FIG. 6. Magnetic field streamlines in the polar region, around
1100M after merger. The field lines are twisted into a helical
pattern, concentrated at the origin. This helical structure prop-
agates outward at the ambient Alfvén speed vAlf ¼ 0.07433,
replacing the initially vertical B fields (still visible at large z).

FIG. 7. Top panel: Magnetic field squared magnitude b2 about
1100M after merger for the high-resolution d ¼ 14.4M configu-
ration. Bottom panel: Magnetic-to-gas pressure ratio β−1 ≡
b2=2pgas for the same time and configuration.

3There is no direct contradiction between inward fluid flows
and outward Poynting flux. A simple expression relating Poynt-
ing flux to velocity is Lz

Poynt ¼ B2vz⊥, where v
z
⊥ ¼ vz − vz∥ is the

component of fluid velocity perpendicular to the magnetic field
lines. For a specified Poynting flux, the parallel component of
velocity vz∥ is not directly constrained and may be negatively
directed and large enough to overcome a positive vz⊥.
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Second, we also consider mechanisms for direct emission
from the fluid flows near the black holes, ignoring the
absorbing properties of matter farther out.
Our canonical configuration is an equal-mass BBH with

initial coordinate separation d ¼ 14.4M, initial fluid den-
sity ρ0 ¼ 1 in a polytrope with κ ¼ 0.2, Γ ¼ 4=3, and
initial magnetic field strength b0 ¼ 0.1. We present these
and derived parameters in Table I.

A. Large-scale structure of fluid and fields

We begin by presenting an overview of the major field
structures that develop through MHD dynamics during the

merger process, using our canonical case as a representative
example.
The canonical simulation begins about 3500M before

merger, with an initially uniform fluid and a uniform
vertical magnetic field. After some time the fluid has fallen
mostly vertically along the field lines, concentrating in a
nearly axisymmetric thin disk (h ≪ M) of dense material
about each black hole. Figure 3 shows a snapshot of
the fluid density ρ on the x-y (orbital) and x-z planes
during the late inspiral (about 1100M before merger) for
the d ¼ 14.4M configuration.
By late times, those disks have merged into a common

disk around the final, spinning black hole. The structure of
the post-merger disk is shown in Fig. 4, where we again
plot ρ on the x-y and x-z planes. By this time fluid has
fallen in to form a thin disk (h ≪ M) of dense material with
radius of 2–3 gravitational radii (the BH horizon radius is
approximately 1M here). Above and below the disk, gas is
largely excluded by magnetically dominated regions.
Focusing just on the x-y plane, the top panel shows that
some asymmetric structure persists long after merger.

FIG. 2. LPoynt for original WHISKYMHD run of [34] (black,
solid), compared with the new ILLINOISGRMHD runs for the
same initial separation (red, dashed). All luminosities have been
time-shifted by the time of merger for that run, and scaled to
reflect the canonical case in [34]: a plasma of uniform initial
density ρ0 ¼ 10−11 g cm−3 and magnetic field strength
B0 ¼ 3.363 × 104 G, in the vicinity of a black-hole binary of
total mass M ¼ 108 M⊙. An ILLINOISGRMHD simulation keep-
ing the polytropic coefficient κ fixed to its initial value every-
where (i.e., disabling shock heating) shows very similar behavior
(blue, dotted).

TABLE I. Initial parameters and derived quantities for the
canonical configuration: initial puncture separation d, puncture
mass mp, Bowen-York linear momentum components Ptang &
Prad, finest grid spacing dx, merger time tmerge, initial fluid
density ρ0, magnetic field strength b0, polytropic constant κ0,
fluid pressure p0, specific internal energy ϵ0, ratio of magnetic to
fluid energy density ζ0, specific enthalpy h"0, and ambient Alfvén
speed vAlf .

dðMÞ mp PtangðMÞ PradðMÞ dxðMÞ

14.384 0.4902240 0.07563734 −0.0002963 1=48

tmergeðMÞ ρ0 b0 κ0 p0 ϵ0 ζ0 h"0 vAlf

3514.333 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.07433

FIG. 3. Fluid density ρ during inspiral at time t ¼ 2400M
(about 1100M before merger) for the d ¼ 14.4M configuration.
At this time the holes are centered at ðx; yÞ ≈%ð5.53M; 0.08MÞ.
The regions inside the BH horizons have been masked out. Note
that in all configurations the BHs are orbiting in a counter-
clockwise motion around the positive z axis
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In Fig. 18 we show the light curve generated by
synchrotron emission along with analogous traces com-
puted from the density and magnetic-field components for
the X1_d14.4 configuration. To calculate these curves,
millions of photons must be launched at each time step,
so for efficiency’s sake, we use a relatively coarse time
sampling of 200M. We only consider emission from inside
r < 30M, consistent with the Poynting flux extraction
radius.
Figure 18 shows that, unlike the Poynting flux, the

locally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst of
luminosity preceding merger, followed by a dip of almost
50% for the synchrotron light curve, but the other models
show almost no discernible sign of the merger at all. The
dip is caused by the sudden expansion of the horizon
volume at merger, rapidly capturing the gas with the highest
temperature and magnetic field.
Another curious result of the PANDURATA calculation is

that, for a single snapshot, there is very little difference in

the flux seen by observers at different inclination angles or
azimuth (of order ∼10%), suggesting that variability in the
EM light curves on the orbital time scale will be minimal.
In principle, PANDURATA can also be applied to study the

spectra of EM emissions including effects, such as inverse-
Compton scattering as photons interact with hot atmos-
pheric plasma, that have been found to be important in
modeling black hole accretion disk spectra [101]. Our
present simulations, however, do not provide a realistic
treatment of atmospheric densities and temperatures.
Future studies with more detailed physics may reveal
more interesting time development in spectral features of
the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability of
direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynting
flux. In addition, the synchrotron flux is roughly isotropic,
while significant beaming is observed in Poynting flux.
There is no contradiction in these measures; Poynting
luminosity may manifest as photons far downstream from
the GRMHD flows, whereas these direct emission esti-
mates originate in regions of high fluid density and
magnetic field strength in strong-gravitational-field zones.
When comparing these direct emissions with results from

circumbinary disk simulations, themost similar simulation is
in [55,56]. They estimated a form of direct emission, derived
from a cooling function based on hydrodynamic shock
heating. The implied cooling luminosity was more than an
order of magnitude larger than the Poynting luminosity,
while our results suggest that Poynting luminosity is larger
than direct synchrotron emission, at least for the canonical
density of 10−13 g cm−3. We have not incorporated a similar

FIG. 18. Bolometric luminosity generated in the region r <
30M for the X1_d14.4 configuration, assuming the canonical
initial density ρ0 ¼ 10−13 g cm−3. We model local synchrotron
emissivity, also showing the development of two contributing
components as described in the text.

FIG. 17. Snapshots from PANDURATA postprocessing of the
simulation data at a separation of 10M (about 1000M before
merger), viewed by an observer edge-on to the orbital plane. Top
panel: thermal synchrotron emission; middle panel: magnetic
contribution only (∝ B2); bottom panel: gas contribution only
(∝ ρT).
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:

LBZ ⇠ 1043 erg s�1 (a)2
✓

M

106 M�
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B
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(38)
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.

FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:

LBZ ⇠ 1043 erg s�1 (a)2
✓

M

106 M�

◆2 ✓
B

106 G

◆2

(38)
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M
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contribution from the magnetic field, and in the other
case on the electron density and temperature. As can be
seen in Fig. 3, the gas forms two very small, thin disks
with magnetically dominated cavities above and below
each black hole. From this picture alone, it is not clear
where most of the synchrotron flux might originate.

However, when comparing the three panels of Fig. 17,
we see that the gas contribution is almost uniformly dis-
tributed, and even the thin disks evident in Fig. 3 are
almost indiscernible when all the relativistic ray-tracing
is included. The reason for this is two-fold. First, the
disks are quite small in extent, and the gas is moving
almost entirely radially, so the emitted flux is beamed
into the horizon, and thus the disks themselves are not
clearly visible in the ray-traced image. Second, the over-
density of gas in the disks is only a factor of a few or
at most ten greater than the background density. On
the other hand, in the funnel regions, B2 can be more
than four orders of magnitude greater than the ambient
or initial pressure, yielding much more significant spatial
variations. Thus the synchrotron image (top panel) most
closely traces the magnetic field, with a slight enhance-
ment of emission where the gas density and temperature
rise near the black holes.

FIG. 18. Bolometric luminosity generated in the region
r < 30M for the X1 d14.4 configuration, assuming the canon-
ical initial density ⇢0 = 10�13 g cm�3. We model local syn-
chrotron emissivity, also showing the development of two con-
tributing components as described in the text.

In Fig. 18 we show the light curve generated by syn-
chrotron emission along with analogous traces computed
from the density and magnetic-field components for the
X1 d14.4 configuration. To calculate these curves, mil-
lions of photons must be launched at each time step, so
for e�ciency’s sake, we use a relatively coarse time sam-
pling of 200M . We only consider emission from inside
r < 30M , consistent with the Poynting flux extraction
radius.

Figure 18 shows that, unlike the Poynting flux, the lo-

cally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst
of luminosity preceding merger, followed by a dip of al-
most 50% for the synchrotron light curve, but the other
models show almost no discernible sign of the merger
at all. The dip is caused by the sudden expansion of the
horizon volume at merger, rapidly capturing the gas with
the highest temperature and magnetic field.
Another curious result of the Pandurata calculation is

that, for a single snapshot, there is very little di↵erence in
the flux seen by observers at di↵erent inclination angles
or azimuth (of order ⇠ 10%), suggesting that variability
in the EM light curves on the orbital time scale will be
minimal.
In principle, Pandurata can also be applied to study

the spectra of EM emissions including e↵ects, such as
inverse-Compton scattering as photons interact with hot
atmospheric plasma, that have been found to be impor-
tant in modeling black hole accretion disk spectra [98].
Our present simulations, however, do not provide a re-
alistic treatment of atmospheric densities and tempera-
tures. Future studies with more detailed physics may
reveal more interesting time development in spectral fea-
tures of the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability
of direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynt-
ing flux. In addition, the synchrotron flux is roughly
isotropic, while significant beaming is observed in Poynt-
ing flux. There is no contradiction in these measures;
Poynting luminosity may manifest as photons far down-
stream from the GRMHD flows, whereas these direct
emission estimates originate in regions of high fluid den-
sity and magnetic field strength in strong-gravitational-
field zones.
When comparing these direct emissions with results

from circumbinary disk simulations, the most similar
simulation is in [53, 54]. They estimated a form of di-
rect emission, derived from a cooling function based on
hydrodynamic shock heating. The implied cooling lu-
minosity was more than an order of magnitude larger
than the Poynting luminosity, while our results sug-
gest that Poynting luminosity is larger than direct syn-
chrotron emission, at least for the canonical density of
10�13 g cm�3. We have not incorporated a similar cool-
ing function for a more direct comparison, though we
note that our gas does not exhibit strong shocks.

V. CONCLUSIONS AND FUTURE WORK

To deepen our understanding of the interplay of grav-
ity, matter, and electromagnetic forces in the vicinity of a
merging comparable-mass black-hole binary, we have car-
ried out a suite of equal-mass non-spinning BBH merger
simulations in uniform plasma environments. We con-
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show the state of the evolved (squared) magnetic field
strength b2 1100M after merger, evaluated on the x-z plane.
As seen in the top panel, b2 is greatly amplified at and near
the polar axis of the post-merger hole. The lower panel
shows that this region is dominated by magnetic pressure.
This region shares some features of a relativistic jet, as both
are magnetically dominated and contain a helical magnetic
field structure. We show in Fig. 8 that the structures we
observe yield a strong Poynting flux directed outward. As
with our disk however, through the course of these
simulations the fluid flow through these jetlike structures
is predominantly inward-directed. Nonetheless, over longer
temporal and larger spatial scales and in plausible astro-
physical environments, the strong Poynting flux could
drive relativistic outflows and strong EM emissions. We

further explore this as a source of energy to eventually
power EM counterparts in the next section.3

FIG. 6. Magnetic field streamlines in the polar region, around
1100M after merger. The field lines are twisted into a helical
pattern, concentrated at the origin. This helical structure prop-
agates outward at the ambient Alfvén speed vAlf ¼ 0.07433,
replacing the initially vertical B fields (still visible at large z).

FIG. 7. Top panel: Magnetic field squared magnitude b2 about
1100M after merger for the high-resolution d ¼ 14.4M configu-
ration. Bottom panel: Magnetic-to-gas pressure ratio β−1 ≡
b2=2pgas for the same time and configuration.

3There is no direct contradiction between inward fluid flows
and outward Poynting flux. A simple expression relating Poynt-
ing flux to velocity is Lz

Poynt ¼ B2vz⊥, where v
z
⊥ ¼ vz − vz∥ is the

component of fluid velocity perpendicular to the magnetic field
lines. For a specified Poynting flux, the parallel component of
velocity vz∥ is not directly constrained and may be negatively
directed and large enough to overcome a positive vz⊥.
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Second, we also consider mechanisms for direct emission
from the fluid flows near the black holes, ignoring the
absorbing properties of matter farther out.
Our canonical configuration is an equal-mass BBH with

initial coordinate separation d ¼ 14.4M, initial fluid den-
sity ρ0 ¼ 1 in a polytrope with κ ¼ 0.2, Γ ¼ 4=3, and
initial magnetic field strength b0 ¼ 0.1. We present these
and derived parameters in Table I.

A. Large-scale structure of fluid and fields

We begin by presenting an overview of the major field
structures that develop through MHD dynamics during the

merger process, using our canonical case as a representative
example.
The canonical simulation begins about 3500M before

merger, with an initially uniform fluid and a uniform
vertical magnetic field. After some time the fluid has fallen
mostly vertically along the field lines, concentrating in a
nearly axisymmetric thin disk (h ≪ M) of dense material
about each black hole. Figure 3 shows a snapshot of
the fluid density ρ on the x-y (orbital) and x-z planes
during the late inspiral (about 1100M before merger) for
the d ¼ 14.4M configuration.
By late times, those disks have merged into a common

disk around the final, spinning black hole. The structure of
the post-merger disk is shown in Fig. 4, where we again
plot ρ on the x-y and x-z planes. By this time fluid has
fallen in to form a thin disk (h ≪ M) of dense material with
radius of 2–3 gravitational radii (the BH horizon radius is
approximately 1M here). Above and below the disk, gas is
largely excluded by magnetically dominated regions.
Focusing just on the x-y plane, the top panel shows that
some asymmetric structure persists long after merger.

FIG. 2. LPoynt for original WHISKYMHD run of [34] (black,
solid), compared with the new ILLINOISGRMHD runs for the
same initial separation (red, dashed). All luminosities have been
time-shifted by the time of merger for that run, and scaled to
reflect the canonical case in [34]: a plasma of uniform initial
density ρ0 ¼ 10−11 g cm−3 and magnetic field strength
B0 ¼ 3.363 × 104 G, in the vicinity of a black-hole binary of
total mass M ¼ 108 M⊙. An ILLINOISGRMHD simulation keep-
ing the polytropic coefficient κ fixed to its initial value every-
where (i.e., disabling shock heating) shows very similar behavior
(blue, dotted).

TABLE I. Initial parameters and derived quantities for the
canonical configuration: initial puncture separation d, puncture
mass mp, Bowen-York linear momentum components Ptang &
Prad, finest grid spacing dx, merger time tmerge, initial fluid
density ρ0, magnetic field strength b0, polytropic constant κ0,
fluid pressure p0, specific internal energy ϵ0, ratio of magnetic to
fluid energy density ζ0, specific enthalpy h"0, and ambient Alfvén
speed vAlf .

dðMÞ mp PtangðMÞ PradðMÞ dxðMÞ

14.384 0.4902240 0.07563734 −0.0002963 1=48

tmergeðMÞ ρ0 b0 κ0 p0 ϵ0 ζ0 h"0 vAlf

3514.333 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.07433

FIG. 3. Fluid density ρ during inspiral at time t ¼ 2400M
(about 1100M before merger) for the d ¼ 14.4M configuration.
At this time the holes are centered at ðx; yÞ ≈%ð5.53M; 0.08MÞ.
The regions inside the BH horizons have been masked out. Note
that in all configurations the BHs are orbiting in a counter-
clockwise motion around the positive z axis

BERNARD J. KELLY et al. PHYSICAL REVIEW D 96, 123003 (2017)

123003-6

In Fig. 18 we show the light curve generated by
synchrotron emission along with analogous traces com-
puted from the density and magnetic-field components for
the X1_d14.4 configuration. To calculate these curves,
millions of photons must be launched at each time step,
so for efficiency’s sake, we use a relatively coarse time
sampling of 200M. We only consider emission from inside
r < 30M, consistent with the Poynting flux extraction
radius.
Figure 18 shows that, unlike the Poynting flux, the

locally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst of
luminosity preceding merger, followed by a dip of almost
50% for the synchrotron light curve, but the other models
show almost no discernible sign of the merger at all. The
dip is caused by the sudden expansion of the horizon
volume at merger, rapidly capturing the gas with the highest
temperature and magnetic field.
Another curious result of the PANDURATA calculation is

that, for a single snapshot, there is very little difference in

the flux seen by observers at different inclination angles or
azimuth (of order ∼10%), suggesting that variability in the
EM light curves on the orbital time scale will be minimal.
In principle, PANDURATA can also be applied to study the

spectra of EM emissions including effects, such as inverse-
Compton scattering as photons interact with hot atmos-
pheric plasma, that have been found to be important in
modeling black hole accretion disk spectra [101]. Our
present simulations, however, do not provide a realistic
treatment of atmospheric densities and temperatures.
Future studies with more detailed physics may reveal
more interesting time development in spectral features of
the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability of
direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynting
flux. In addition, the synchrotron flux is roughly isotropic,
while significant beaming is observed in Poynting flux.
There is no contradiction in these measures; Poynting
luminosity may manifest as photons far downstream from
the GRMHD flows, whereas these direct emission esti-
mates originate in regions of high fluid density and
magnetic field strength in strong-gravitational-field zones.
When comparing these direct emissions with results from

circumbinary disk simulations, themost similar simulation is
in [55,56]. They estimated a form of direct emission, derived
from a cooling function based on hydrodynamic shock
heating. The implied cooling luminosity was more than an
order of magnitude larger than the Poynting luminosity,
while our results suggest that Poynting luminosity is larger
than direct synchrotron emission, at least for the canonical
density of 10−13 g cm−3. We have not incorporated a similar

FIG. 18. Bolometric luminosity generated in the region r <
30M for the X1_d14.4 configuration, assuming the canonical
initial density ρ0 ¼ 10−13 g cm−3. We model local synchrotron
emissivity, also showing the development of two contributing
components as described in the text.

FIG. 17. Snapshots from PANDURATA postprocessing of the
simulation data at a separation of 10M (about 1000M before
merger), viewed by an observer edge-on to the orbital plane. Top
panel: thermal synchrotron emission; middle panel: magnetic
contribution only (∝ B2); bottom panel: gas contribution only
(∝ ρT).
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M
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is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.
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• Non-Spinning post-merger single BHs, Uniform B-field;

• Survey over angle between B-field and spin;

• Survey over temperature;

Cattorini, Giacomazzo, Haardt, Colpi, arxiv:2102.13166  (2021)
Kelly, Baker, Etienne, Giacomazzo, Schnittman, PRD 96, 123003 (2017)

• Spinning & merging BHs, Uniform aligned B-field
• Non-Spinning merging BHs, Uniform plasma, B-field
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
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0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:

LBZ ⇠ 1043 erg s�1 (a)2
✓

M

106 M�

◆2 ✓
B
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.

FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:
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FIG. 9. Rate of mass loss Ṁ to accretion into the black hole
horizons.

FIG. 10. LPoynt, the Poynting luminosity, for the d = 14.4M
configuration considered in Table III; extraction of the mode
is on a coordinate sphere of radius 30M . The merger time is
marked by a dashed vertical line.

isotropic form of exact Kerr [88]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr = 0.97M , a/mKerr = 0.69.

In Fig. 11 we again show LPoynt at R = 30M , but for
simulations beginning at times ranging from about 200M
to 5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set
of features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration be-
comes shorter. The timing of features (a) and (b) indi-
cates that they can have no dependence on the merger
of the binary, in contrast to the conclusion drawn from

TABLE II. Bowen-York parameters of the numerical config-
urations used. The holes are non-spinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name d(M) mp Ptang(M) Prad(M)

X1 d16.3 16.267 0.4913574 0.07002189 -0.0002001

X1 d14.4 14.384 0.4902240 0.07563734 -0.0002963

X1 d11.5 11.512 0.4877778 0.08740332 -0.0006127

X1 d10.4 10.434 0.4785587 0.0933638 -0.00085

X1 d9.5 9.46 0.4851295 0.099561 -0.001167

X1 d8.4 8.48 0.483383 0.107823 -0.0017175

X1 d6.6 6.61 0.4785587 0.1311875 -0.0052388

TABLE III. Time of merger tmerge for each binary configu-
ration. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configu-
ration is shown in bold face.

run name dx(M) tmerge(M)

X1 d16.3 1/48 5380

X1 d14.4 1/48 3514

1/56 3651

1/72 3797

X1 d11.5 1/48 1549

1/56 1584

1/72 1572

X1 d10.4 1/48 1054

1/72 1066

X1 d9.5 1/48 681

X1 d8.4 1/48 451

1/56 451

X1 d6.6 1/48 208

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M
for each case. Merger times for each binary are marked by
dashed vertical lines. (1LPoynt = 5.867⇥1044⇢-13M

2

8 erg s�1.)
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contribution from the magnetic field, and in the other
case on the electron density and temperature. As can be
seen in Fig. 3, the gas forms two very small, thin disks
with magnetically dominated cavities above and below
each black hole. From this picture alone, it is not clear
where most of the synchrotron flux might originate.

However, when comparing the three panels of Fig. 17,
we see that the gas contribution is almost uniformly dis-
tributed, and even the thin disks evident in Fig. 3 are
almost indiscernible when all the relativistic ray-tracing
is included. The reason for this is two-fold. First, the
disks are quite small in extent, and the gas is moving
almost entirely radially, so the emitted flux is beamed
into the horizon, and thus the disks themselves are not
clearly visible in the ray-traced image. Second, the over-
density of gas in the disks is only a factor of a few or
at most ten greater than the background density. On
the other hand, in the funnel regions, B2 can be more
than four orders of magnitude greater than the ambient
or initial pressure, yielding much more significant spatial
variations. Thus the synchrotron image (top panel) most
closely traces the magnetic field, with a slight enhance-
ment of emission where the gas density and temperature
rise near the black holes.

FIG. 18. Bolometric luminosity generated in the region
r < 30M for the X1 d14.4 configuration, assuming the canon-
ical initial density ⇢0 = 10�13 g cm�3. We model local syn-
chrotron emissivity, also showing the development of two con-
tributing components as described in the text.

In Fig. 18 we show the light curve generated by syn-
chrotron emission along with analogous traces computed
from the density and magnetic-field components for the
X1 d14.4 configuration. To calculate these curves, mil-
lions of photons must be launched at each time step, so
for e�ciency’s sake, we use a relatively coarse time sam-
pling of 200M . We only consider emission from inside
r < 30M , consistent with the Poynting flux extraction
radius.

Figure 18 shows that, unlike the Poynting flux, the lo-

cally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst
of luminosity preceding merger, followed by a dip of al-
most 50% for the synchrotron light curve, but the other
models show almost no discernible sign of the merger
at all. The dip is caused by the sudden expansion of the
horizon volume at merger, rapidly capturing the gas with
the highest temperature and magnetic field.
Another curious result of the Pandurata calculation is

that, for a single snapshot, there is very little di↵erence in
the flux seen by observers at di↵erent inclination angles
or azimuth (of order ⇠ 10%), suggesting that variability
in the EM light curves on the orbital time scale will be
minimal.
In principle, Pandurata can also be applied to study

the spectra of EM emissions including e↵ects, such as
inverse-Compton scattering as photons interact with hot
atmospheric plasma, that have been found to be impor-
tant in modeling black hole accretion disk spectra [98].
Our present simulations, however, do not provide a re-
alistic treatment of atmospheric densities and tempera-
tures. Future studies with more detailed physics may
reveal more interesting time development in spectral fea-
tures of the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability
of direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynt-
ing flux. In addition, the synchrotron flux is roughly
isotropic, while significant beaming is observed in Poynt-
ing flux. There is no contradiction in these measures;
Poynting luminosity may manifest as photons far down-
stream from the GRMHD flows, whereas these direct
emission estimates originate in regions of high fluid den-
sity and magnetic field strength in strong-gravitational-
field zones.
When comparing these direct emissions with results

from circumbinary disk simulations, the most similar
simulation is in [53, 54]. They estimated a form of di-
rect emission, derived from a cooling function based on
hydrodynamic shock heating. The implied cooling lu-
minosity was more than an order of magnitude larger
than the Poynting luminosity, while our results sug-
gest that Poynting luminosity is larger than direct syn-
chrotron emission, at least for the canonical density of
10�13 g cm�3. We have not incorporated a similar cool-
ing function for a more direct comparison, though we
note that our gas does not exhibit strong shocks.

V. CONCLUSIONS AND FUTURE WORK

To deepen our understanding of the interplay of grav-
ity, matter, and electromagnetic forces in the vicinity of a
merging comparable-mass black-hole binary, we have car-
ried out a suite of equal-mass non-spinning BBH merger
simulations in uniform plasma environments. We con-
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show the state of the evolved (squared) magnetic field
strength b2 1100M after merger, evaluated on the x-z plane.
As seen in the top panel, b2 is greatly amplified at and near
the polar axis of the post-merger hole. The lower panel
shows that this region is dominated by magnetic pressure.
This region shares some features of a relativistic jet, as both
are magnetically dominated and contain a helical magnetic
field structure. We show in Fig. 8 that the structures we
observe yield a strong Poynting flux directed outward. As
with our disk however, through the course of these
simulations the fluid flow through these jetlike structures
is predominantly inward-directed. Nonetheless, over longer
temporal and larger spatial scales and in plausible astro-
physical environments, the strong Poynting flux could
drive relativistic outflows and strong EM emissions. We

further explore this as a source of energy to eventually
power EM counterparts in the next section.3

FIG. 6. Magnetic field streamlines in the polar region, around
1100M after merger. The field lines are twisted into a helical
pattern, concentrated at the origin. This helical structure prop-
agates outward at the ambient Alfvén speed vAlf ¼ 0.07433,
replacing the initially vertical B fields (still visible at large z).

FIG. 7. Top panel: Magnetic field squared magnitude b2 about
1100M after merger for the high-resolution d ¼ 14.4M configu-
ration. Bottom panel: Magnetic-to-gas pressure ratio β−1 ≡
b2=2pgas for the same time and configuration.

3There is no direct contradiction between inward fluid flows
and outward Poynting flux. A simple expression relating Poynt-
ing flux to velocity is Lz

Poynt ¼ B2vz⊥, where v
z
⊥ ¼ vz − vz∥ is the

component of fluid velocity perpendicular to the magnetic field
lines. For a specified Poynting flux, the parallel component of
velocity vz∥ is not directly constrained and may be negatively
directed and large enough to overcome a positive vz⊥.

BERNARD J. KELLY et al. PHYSICAL REVIEW D 96, 123003 (2017)

123003-8

Second, we also consider mechanisms for direct emission
from the fluid flows near the black holes, ignoring the
absorbing properties of matter farther out.
Our canonical configuration is an equal-mass BBH with

initial coordinate separation d ¼ 14.4M, initial fluid den-
sity ρ0 ¼ 1 in a polytrope with κ ¼ 0.2, Γ ¼ 4=3, and
initial magnetic field strength b0 ¼ 0.1. We present these
and derived parameters in Table I.

A. Large-scale structure of fluid and fields

We begin by presenting an overview of the major field
structures that develop through MHD dynamics during the

merger process, using our canonical case as a representative
example.
The canonical simulation begins about 3500M before

merger, with an initially uniform fluid and a uniform
vertical magnetic field. After some time the fluid has fallen
mostly vertically along the field lines, concentrating in a
nearly axisymmetric thin disk (h ≪ M) of dense material
about each black hole. Figure 3 shows a snapshot of
the fluid density ρ on the x-y (orbital) and x-z planes
during the late inspiral (about 1100M before merger) for
the d ¼ 14.4M configuration.
By late times, those disks have merged into a common

disk around the final, spinning black hole. The structure of
the post-merger disk is shown in Fig. 4, where we again
plot ρ on the x-y and x-z planes. By this time fluid has
fallen in to form a thin disk (h ≪ M) of dense material with
radius of 2–3 gravitational radii (the BH horizon radius is
approximately 1M here). Above and below the disk, gas is
largely excluded by magnetically dominated regions.
Focusing just on the x-y plane, the top panel shows that
some asymmetric structure persists long after merger.

FIG. 2. LPoynt for original WHISKYMHD run of [34] (black,
solid), compared with the new ILLINOISGRMHD runs for the
same initial separation (red, dashed). All luminosities have been
time-shifted by the time of merger for that run, and scaled to
reflect the canonical case in [34]: a plasma of uniform initial
density ρ0 ¼ 10−11 g cm−3 and magnetic field strength
B0 ¼ 3.363 × 104 G, in the vicinity of a black-hole binary of
total mass M ¼ 108 M⊙. An ILLINOISGRMHD simulation keep-
ing the polytropic coefficient κ fixed to its initial value every-
where (i.e., disabling shock heating) shows very similar behavior
(blue, dotted).

TABLE I. Initial parameters and derived quantities for the
canonical configuration: initial puncture separation d, puncture
mass mp, Bowen-York linear momentum components Ptang &
Prad, finest grid spacing dx, merger time tmerge, initial fluid
density ρ0, magnetic field strength b0, polytropic constant κ0,
fluid pressure p0, specific internal energy ϵ0, ratio of magnetic to
fluid energy density ζ0, specific enthalpy h"0, and ambient Alfvén
speed vAlf .

dðMÞ mp PtangðMÞ PradðMÞ dxðMÞ

14.384 0.4902240 0.07563734 −0.0002963 1=48

tmergeðMÞ ρ0 b0 κ0 p0 ϵ0 ζ0 h"0 vAlf

3514.333 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.07433

FIG. 3. Fluid density ρ during inspiral at time t ¼ 2400M
(about 1100M before merger) for the d ¼ 14.4M configuration.
At this time the holes are centered at ðx; yÞ ≈%ð5.53M; 0.08MÞ.
The regions inside the BH horizons have been masked out. Note
that in all configurations the BHs are orbiting in a counter-
clockwise motion around the positive z axis
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In Fig. 18 we show the light curve generated by
synchrotron emission along with analogous traces com-
puted from the density and magnetic-field components for
the X1_d14.4 configuration. To calculate these curves,
millions of photons must be launched at each time step,
so for efficiency’s sake, we use a relatively coarse time
sampling of 200M. We only consider emission from inside
r < 30M, consistent with the Poynting flux extraction
radius.
Figure 18 shows that, unlike the Poynting flux, the

locally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst of
luminosity preceding merger, followed by a dip of almost
50% for the synchrotron light curve, but the other models
show almost no discernible sign of the merger at all. The
dip is caused by the sudden expansion of the horizon
volume at merger, rapidly capturing the gas with the highest
temperature and magnetic field.
Another curious result of the PANDURATA calculation is

that, for a single snapshot, there is very little difference in

the flux seen by observers at different inclination angles or
azimuth (of order ∼10%), suggesting that variability in the
EM light curves on the orbital time scale will be minimal.
In principle, PANDURATA can also be applied to study the

spectra of EM emissions including effects, such as inverse-
Compton scattering as photons interact with hot atmos-
pheric plasma, that have been found to be important in
modeling black hole accretion disk spectra [101]. Our
present simulations, however, do not provide a realistic
treatment of atmospheric densities and temperatures.
Future studies with more detailed physics may reveal
more interesting time development in spectral features of
the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability of
direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynting
flux. In addition, the synchrotron flux is roughly isotropic,
while significant beaming is observed in Poynting flux.
There is no contradiction in these measures; Poynting
luminosity may manifest as photons far downstream from
the GRMHD flows, whereas these direct emission esti-
mates originate in regions of high fluid density and
magnetic field strength in strong-gravitational-field zones.
When comparing these direct emissions with results from

circumbinary disk simulations, themost similar simulation is
in [55,56]. They estimated a form of direct emission, derived
from a cooling function based on hydrodynamic shock
heating. The implied cooling luminosity was more than an
order of magnitude larger than the Poynting luminosity,
while our results suggest that Poynting luminosity is larger
than direct synchrotron emission, at least for the canonical
density of 10−13 g cm−3. We have not incorporated a similar

FIG. 18. Bolometric luminosity generated in the region r <
30M for the X1_d14.4 configuration, assuming the canonical
initial density ρ0 ¼ 10−13 g cm−3. We model local synchrotron
emissivity, also showing the development of two contributing
components as described in the text.

FIG. 17. Snapshots from PANDURATA postprocessing of the
simulation data at a separation of 10M (about 1000M before
merger), viewed by an observer edge-on to the orbital plane. Top
panel: thermal synchrotron emission; middle panel: magnetic
contribution only (∝ B2); bottom panel: gas contribution only
(∝ ρT).
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.
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FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:
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FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after ⇠1 orbit, after ⇠8 orbits and ⇠ 300 M after the merger.

FIG. 12. LPoyn (z components) in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2

6 erg s�1 for the B1 (��1

0
= 0.025, left) and B2 (��1

0
= 0.31, right)

models, extracted on a coordinate sphere of radius R = 30M . The dotted lines mark the merger times for the non-spinning (magenta), a = 0.3
(blue), a = 0.6 (green) configurations.

magnetized simulations develop strong flows of electromag-
netic energy in the form of Poynting flux; the Poynting flux
luminosity can be computed as a surface integral across a two-
sphere at a large distance (see Appendix A):

LPoynt ⇡ lim
R!1

2R2

r
⇡

3
S
z
(1,0) (37)

where S
z
(1,0) is the dominant (l,m) = (1, 0) spherical mode

of the Poynting vector (Eq. (24)). Following the evolution
of LPoynt helps us measuring the amount of potential emis-
sion on time scales comparable to the merger time. To this ex-
tent, we extract the luminosity on a coordinate sphere of radius
Rext; we set the extraction radius at Rext = 30M as was done
in Ke17 (in Gi12, extraction was carried out at Rext = 10M ,
but the initial binary separation was ⇠30% smaller than in our
simulations). This choice allows us to avoid spurious effects

due to the orbital motion of the BHs.
In Fig. 11 we show the evolution of the z component of the

Poynting vector on the polar plane xz for the B2S3 configura-
tion. As in the simulations of Gi12- Ke17, the Poynting flux
emission in our simulations is largely collimated and parallel
to the orbital angular momentum and to the spin of the post-
merger BH. In Fig. 12 we display the Poynting flux luminosity
computed for each of the 6 magnetized models. On the left,
we show the B1 configurations, i.e. those with �

�1
0 = 0.025;

on the right the B2 configurations, with �
�1
0 = 0.31. The val-

ues of LPoynt are in units of L0 ⌘ 2.347 ⇥ 1043⇢�11M
2
6 erg

s�1 (see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the Blandford-
Znajek [70] mechanism [see, e.g., Eq. (4.50) in 76]:
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Jet starts aligned with spin, then aligns with B-field;

Poynting luminosity strongest when aligned;

relatively close to the hole itself, remaining substantially
along its initial direction further out. We can try to quantify
the transition region from the BH’s “sphere of influence” by
examining the Poynting luminosity over a set of extraction
spheres. In Fig. 7, we show the integrand in Eq. (1)—
essentially the Poynting vector, weighted by the local area
measure—as a function of ðθ;ϕÞ for R ∈ f20M; 30M;
40M; 50Mg for the KS_B45deg configuration. We see
that the angular location (i.e., “point in the sky”) of peak
contribution moves with extraction radius; we also see that

the tube seems to contract in angle. We will attempt to
quantify these observations in Sec. IV C.
In Fig. 8, we show the rate of mass loss into the Kerr

horizon, _M [Eq. (3)] during the evolution of each of the
initial magnetic-field orientations θB. Again, the accretion
rates for different θB’s show little variation until t ≈ 300M.
Even at late times, the different configurations’ _M’s deviate
by only around 50%, with the highest rates associated with
the greatest deviation of the initial magnetic field angle. As
with the Poynting luminosity, we can produce a time-
averaged accretion for the steady state (t > 1; 500M) of
each configuration. This is presented in Fig. 9. Viewed in
this way, we see that the steady-state accretion rate is
relatively constant for 0° ≤ θB ≲ 40°, dropping off steeply
for larger θB.
In Fig. 10, we plot the resulting efficiency [Eq. (4)].

Dominated by the field orientation, it shows levels of∼25%
for small θB, dropping an order of magnitude for θB ≳ 40°.

C. Features of protojet

In studies of black-hole neutron star mergers, Ref. [41]
identifies an “incipient, magnetized jet” as an “unbound,
collimated, mildly relativistic outflow (Lorentz factor of
∼1.2), which is at least partially magnetically dominated.”
Informally, we identify a “protojet” as a magnetically
dominated region showing concentrated twisting of mag-
netic field lines, and strong localized Poynting flux [42–
44]. We use the term “protojet” here, because while it
shows intense winding of magnetic fields in a traditional
jetlike funnel region, the net fluid flow in this region is
inward, with a low Lorentz factor. In this subsection, we

FIG. 6. Steady-state (t > 1; 500M) Poynting luminosity as a
function of field alignment angle θB. The luminosity is calculated
as a “late-time average” value in each case—the average value for
all t > 1; 500M. Error bars show the rms deviation from the time-
average values, beginning at t ¼ 1; 500M. The solid (blue) and
dashed (red) curves are best-fit results from assuming a hyper-
bolic tangent or cosine-squared dependence on θB, respectively.

FIG. 4. B-field stream lines in the vicinity of the BH (spinning
in the k̂ direction) at time t ≈ 2; 000M for a magnetic field
initially uniform in strength, and everywhere pointing along
îþ k̂, 45° off the BH spin direction (configuration KS_B45deg).
Gray shells indicate coordinate radii R ∈ f30M; 50M;
70M; 90Mg.

FIG. 5. Poynting luminosity as a function of time for the B-field
angle configurations. Thick and thin lines indicate higher and
lower resolution for the same physical configuration.
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The settling-down time for these configurations also
depends on temperature, being later for the higher-temper-
ature cases. To investigate the steady state for each
configuration, we use a time-average value for each
configuration, from a common starting time of t ¼
2; 000M until the end of the available data. In Fig. 3,
we show the resulting Poynting luminosity LPoynt (top
panel), accretion rate _M (middle panel), and resulting
efficiency ηEM [Eq. (4)] (bottom panel). For each configu-
ration, the “error bars” shown are simply the standard
deviation over the time window.
It is noticeable that both the Poynting luminosity LPoynt

and mass accretion rate _M are highest for the lowest values
of κ, and hence fluid temperature, though subject to greater
variations in time. There also appears to be a shallow local
minimum in LPoynt around κ ¼ 0.1, and in _M around
κ ¼ 0.5; the combination of these yields a minimum in
efficiency ηEM around κ ¼ 0.3, close to our canonical case.
However, as this is a shallow minimum, the efficiency is
around 20% over most of our temperature range.

B. Dependence on magnetic field orientation

Here we investigate the effect of varying the angle θB
between the Kerr spin vector a⃗ and the initial orientation of
the uniform magnetic field B⃗. In practice, we fix the former
—a⃗ ¼ ak̂—and vary the latter. However, we demonstrate
in the Appendix C that we achieve equivalent results when
fixing the field direction and varying a⃗ instead.
In Fig. 4, we show the late-time state of the magnetic

field integral curves passing near the central black hole, for
the KS_B45deg configuration. The black hole has not
only twisted and concentrated the field, but has tilted it
toward the spin axis (z direction), but only out to a
radius r≲ 30M.
In Fig. 5, we show the time development of the Poynting

luminosity LPoynt during the evolution of each of the initial
magnetic-field orientations θB. It is clear that the “post-
settling” luminosity has a strong dependence on θB.
Looking at the late-time (t≳ 1; 500M) behavior of the

systems, in Fig. 6 we plot LPoynt as a function of initial
inclination angle θB. We also show a fit (dashed red line) of
these LPoynt data points to a functional form quadratic in the
cosine of θB, similar to that seen by Ref. [40] in the force-
free limit. Our results seem to show a flatter behavior at low
and high θB, captured better by a hyperbolic tangent
dependence on θB (solid blue line), but we cannot rule
out the cos2 θB scaling. It is entirely possible that the
inclusion of MHD and matter (as opposed to the force-free
scenario) introduces additional physics scaling that lead to
a steeper, more step-function-like behavior.
As we can see in Fig. 4, even at late times, the magnetic

field lines are only oriented toward the BH spin axis

FIG. 3. Steady-state Poynting luminosity LPoynt (top panel),
accretion rate _M (middle panel), and resulting efficiency ηEM
(bottom panel) for the temperature studies, as a function of the
temperature proxy κ. Plotted points are time averages from t ¼
2; 000M onwards, with “error bars” given by the standard
deviation over the same time interval.
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absolute cross-sectional area roughly constant, or “pencil-
like” (lower panel).

2. Beam shape

As can be seen from Fig. 7, the cross-sectional shape of
the beam deviates strongly from circular when the magnetic
field is misaligned with the black hole spin. We present in
Fig. 12 the beam shape as represented by the 50% contour
for a range of field alignments, measured at R ¼ 30M.
For an aligned field, the beam cross section is annular at

all extraction radii, as the magnetic field drops to zero on
the axis due to symmetry. Here we see that the beam shape
becomes steadily less annular with increasing θB.
Simultaneously, the overall luminosity decreases, and the
beam weakens, becoming harder to distinguish from the
rest of the sphere. For this reason, we omit the correspond-
ing plots for θB > 60°.

3. Beam position

We present in Fig. 13 the positions of the center of the
protojet for each configuration, showing how it varies with
extraction radius. To avoid high-frequency variations, at
each extraction radius R, we decompose the Poynting
vector over the sphere into (real) spherical harmonics up
to l ¼ 2:

SrRðθ;ϕÞ≡
X2

l¼0

SlmYm
l ðθ;ϕÞ: ð6Þ

The center positions are then the maxima of this smoothed
functional form.While the jet positions are properly given as
a pair of angles ðθ;ϕÞ, we find it easier to display as a pair of
Cartesian-like projected coordinates X ≡ sin θ cosϕ, Y≡
sin θ sinϕ, so that the hole’s spin direction lies unambigu-
ously at the origin in each panel.
From the figure, we can see that all configurations have

jet directions that approach the asymptotic initial magnetic
field direction at large R (denoted by× in the figure). As we
move inward along each configuration’s curve, we see
twisting of the jet direction around the origin (that is, the
BH spin axis). For initial inclination angles θB between 0°
(i.e., parallel to the spin axis) and ∼60°, the jet direction
approaches the spin axis for small R. For larger θB, the jet’s
direction stops short of the pole.
The azimuthal (Y-direction) offset at finiteR appears to be

a result of frame dragging in the background spacetime, as is
the jet itself. There is no precise transition radiuswhere the jet
direction switches from being aligned predominantly with
the hole’s spin to its asymptotic direction, but the transition
appears to occur withinR ∼ 20M. This is consistent with the
observations of Ref. [45], in their studies of jet twisting in
tilted accretion tori.

4. Jet Strength

We noted at the start of this subsection that our “protojet”
has not yet been demonstrated to produce ultrarelativistic
particle speeds. In particular, as in Paper I, fluid inflow in
the jet region is both subrelativistic and inward-pointing.
While analyzing the aftermath of a BHNS merger, the
authors of Ref. [41] encounter a similar situation; they point
out, however, that strong magnetic dominance in the
asymptotic jet region is expected to lead to much higher
Lorentz factors: Γ ∼ b2=2ρ [46].
In our case, the peak energy ratio drops to below ∼5

outside a few horizon radii, implying that actual relativistic
jet conditions may not be reached for the fluid particles
present. This can be misleading, as the MHD fluid is ion
dominated, and unlikely to be the source of significant
high-energy EM emission. If a mechanism is present to
seed the magnetically pressure-dominated region with
electrons or electron-positron pairs, these can be expected
to experience much greater accelerations, leading perhaps
to jetlike electromagnetic emission.

V. DISCUSSION

In this paper, we have extended the work of Ref. [5]
(Paper I), focusing on the steady-state behavior of plasma
around a postmerger Kerr black hole. While Paper I
featured merging equal-mass nonspinning black hole
binary systems, with a spacetime dynamically simulated

FIG. 13. Pseudojet center positions for the B15, B30, B45,
B60, and B75 configurations, in the Kerr hole’s “northern”
hemisphere, as determined by the maxima of the harmonically
smoothed Poynting vector function [Eq. (6)] at t ¼ 2; 000M.
Each dashed line connects the positions for all configurations,
determined at a certain extraction radius R. The × symbols show
the initial direction of the asymptotic magnetic field for each
configuration.
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3.3. Jet Luminosities and Temperatures

We find that jets are launched from both spinning and
nonspinning systems as illustrated in Figure 4, which shows a
3D rendering of the rest-mass density of the χ++ model with
white lines indicating the magnetic field lines anchored to the
black holes. The magnetic field lines are more twisted than in
the nonspinning cases we reported in earlier work (Gold et al.
2014a, 2014b; Khan et al. 2018)—a result of black hole spin.
This combined effect leads to a dual jet structure close to the
black holes that merge to form a single jet structure at larger
height.

We calculate the Poynting luminosity associated with the
collimated jet outflow on the surface of coordinate spheres S as

∮ ( )�L T dS
S

r
EM 0, EM , where ( )N

OT
, EM

is the EM stress-energy

tensor. �L MEM eq is the efficiency for converting accretion
power to EM jet luminosity, where �Meq is the time-averaged
accretion rate after the accretion rate has settled (t 1500M).
We plot the efficiency as a function of time in Figure 5 for the
χ00, χ++, and χ+- models. We note that it takes time for the
outflow to develop and propagate out the EM luminosity
extraction radius of 150M, which is why although the flow
around the black holes can relax, it takes longer for the EM
luminosity to relax. The evolution of the χ−− model was long
enough for the accretion rate to relax, but not long enough for
the EM luminosity to do so. As a result we do not include this
model here. The figure clearly demonstrates that spin plays a

Figure 1. Rest-mass density in the equatorial plane for the χ+− model. A persistent minidisk quickly forms around the χ1 = +0.75 black hole, but no disk forms
around the χ2 = −0.75 black hole. The Hill spheres (black dashed circles) and the ISCO radii (white circles) are shown around each black hole (assuming each BH
was in isolation). For the χ1 = +0.75 black hole the Hill sphere is significantly larger than the ISCO, but for the χ1 = −0.75 they are more comparable in size.

Figure 2. Comparison of the rest-mass density in the equatorial plane for χ– (left panel) and χ++ (right panel), taken following completion of five orbits in both cases.
Persistent minidisks are seen only in the χ++ case as the Hill sphere (black dashed circles) is significantly larger than ISCO radius (white circles).
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binary inspirals it will reach a threshold where rHill; rISCO and
persistent minidisks will no longer be able to exist and will
“evaporate” because the tidally stripped accretion streams from
the circumbinary disk are accreted on a short dynamical
timescale as they plunge into the black hole following ISCO
crossing. This leads to more complicated variability in the mass
accretion rate until merger and any EM signature associated
with persistent minidisks is expected to become fainter. Note
that the onset of this transition depends on black hole spin
(through the ISCO radius). We term this anticipated dimming
of EM emission from minidisks “minidisk evaporation” and
expect it to be an inevitable outcome, that is qualitatively
robust even for different magnetic field strengths, topologies or

initial torus parameters (quantitative measures such as minidisk
accretion rates may well depend on the details). Following
minidisk evaporation toward the late stages of the inspiral, the
qualitative evolution then proceeds in accord with our
previously obtained results (Farris et al. 2012; Gold et al.
2014a, 2014b; Khan et al. 2018). Our simulations also suggest
that black hole binaries with prograde spin maintain minidisks
for a longer timescale than nonspinning and retrograde spin
black holes.
These findings could in principle serve as a new diagnostic

to probe black hole spins observationally when combined with
information from the gravitational wave signal. In particular,
when LISA is operating or in the event that Pulsar Timing
Arrays detect an individual supermassive black hole binary, the
merger time can be predicted from the gravitational wave
signal. Therefore, the difference of merger time to the time
when the minidisk signature fades away should open a new
avenue to probe black hole spins observationally. For this
strategy to work out additional source modeling and better
predictions from theory will be invaluable. Our work here has
shown that when rHill? rISCO, minidisks can form, but
additional studies to probe the epoch of minidisk evaporation
where rHill rISCO will be important to make this a viable and
useful diagnostic.
In addition to the minidisk dynamics here we also found that

jets arising from circumbinary accretion onto binary black
holes toward the late stages of the inspiral are significantly
more powerful when spinning black holes (even with
moderately high dimensionless spin of χ= 0.75) are involved.
With proper theoretical modeling this finding also paves a new
way to probe black hole spin from future EM jet observations
of these systems.
Finally, apart from the observational implications, our results

have important consequences for future relativistic simulations

Figure 4. 3D view showing rest-mass density (color coded) for the χ++ model and magnetic field lines (white) anchored on the black hole horizons. Twin jets are
visible above and below each black hole (see inset for a zoomed-in view). The black spheres indicate the resolved black hole apparent horizons in our simulations.

Figure 5. The efficiency for converting accretion power to EM luminosity
�L MEM eq as a function of time. Here LEM is the Poynting luminosity and �Meq is

the average total rest-mass accretion rate for each model after t = 1500M when

the accretion rate has settled, and ( ):xM 5 M

M106 s.
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the circumbinary disk are accreted on a short dynamical
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crossing. This leads to more complicated variability in the mass
accretion rate until merger and any EM signature associated
with persistent minidisks is expected to become fainter. Note
that the onset of this transition depends on black hole spin
(through the ISCO radius). We term this anticipated dimming
of EM emission from minidisks “minidisk evaporation” and
expect it to be an inevitable outcome, that is qualitatively
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2014a, 2014b; Khan et al. 2018). Our simulations also suggest
that black hole binaries with prograde spin maintain minidisks
for a longer timescale than nonspinning and retrograde spin
black holes.
These findings could in principle serve as a new diagnostic

to probe black hole spins observationally when combined with
information from the gravitational wave signal. In particular,
when LISA is operating or in the event that Pulsar Timing
Arrays detect an individual supermassive black hole binary, the
merger time can be predicted from the gravitational wave
signal. Therefore, the difference of merger time to the time
when the minidisk signature fades away should open a new
avenue to probe black hole spins observationally. For this
strategy to work out additional source modeling and better
predictions from theory will be invaluable. Our work here has
shown that when rHill? rISCO, minidisks can form, but
additional studies to probe the epoch of minidisk evaporation
where rHill rISCO will be important to make this a viable and
useful diagnostic.
In addition to the minidisk dynamics here we also found that

jets arising from circumbinary accretion onto binary black
holes toward the late stages of the inspiral are significantly
more powerful when spinning black holes (even with
moderately high dimensionless spin of χ= 0.75) are involved.
With proper theoretical modeling this finding also paves a new
way to probe black hole spin from future EM jet observations
of these systems.
Finally, apart from the observational implications, our results

have important consequences for future relativistic simulations

Figure 4. 3D view showing rest-mass density (color coded) for the χ++ model and magnetic field lines (white) anchored on the black hole horizons. Twin jets are
visible above and below each black hole (see inset for a zoomed-in view). The black spheres indicate the resolved black hole apparent horizons in our simulations.

Figure 5. The efficiency for converting accretion power to EM luminosity
�L MEM eq as a function of time. Here LEM is the Poynting luminosity and �Meq is

the average total rest-mass accretion rate for each model after t = 1500M when

the accretion rate has settled, and ( ):xM 5 M

M106 s.
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As in [35], we seed the initial disk with an initially
dynamically unimportant, purely poloidal magnetic field
that is entirely confined in the disk interior. The initial
magnetic field is generated by the following vector
potential,

Ai ¼
!
−

y
ϖ2

δxi þ
x
ϖ2

δyi

"
Aφ; ð1Þ

Aφ ¼ Abϖ2 maxðP − Pc; 0Þ; ð2Þ

whereϖ2 ¼ x2 þ y2, and Ab and pc are free parameters. Ab
is determined by the maximum value of the magnetic-to-
gas-pressure ratio which we set to Pmag/Pgas ≈ 0.022,
0.028, 0.042 for cases A–C, respectively. We also choose
the cutoff pressure Pc to be 1% of the maximum pressure.
The magnetic field renders the disk unstable to the
magnetorotational instability (MRI) that ultimately leads

to the development of MHD turbulence. The associated
effective turbulent viscosity allows angular momentum to
be transported and accretion to proceed. We impose three
conditions that enable MRI to operate in our disk models:
(i) We choose disk configurations whose rotation profile
satisfies ∂RΩ < 0, where Ω ¼ uϕ/ut is the fluid angular
velocity [50]. (ii) We resolve the wavelength of the fastest
growing MRI mode λMRI by ≳10 grid points [51]. Using
the initial disk data, we plot the quality factorQ≡ λMRI/dx,
where dx is the local grid spacing, which jumps by a factor
of 2 at adaptive mesh refinement (AMR) boundaries. The
top panels of Fig. 2 show plots of Q in the equatorial x − y
plane for all three cases, demonstrating that λMRI/dx > 10.
Note that the square patterns are a result of the AMR grids
(see below). (iii) The initial B field is sufficiently weak,
λMRI ≲ 2H, where H is the disk scale height; i.e., the
wavelength of the fastest growing mode fits within the disk.
The bottom panels in Fig. 2 show meridional xz slices of
the rest-mass density overlain by a line plot showing λMRI/2
as a function of x for the three cases. For the most part,
λMRI/2 fits inside the disk.1

C. Dynamical evolution methods

We use the Illinois GRMHD AMR code which is
embedded in the Cactus/Carpet infrastructure
[53,54] and has been developed by the Illinois relativity
group [55–57]. This code is the basis of its publicly
available counterpart embedded in the Einstein Toolkit
[58]. Our code has been extensively tested (including with
resolution studies) and used in the past to study numerous
systems involving compact objects with and without
magnetic fields [59–63] including black hole binaries in
magnetized accretion disks [1,36].
For the metric evolution, the code solves the equations of

the Baumgarte-Shapiro-Shibata-Nakamura formulation of
GR [64,65] coupled to the moving-puncture gauge con-
ditions [66,67] with the equation for the shift vector cast in
first-order form (see e.g. [68]). The shift vector parameter η
is set to η ¼ 1.375/M.
For the matter and magnetic field, the code solves the

equations of ideal general relativistic magnetohydrodynam-
ics (GRMHD) in flux-conservative form [see Eqs. (27)–
(29) in [56]] employing a high-resolution-shock-capturing
scheme. To enforce the zero-divergence constraint of the
magnetic field, we solve the magnetic induction equation
using a vector potential formulation [see Eq. 9 in [57]]. As
our EM gauge choice, we use the generalized Lorenz gauge
condition developed in [35]. This EM gauge choice avoids
the development of spurious magnetic fields that arise
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FIG. 1. Plots of surface density profile ΣðRÞ and disk scale
height H/R vs cylindrical coordinate radius R for the three disk
models. These initial disk models belong to a one-parameter
family of models in which the parameter that varies is the specific
angular momentum parameter (lin) at the disk inner edge, whose
initial radius we fix at 20M. For cases A–C we have lin ¼ 5.25M
(solid lines), lin ¼ 5.15M (dashed lines), and lin ¼ 5.05M (dot-
dashed lines), respectively (see Table II).

TABLE II. Here lin ¼ −uϕ/ut is the specific angular momen-
tum parameter at the inner radius of the disk, ðH/RÞmax is the
maximum disk scale height, and Rout/M is the outer radius of the
disk. In all cases, the inner radius of the disk is Rin/M ¼ 20.

Initial disk parameters

Case lin/M ðH/RÞmax Rout/M

A 5.25 0.33 250
B 5.15 0.22 100
C 5.05 0.14 60

1λ ≲ 2H is not a requirement for resolving MRI, but an
approximate requirement for the disk to be MRI unstable [see
Eq. (2.32) of [52]]. MRI is a weak field instability, so seeding the
disk with a very strong B field renders the disk MRI stable.
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regions in the funnel of magnetized, geometrically thick
disks accreting onto single, spinning BHs [80,81]; thus, we
can attribute this luminosity and accompanying incipient jet
from the remnant spinning BH-disk system to the BZ
effect. During the inspiral a “kinetic” or “orbital” BZ effect
can account for the outgoing EM energy [82].

V. ASTROPHYSICAL IMPLICATIONS

In this section we discuss the implications of our results to
astrophysical systems of interest, ranging from black hole
binaries relevant to LIGO to supermassive black hole
binaries that likely reside at the centers of AGNs and quasars.

A. LIGO GW150914

In this subsection we investigate whether circumbinary
BHBH accretion disks could explain simultaneous GWand
EM signals of the type GW150914 and GW150914-GBM.

For the BHBH-disk model to explain the GW150914-GBM
event, the following minimum set of requirements must be
met: (i) the accretion rate has to be high enough to explain
to observed luminosity, (ii) the densities have to be
sufficiently low for “dynamical friction” not to alter the
BHBH inspiral and hence the waveforms, and (iii) the
model has to explain why Fermi GBM did not see any EM
signal before merger.
Point (i) is trivial to account for within the BHBH-disk

models described here, utilizing our allowed scale freedom.
We scale the BHBH ADM mass in our simulations to
correspond to the event GW150914, i.e., 65 M⊙.
Therefore, the individual BH masses become MBH;1 ¼
36 M⊙, and MBH;2 ¼ 29 M⊙. In addition, we scale the
maximum rest-mass density in the disk so that the
EM luminosity in our models matches the inferred equiv-
alent isotropic luminosity of ∼1.8 × 1049 erg s−1 for the
GW150914-GBM event [18], assuming a beaming angle
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FIG. 5. The Poynting luminosity LEM and accretion rate Ṁ vs time for all cases and the strain of the “plus” polarization of the
gravitational waveform hþ. The GWs are computed as described in [78]. The dotted-dashed lines on the top panel indicate the expected
Blandford-Znajek luminosity from a single BH with the same mass, spin and quasistationary polar magnetic field strength as found for
each case. The normalization Ṁeq in each panel is the time-averaged accretion rate onto the postmerger remnant black hole over the last
500M of the evolution. The displacements in the dashed vertical merger line in the luminosity and GW plots with respect to the merger
lines in the accretion plots accounts for the light travel time between the BH and the radiation extraction radii.
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twin jets merge more tightly and the inner disk edge flows
inward, both helping to collimate the outflow further. After
merger a single incipient jet onto the remnant black hole
forms (fourth and fifth rows in Fig. 3).

B. Accretion rates

We compute the accretion rate through the black hole
apparent horizons via Eq. (A11) of [72]. Figure 5 shows
the accretion rate of all cases as a function of time,
along with the outgoing Poynting luminosity. Also shown
is the gravitational waveform. The accretion rate reaches a

quasisteady state at t/M ∼ 1500 for all cases, and the
average accretion rate remains approximately constant
for the next 1000M of evolution, consistent with the system
being in the predecoupling phase, as anticipated. During
this phase a Fourier transform indicates that the accretion
rate exhibits a periodicity at periods equal to 202, 210 and
202M for cases A–C, respectively. These periods equal
≃0.8P, where P is the average orbital period, P ≃ 250M,
which we determine from the GWs during this predecou-
pling epoch. Notice that the dominant period in the
accretion rate being smaller than the binary orbital period

FIG. 3. Volume rendering of rest-mass density, normalized to its initial maximum value ρ0;max (see color coding), magnetic field lines
(solid white curves), and velocity vectors (green arrows) at select times during the inspiral, merger and postmerger. Case A corresponds
to the left column, case B to the middle column, and case C to the right column.
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• Non-Spinning BHs;

• Survey over disk size 

and ang. mom. 
distribution;

Accretion rate is 
universal over these 
timescales;

All lead to similar post-
merger Poynting 
luminosities • Spinning BHs;


• Larger rHill/rISCO lead to larger mini-disks;

Spins and larger mini-disks yield larger Poynting luminosities;

Mini-disks evaporate prior to merger;



Periodic Signal

!peak = 2 (⌦bin � ⌦lump)

⌦K(rlump)
rlump ' 2.5a

1.47⌦bin

Surface 
Density

MHD Simulations Predict an EM Signature:
Noble++2012

(in frame co-rotating with lump)



Longterm 3-d GRMHD Mini-disk Evolutions

•Noble++2012 circumbinary disk plus mini-
disks, with domain covering black hole 
region;

•Extending Bowen++2018 run from 3 orbits 
to 12 orbits.
•Resolved GRMHD simulation of an 
accreting binary with relaxed circumbinary 
disk data and mini-disks evolved to steady 
mini-disk phase. 

• First measurement with GRMHD of quasi-
periodic interactions in the steady state 
between mini-disks and circumbinary 
disks in the inspiral regime of the binary, 
the longest phase observable by LISA.  

• Enough time series data to calculate light 
curve. 

Bowen et. al, ApJ (2019). 



Bowen et. al, ApJ (2019). 
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•Significant modulation in each mini-disk’s mass —> 
possible EM signal?  

• If light follows mass, EM period would be a ~1.5 
times the binary period, the beat frequency between 
the orbital periods of the lump and mini-disks. 

•  Dimmer circumbinary lump modulated at the same 
frequency plus its local orbital rate (Noble++2012). 

•Mini-disks settle to a steady-state after several binary 
orbits.  

•Mini-disks replenish with material in alternating fashion 
as they pass by the circumbinary disk’s lump, then 
drain at time scale close to one orbit period.  

•At these close separations and cooling rate, accretion 
through mini-disks is driven primarily through spiral 
shocks. 
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Longterm 3-d GRMHD Mini-disk Evolutions



•Predicted spectrum from accreting binary black 
holes in the inspiral regime.

• The systems will likely be too distant to be 
spatially resolved, so we need to understand 
their spectrum and how it varies in time.

• Key distinctions from single black hole (AGN) 
systems:

•Brighter X-ray emission relative to UV/EUV.

•Variable and broadened thermal UV/EUV peak. 

•“Notch” between thermal peaks of mini-disks 
and circumbinary disk will likely be more 
visible at larger separations and for spinning 
black holes. 

d’Ascoli et. al, ApJ, (2018).

Light from GRMHD Mini-disks
Face-on View,  

Optically Thick Case

Variability over 1 orbit

Variability on longer lump’s time scale not present here!



Mass Ratio Survey : Circumbinary Disks Noble, Krolik, Campanelli, Zlochower, 
Mundim, Nakano, Zilhao (2021)
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• Simulations of only 
circumbinary disk region, 
starting from Noble++2012 
conditions, only changing q.  

• As mass-ratio diminishes, 
so does gravitational torque 
density of the binary, 
asymptoting to “single BH” 
disk;  

• Weaker torques also 
diminish strength of the 
lump feature.  

• Weaker torques (smaller 
mass ratio binaries) take 
longer to form lumps.  

• Duffel++2019, see transition 
in lump’s relevance at q~0.2  
for viscous Newtonian 
hydro. disks;  See also Shi & 
Krolik 2016, Munoz+2019, 
Moody+2019.Same times Last time of run

q=M2/M h"ps://arxiv.org/abs/2103.12100  

https://arxiv.org/abs/2103.12100


Mass Ratio Survey
Lump Formation Criterion:  
Ratio of m=1 to m=0 Amp.

• Lump is well-described by relatively stronger m=1 azimuthal mode amplitude.   
• A quantitative threshold is found for the m=1 relative amplitude above which the lump 

continues to at least persist or grow. 
• Threshold value is consistent across different mass ratios and initial disk configurations.  
• Provides a quantifiable means of recognizing the lump’s genesis and strength. 

q=0.1q=1 q=0.5 q=0.2

Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
h"ps://arxiv.org/abs/2103.12100  

https://arxiv.org/abs/2103.12100


• Accretion rate and bolometric luminosity histories follow similar trends, largely dictated by initial data of 
the disk;  

• Radiative efficiency improves over time as more mass fills the interior region, likely due to more dissipative 
binary torque;

q=0.1q=1 q=0.5 q=0.2
q=0.1q=1 q=0.5 q=0.2

Global Trends of the Lump Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
h"ps://arxiv.org/abs/2103.12100  Mass Ratio Survey

https://arxiv.org/abs/2103.12100


22 Noble, et al. (2021)

Figure 23. Normalized correlations between the light curves, L(t) and accretion rates, Ṁ(r = a, t), calculated since the onset

of the lump (grey curves) or the last 2 periods of the lump’s orbit in a simulation (blue curves). The correlations are plotted

versus the lags, and are calculated using Eq. (34). A 5th-order polynomial fit to each curve has been removed prior to calculating

the correlation. Each plot is displayed over a span of lag time approximately equal to 3tlump. (Left-to-right) RunSE, Runq=1/2,

Runq=1/5, Runq=1/10.

Figure 24. Normalized correlations between the light curves, L(t) and accretion rates, Ṁ(r = a, t), calculated since the onset

of the lump (grey curves) or the last 2 periods of the lump’s orbit in a simulation (blue curves). The correlations are plotted

versus the lags, and are calculated using Eq. (34). A 5th-order polynomial fit to each curve has been removed prior to calculating

the correlation. Each plot is displayed over a span of lag time approximately equal to 3tlump. (Left-to-right) RunSE, Runmed,

Runlrg, Runinj .

ability to form a lump is robust to minor deviations in1307

conditions, though requires a su�ciently strong gravita-1308

tional torque.1309

Although MHD turbulence usually has the most power1310

on the longest spatial wavelength modes, implying that1311

small m azimuthal modes have the most power, a dis-1312

tinct mechanism for sustaining a coherent m = 1 mode1313

is required, as a m = 1 turbulent mode would be inco-1314

herent. This coherence is supplied by the binary’s grav-1315

itational torque in two ways. One has previously been1316

cited: the lump is reinforced by those portions of the1317

accretion streams thrown back to the circumbinary disk1318

by the gravitational torque Shi et al. (2012); D’Orazio1319

et al. (2013). Phase coherence is further maintained1320

because the lump’s orbit is resonant with the binary’s1321

orbit: tlump : tbin = 4 : 1. The importance of this reso-1322

nance is evident in these two time scales’ prominence in1323

• Lump-forming runs exhibit correlations with large amplitude oscillations at   
• Positive lags mean accretion rate leads luminosity:  accretion stream is pulled in, then partially expelled 

and dissipated along the cavity wall;

q=0.1q=1 q=0.5 q=0.2

Global Trends of the Lump Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
h"ps://arxiv.org/abs/2103.12100  Mass Ratio Survey

⌦lump and 2⌦beat
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Global Trends of the Lump

• Non-trivial signals apparent in L(t) and Mdot(t) at  
• Signals in accretion rate and luminosity are not always shared;  
• Small-q binaries show red-noise dominated power spectrum like single-BH disks; 
• Intermediate-q binary shows strongest signal at binary frequency, as the disk interacts primarily with BH#2; 
• Mdot modulations will likely modulate mini-disk luminosities, which are brightest high-energy component;  

q=0.1q=1 q=0.5 q=0.2
q=0.1q=1 q=0.5 q=0.2

Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
h"ps://arxiv.org/abs/2103.12100  Mass Ratio Survey

2⌦beat
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Figure 27. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runq=1/2, Runq=1/5,

Runq=1/10.

Run Name �Ṁ/Ṁ Ṁ [10�3] �L/L L[10�4]

RunSE 0.29 5.6 0.027 3.3

Runq=1/2 0.54 3.3 0.048 1.9

Runq=1/5 0.33 2.2 0.025 1.4

Runq=1/10 0.20 4.8 0.022 1.8

Runmed 0.30 11. 0.043 5.4

Runlrg 0.38 10. 0.033 5.1

Runinj 0.56 4.1 0.054 1.4

Table 3. Standard deviations �Ṁ (�L) of accretion rate (lu-

minosity) for each run, taken over the same period in which

the PSDs were calculated in Figures 25 - 26. Each stan-

dard deviation is normalized by the mean of the quantity in

question over this period. These averages are also displayed,

though in code units.

over magnetic field growth in the circumbinary disk? For1340

there to be a physical origin for the depletion of specific1341

magnetic field strength in the lump, we need to under-1342

stand how the magnetic field is preferentially destroyed1343

there. The mechanism also needs to depend on the mass1344

ratio since we find that a significant lump forms for only1345

su�ciently large q. The answer comes from animations1346

of magnetic field structure in the torqued streams strik-1347

ing the circumbinary disk, which show that the magnetic1348

field in these streams is directed opposite to the field1349

in the disk where the stream arrives. The collision of1350

oppositely-oriented magnetic field distribution with the1351

inner cavity wall material leads to large-scale reconnec-1352

tion and dissipation of the field into heat. This process1353

can therefore explain how the magnetic field in the lump1354

region decreases.1355

Local magnetic field may grow through local MHD in-1356

stabilities like the MRI and be replenished by field car-1357

ried into the region by inward fluid motion. Our interest1358

in exploring these processes was the reason for plotting1359

the magnetic stress per unit mass, W r
� in Figures 11 -1360

12. Lumps form only when W r
� falls below ' 10�4

1361

in the region near the circumbinary disk’s inner edge.1362

While this is just a correlation, it is one that works for1363

runs with di↵erent Tlump, suggesting it is not a simple1364

function of the mass ratio or initial conditions. In order1365

to explore why this value is important, let us compare1366

the time scales for magnetic field advection across the1367

lump, �tlump, and the time scale over which the mag-1368

netic field is dissipated, tdiss, by compression of expelled1369

streams with oppositely oriented magnetic field.1370

Assuming time steadiness of the accretion flow and1371

that Maxwell stress accounts for the majority of the total1372

stress, one can show that far from the edge of the disk:1373

W r
� ' r⌦K(r)hur

i⇢ , (35)1374

where ⌦K is the local Keplerian orbital rate, and hur
i⇢ is1375

the accretion inflow speed which can be used to estimate1376

the time scale for advection of plasma across the lump,1377

Global Trends of the Lump

• Kinematics of lump demonstrated through variability analysis of lump’s phase, frequency, and amplitude; 
• Variability of lump’s rotation rate modulated at by each passing BH  at  
• Disks’s eccentricity variability strongly associated with variability of the lump (A1); 
• These lump signals greatly diminish for runs without a strong lump amplitude; 
• Also in the paper: we demonstrate how lump formation is connected to local amplitude of specific magnetic stress;

q=0.1q=1 q=0.5 q=0.2 q=0.1q=1 q=0.5 q=0.2

Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
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assume that the frame carried by the BH is parallel to
the axes of the inertial system O. Since at each point
the BH has a time-dependent velocity with respect to O,
locally we have to boost at each point in time the spatial
frame to compare this with the global frame. The general
Lorentz transformation in the xy plane, given the spatial
velocity ~v = �~n(t) of the BH, can be obtained with the
boost generators ~K and rapidity ⇠ = tanh�1(�) as:

⇤(t) = exp (⇠~n(t) · ~K)

=

0

B@

� ��nx ��ny 0
��nx 1 + (� � 1)n2

x
(� � 1)nxny 0

��ny (� � 1)nxny 1 + (� � 1)n2

y
0

0 0 0 1

1

CA .

We use this transformation to boost the spatial basis
of the BH. In the BH coordinates, this basis is simple
given by ei = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Then,
in global coordinates this is then given by e

a

(i)
(t) = ⇤a

i
(t).

FIG. 1. Diagram of the BH rest frame which is non-inertial
and the global frame. The coordinates x and X both describe
the event e.

The coordinates, using (19), are then given by:

t = �

⇣
T � �(nxX + nyY )

⌘
, (20)

x = sx(t) + X(1 + (� � 1)n2

x
) + Y (�(� � 1)nxny)),

(21)

y = sy(t) + X(�(� � 1)nxny) + Y (1 + (� � 1)n2

y
),
(22)

z = Z. (23)

The non-inertial coordinates Xa in terms of the global
coordinates x

a are easily obtained inverting these equa-
tions. Note that this reduces to a standard Lorentz boost
for a constant velocity trajectory. These coordinates de-
fine a di↵eomorphism transformation �Xx that we can
use to push-forward each BH term of the metric and

build an inpiralling superimposition. In short, (a) the
X

a coordinates are the geodesic coordinates of an ac-
celerated worldline s

a(t), describing the orbit of a BH;
(b) for a moving BH, we associate the Harmonic metric
with the X

a coordinates, so we need to transform from
X

a to x
a using the Jacobian matrix, to build the metric

in the global frame. Superimposing the two BH terms
and performing this transformation for each term, with
worldlines s

a

1
(t) and s

a

2
(t), we have explicitly:

gab = ⌘ab + M1

⇣
@X

a

1

@xa

@X
b

1

@xb
H

ab

⌘
+ M2

⇣
@X

a

2

@xa

@X
b

2

@xb
H

ab

⌘
,

(24)
where the tensors are transformed through the Jacobian
of the coordinates X

a

A
(x). We still have to supplement

the metric with the position, velocity, and acceleration
of the BHs. In the case of a BBH, we can obtain those
solving the PN equations of the system in Harmonic co-
ordinates, as we show in next section.

C. Post-Newtonian trajectories for spinning BH
binaries

LC: Please re-check if all this makes sense

(Hiro, Brennan?)

Let us assume that the BHs have (anti-)aligned spins,
so we do not consider orbital precession. We also as-
sume that the orbit of the binary has circularized and
the system is well described by the so-called adiabatic
approximation. In this case, the inspiral is driven by the
loss of binding energy of the orbit, E, balanced by the
gravitational wave flux of energy, F , and change in mass
Ṁ :

Ė = �F � Ṁ. (25)

From this equation, we can obtain the orbital phase,
�(t), and separation, r12(t), of the system. In the case of
quasi-circular orbits, the separation r12 is linked to the
orbital frequency through the relativistic generalization
of Kepler’s law [11]. We solve for the orbital phase first,
following the TaylorT4 scheme for non-precessing bina-
ries [17, 18]. We start making a change of variable to
the (gauge invariant) parameter v := (Md�/dt)1/3, so
we can write Eq. 25 as two equations:

dv

dt
= �F(v) + Ṁ(v)

dE(v)/dv
, (26)

d�

dt
= v

3
/M. (27)

We use explicit expressions at 3.5 PN order for E(v),
F(v), and Ṁ(v) for a non-precessing binary from Ref.
[19]. The TaylorT4 scheme consist in expanding the right
hand side of Eq. (26) in a Taylor series to the proper PN
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order, and then integrate to obtain t(v). Inverting this
quantity, we obtain �(t) by solving Eq. (27).

For obtaining the orbital separation r12(t), we consider
its time derivative, written in terms of the orbital energy:

ṙ12 =
dE/dt

dE/dr12
⌘ �

⇣
F(r12) + Ṁ(r12)

⌘

dE/dr12
. (28)

We can integrate this to find:

t(r12) = tc �
Z

dr12
dE/dr12⇣

F(r12) + Ṁ(r12)
⌘ . (29)

where tc is the collision time. We use explicit expres-
sions for E(r12), F(r12), and Ṁ(r12) found, for instance,
in Ref. [11] and references therein. Finally, we invert
t(r12) to obtain r12(t). With both �(t) and r12(t) we
can recover the position, velocity, and acceleration, of
each spinning hole in Harmonic coordinates, ready to use
in our metric (24).

Note that even though we use the PN approximation to
obtain the BH trajectories, our metric is valid in the inner
zone because we are using the full relativistic BH terms
that include the ergosphere and horizon (see Appendix
A). In other words, we are restricted to binaries with
separations larger than ⇠ 10 M, but the metric, as we
will show now, is accurate in both inner and near zone.

III. ANALYSIS OF THE SPACETIME METRIC

A. Methods

In this section, we test the global validity of our su-
perimposed metric (??). In general, the metric of a BBH
system must satisfy Einstein’s field equation in vacuum
so the Ricci tensor of this metric should be zero. In
numerical relativity, one usually checks violation of Ein-
stein’s equation monitoring the Hamiltonian and momen-
tum constrains. Here, we shall focus on four-dimensional
quantities in order to quantify deviations from the exact
solution. In particular, following Ref. [20], we investigate
the Ricci scalar as a measure of the validity of our super-
imposed metric. Violations of the Ricci scalar, defined
as R := g

ab
Rab, where Rab is the Ricci tensor, are not

absolute and thus it is only meaningful when we compare
it relative to other quantities. For instance, if we have
that |R(t1)| > |R(t0)| for t1 > t0, we can state that the
solution has deteriorate over time, deviating more from
a vaccuum solution. Similarly, we can compare the Ricci
scalar between di↵erent system parameters and at di↵er-
ent points in space.

We shall also compare the validity of our solution with
an alternative approach presented in Ref. [14, 20] where
an analytical metric is built matching di↵erent approx-
imated solutions of Einstein’s equations. The matching
metric is constructed stitching three characteristics zones
of a binary compact system, namely, the inner zone, the

near zone, and the far zone [21, 22]. An asymptotic
matching procedure is implemented to bring all these
di↵erent parts into the same Harmonic coordinate sys-
tem. This metric in the global coordinate system can be
written as:

gab = (1 � fFZ)
n
fNZ

⇥
fIZ,1 g

(NZ)

ab
+ (1 � fIZ,1) g

(IZ1)

ab

⇤

+(1 � fNZ)
⇥
fIZ,2 g

(NZ)

ab
+ (1 � fIZ,2) g

(IZ2)

ab

⇤o

+fFZ g
(FZ)

ab
(30)

where transition functions fi are used to go from one zone
to the other. This approximate solution has been used
as a background spacetime for accretion disk simulations
with sucess [? ? ? ]. The metric, however, is com-
putational expensive and complex to handle. Moreover,
for the spinning case, the matching procedure renders
the metric prohibitively expensive for doing simulations.
In our new approach, although some accuracy is lost in
comparison with the matching metric, the superimposed
metric is easier to handle, much cheaper than the match-
ing method, and extensible to more complex configura-
tions such as precessing system, eccentric orbits, and even
three-body systems.

Although the metric is analytical, we compute the
spacetime scalars numerically as it is faster and more
practical to incorporate the PN trajectories. We use a
C-based code that implements fourth-order finite di↵er-
ences in a Cartesian grid for the derivatives of every met-
ric function. The convergence analysis of these methods
is presented in Appendix B.

B. Spacetime scalars

We are interested in the inspiral regime where the PN
approximation holds and the system is emitting a signif-
icant amount of gravitational radiation. We explore the
characteristic of the system for a fiducial configuration
with separations around D = 20M , unity mass ratio,
and spin parameters in the interval 0 < � < 0.9.

We begin the analysis computing the metric determi-
nant

p
�g of the metric as a first check of inconsistencies

or pathologies in the metric. We plot the determinant
of the binary for a separation of D = 20 M and several
values of the spin parameter � as well as the determinant
for the matching metric in Figure 2. We see that for all
these values, the determinant for the superimposed met-
ric is globally well-behaved and similar to the matching
space-time.

Now, we compute the Ricci scalar of the superimposed
harmonic metric compared with the matching metric for
a binary of same characteristics, see Figure 3. Note that
the matching metric performs better in each particular
zone but is heavily a↵ected by the transition regions; in
contrast, the superimposed metric is overall smoother.
The performance of the superimposed metric is worse in
the inner-zone. Note, however, that the components of
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assume that the frame carried by the BH is parallel to
the axes of the inertial system O. Since at each point
the BH has a time-dependent velocity with respect to O,
locally we have to boost at each point in time the spatial
frame to compare this with the global frame. The general
Lorentz transformation in the xy plane, given the spatial
velocity ~v = �~n(t) of the BH, can be obtained with the
boost generators ~K and rapidity ⇠ = tanh�1(�) as:

⇤(t) = exp (⇠~n(t) · ~K)

=

0

B@
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We use this transformation to boost the spatial basis
of the BH. In the BH coordinates, this basis is simple
given by ei = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Then,
in global coordinates this is then given by e

a

(i)
(t) = ⇤a

i
(t).

FIG. 1. Diagram of the BH rest frame which is non-inertial
and the global frame. The coordinates x and X both describe
the event e.

The coordinates, using (19), are then given by:

t = �

⇣
T � �(nxX + nyY )

⌘
, (20)

x = sx(t) + X(1 + (� � 1)n2

x
) + Y (�(� � 1)nxny)),

(21)

y = sy(t) + X(�(� � 1)nxny) + Y (1 + (� � 1)n2

y
),
(22)

z = Z. (23)

The non-inertial coordinates Xa in terms of the global
coordinates x

a are easily obtained inverting these equa-
tions. Note that this reduces to a standard Lorentz boost
for a constant velocity trajectory. These coordinates de-
fine a di↵eomorphism transformation �Xx that we can
use to push-forward each BH term of the metric and

build an inpiralling superimposition. In short, (a) the
X

a coordinates are the geodesic coordinates of an ac-
celerated worldline s

a(t), describing the orbit of a BH;
(b) for a moving BH, we associate the Harmonic metric
with the X

a coordinates, so we need to transform from
X

a to x
a using the Jacobian matrix, to build the metric

in the global frame. Superimposing the two BH terms
and performing this transformation for each term, with
worldlines s

a

1
(t) and s

a

2
(t), we have explicitly:

gab = ⌘ab + M1

⇣
@X

a

1

@xa

@X
b

1

@xb
H

ab

⌘
+ M2

⇣
@X

a

2

@xa

@X
b

2

@xb
H

ab

⌘
,
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where the tensors are transformed through the Jacobian
of the coordinates X

a

A
(x). We still have to supplement

the metric with the position, velocity, and acceleration
of the BHs. In the case of a BBH, we can obtain those
solving the PN equations of the system in Harmonic co-
ordinates, as we show in next section.

C. Post-Newtonian trajectories for spinning BH
binaries

LC: Please re-check if all this makes sense

(Hiro, Brennan?)

Let us assume that the BHs have (anti-)aligned spins,
so we do not consider orbital precession. We also as-
sume that the orbit of the binary has circularized and
the system is well described by the so-called adiabatic
approximation. In this case, the inspiral is driven by the
loss of binding energy of the orbit, E, balanced by the
gravitational wave flux of energy, F , and change in mass
Ṁ :

Ė = �F � Ṁ. (25)

From this equation, we can obtain the orbital phase,
�(t), and separation, r12(t), of the system. In the case of
quasi-circular orbits, the separation r12 is linked to the
orbital frequency through the relativistic generalization
of Kepler’s law [11]. We solve for the orbital phase first,
following the TaylorT4 scheme for non-precessing bina-
ries [17, 18]. We start making a change of variable to
the (gauge invariant) parameter v := (Md�/dt)1/3, so
we can write Eq. 25 as two equations:

dv

dt
= �F(v) + Ṁ(v)

dE(v)/dv
, (26)

d�

dt
= v

3
/M. (27)

We use explicit expressions at 3.5 PN order for E(v),
F(v), and Ṁ(v) for a non-precessing binary from Ref.
[19]. The TaylorT4 scheme consist in expanding the right
hand side of Eq. (26) in a Taylor series to the proper PN

• Old Method: Matching :  Kerr+Post-Newt.+Post-Minkowski 
• Non-spinning version used in all our previous BBH-Disk work; 
• Spinning version is too expensive: 
• Includes retarded time integral for all xa;

• Use an approximate spacetime leading up to merger to most 
efficiently build accretion flow to a “steady” or more natural state.  

• New Method: Superposed Kerr-Schild:   
• Boosted set of Spinning BHs in Harmonic Cook-Scheel coordinates; 
• Significantly more computationally efficient than Matching;  
• BH trajectories still governed by 2.5PN theory; 
• Yields comparable vacuum sol’n as that of Matching; 
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yKS = yH + M

h (r � M)xH + ayH

(r � M)2 + a2

i
, (8)

zKS = zH + M

h
zH

r � M

i
, (9)

where we have:

r � M =
p

(Q + W )/2, W :=
q
Q2 + 4a2z2

H
, (10)

and

Q := r
2

H
� a

2
, r

2

H
:= x

2

H
+ y

2

H
+ z

2

H
. (11)

The space components are thus related by the elegant
relation:

(xi

KS
� x

i

H
)�ij(x

j

KS
� x

j

H
) = M

2
. (12)

We analyze more features of this Harmonic system
in Appendix A. If we apply this transformation to the
Cartesian Minkowski part of the Kerr-Schild metric (1):

⌘
H

ab
(a,M) =

@x
a
0

KS

@x
a

H

@x
b
0

KS

@x
b

H

⌘a0b0 , (13)

we note that the transformed quantity ⌘
H

ab
(a,M) now de-

pends on the spin and mass of the black holes. However,
we can still write this as a flat Cartesian metric plus a
source term:

⌘
H

ab
(a,M) = ⌘ab + MA(a,M)ab, (14)

where ⌘ab is again the Cartesian Minkowski metric. It
can be shown, however, that A(a,M)ab is well-behaved
at space infinity:

A ⇠ 1/r, for r ! 1. (15)

The second term of the Kerr-Schild metric can be
transformed in the same manner and is also well behaved
at infinity. We conclude that the Kerr metric in Har-
monic coordinates can be written as a background plus
a BH term, suitable for superimposition as:

gab = ⌘ab + MHab, (16)

where Hab := 2Hl
H

a
l
H

b
+ Aab. These expressions are

rather long for spinning black holes. Details of the cal-
culations and full expressions are available online in [?
].

In these coordinates, we shall a build an e↵ective met-
ric of the form:

gab = ⌘ab + �
⇤

(1)

⇣
M1H(1)

ab

⌘
+ �

⇤

(2)

⇣
M2H(2)

ab

⌘
, (17)

where �
⇤

(1)
and �

⇤

(2)
are transformations that boost the

black hole terms to describe the global metric of a bi-
nary black hole system, using a Post-Newtonian approx-
imation for the trajectories. We show how to build this
transformation in the next section.

B. Moving superimposed black holes with PN
trajectories

The Kerr metric in Harmonic coordinates (16) rep-
resents a BH at rest with respect to an asymptotically
inertial frame. In order to describe a uniformly moving
BH space-time we can apply a Lorentz boost transforma-
tion and convert our coordinates to boosted coordinates,
where the black hole is seen as having a non-null veloc-
ity with respect to the asymptotically inertial frame (c.f.
Ref. [15]). Physical quantities at spatial infinity such as
the ADM mass transform as four-vectors in Minkowski
space-time; for instance, the asymptotic observer will
measure a mass MB = �M for a boosted BH, where M

is its rest-mass. This is simply a frame transformation
and it does not change gauge invariant quantities such as
the Ricci or Kretschman scalars.

Let us suppose now that the BHs move in an inspi-
ralling orbit with respect to the origin of a (Cartesian)
coordinate system O, with their trajectories given by:

sA(t) = (t,~sA(t)) ⌘ (�A⌧A,~sA(⌧A)), (18)

for A = BH1,BH2, being ~sA(t) the PN spatial trajec-
tories, ⌧A the proper time, and �A the Lorentz factor.
Through out this work, we assume that the BH spins are
(anti-)aligned so there is no precession and the orbit lies
on the xy plane.

For our BBH metric, we are going to superimposed
and boost two terms Hab in (16). We build this time-
dependent boost as a coordinate transformation from the
BH frame, O0{Xa}, to the (global) center of mass frame
O{xa}. In O0{Xa}, the BH is at rest and its metric is
given by (16), while in the global coordinates O{xa} we
want to find, the BH is moving according to the worldline
(18). Note that this transformation is a generalized boost
since the BHs are not in uniform motion, i.e. the BH
coordinates {Xa} are non-inertial coordinates.

The natural (pseudo-Cartesian) coordinates associated
with the frame of an accelerated worldline are called
Fermi Normal coordinates [16? ]. This widely used co-
ordinate system generalize the boost transformation for
time-dependent velocities (see Ref. [? ] for details). Let
say we want to build this coordinate transformation for a
given event e on spacetime (see Figure II B). First, find
the proper time for which s

a(⌧) is simultaneous to e in the
non-inertial BH frame. Then define the time coordinate
of the system O0 to be the proper time of the worldline
X

0 = T = ⌧ . Finally, assume that the hypersurface or-
thogonal to the worldline is approximately Euclidean, so
the event e described in the global coordinate system O
is connected with X

a as:

x
a = s

a(⌧) + X
i
e
a

i
(⌧), (19)

where ei are the components of the orthonormal basis
carried by the BH. In order to find the coordinate trans-
formation we thus need to find the components of the
orthornomal basis of the BH in the global frame. Let us

h"ps://arxiv.org/abs/2103.15707
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III. ANALYSIS OF THE SPACETIME METRIC

In this section, we test the global validity of our SHPN
metric (24). The metric of a BBH system must sat-
isfy Einstein’s field equation in a vacuum, and thus the
Ricci tensor must be zero. In numerical relativity, viola-
tions of Einstein’s equation are tracked looking atusing
the Hamiltonian and momentum constraints. Here, we
shall also focus on four-dimensional quantities to quan-
tify deviations from the exact solution. In particular,
following Ref. [59, 68], we investigate the Ricci scalar,
R := g

ab
Rab, where Rab is the Ricci tensor. Violations

of the Ricci scalar R are not absolute and, thus, they
are only meaningful when compared with other quanti-
ties. For instance, if we have that |R(t1)| > |R(t0)| for
t1 > t0, we can state that the approximate metric has de-
teriorated or deviated from a vacuum solution over time.
Similarly, we can compare the Ricci scalar of di↵erent
systems or at di↵erent points in space to assess locally
where the metric is a better approximation to a vacuum
solution.
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FIG. 2. Determinant of superposed metric for di↵erent values
of the spin and separation of r12 = 20M . Note that the curves
for di↵erent spins are very similar. For comparison, we include
the determinant of the matching metric for � = 0.

We also compare the validity of our solution with the
alternative approach presented in Refs. [59, 68], where
an analytical metric is built by stitching di↵erent approx-
imated solutions of Einstein’s equations at three charac-
teristics zones of a binary compact system, namely, the
Inner-Zone (IZ), the Near-Zone (NZ), and the Far-Zone
(FZ) [103, 104]. This so-called asymptotic matching pro-
cedure brings all these di↵erent parts into the same har-
monic coordinate system and the global metric can be

written as:

gab = (1 � fFZ)
n
fNZ

⇥
fIZ,1 g

(NZ)

ab
+ (1 � fIZ,1) g

(IZ1)

ab

⇤

+(1 � fNZ)
⇥
fIZ,2 g

(NZ)

ab
+ (1 � fIZ,2) g

(IZ2)

ab

⇤o

+fFZ g
(FZ)

ab
, (30)

where transition functions fi are used to go from one
zone to the other. This analytical metric, however, is
computationally expensive and complex to handle. The
Jacobians required to stitch the di↵erent parts of the met-
ric into the same coordinate system are very long, and
many operations are required to compute them at each
timestep. Moreover, for the spinning case, the matching
procedure renders the metric prohibitively expensive for
MHD simulations. In our new approach, we lose some
accuracy in comparison with the matching metric but we
gain much more e�ciency.

A. Spacetime scalars

Although the metric is analytical, we compute its
spacetime scalars numerically as it is faster and more
practical to incorporate the PN trajectories. We use a
C-based code that implements fourth-order finite di↵er-
ences in a Cartesian grid for the derivatives of every met-
ric function. The convergence analysis of these methods
is presented in Appendix B.
We are interested in using the metric in the inspi-

raling regime, where the PN approximation holds, and
the system is emitting a significant amount of gravita-
tional radiation. We explore the characteristics of the
system for a fiducial configuration, with a separation of
r12(t0) = 20M , equal BH masses, and the adimensional
spin parameter, � := a/M , in the interval 0 < � < 0.9.
As a first check of consistency, we analyze the metric

determinant
p

�g. In Figure 2, we plot the determinant
for a separation of r12 = 20M and several values of the
spin parameter �, along with the determinant for the
matching metric. We see that for all these values, the
determinant for the superposed metric is globally well-
behaved, free of pathologies, and similar to the matching
space-time.
In Figure 3, we plot some components of both met-

rics. It is interesting to note that the gtt component of
the SHPN metric is globally similar to the matching one,
meaning that the e↵ective PN potential of both space-
times is much akin [64]. The di↵erences between the
two metrics are important in the transition regions and
the Far-Zone. In the latter, the matching metric incor-
porates the post-Minkowski background of gravitational
waves, while our new SHPN is asymptotically flat; how-
ever, we do take into account the gravitational radiation
losses in the trajectories of the BHs.
In Figure 4, we plot the Ricci scalar of the SHPN met-

ric over the positive x axis at z = y = 0, for di↵erent
values of spin, and we compare it with the Ricci scalar of
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FIG. 3. Absolute value of several metric components for the superposed and matching metric in the fiducial configuration.
Note that the superposed metric components are much smoother than the matching metric because there are no transition
regions.

the matching metric for a binary of the same characteris-
tics. First, we see that R varies very little under di↵erent
spin parameters, consistent with Ref. [68]. Note that the
matching metric is better in the IZ but the violations are
worse at the transition regions outside the ISCO, where
the SHPN is smoother and performs better. A good met-
ric accuracy in this region is an important feature for de-
termining the correct gas dynamics of an accreting disk
near the hole. In Figure 5, we show an equatorial plot of
the Ricci scalar. As expected, the higher violations are
concentrated in the middle region between the BHs and
drop sharply with distance. In Figure 6, we plot the Ricci
violations for di↵erent mass-ratios q := M1/M2. We find
the values of R depend smoothly on q, improving in the
middle region for smaller q.

Besides R, we can explore other curvature scalars to
assess the global behavior of the metric. In particular,
considering the ADM equations for a general spacetime,
we can define the Hamiltonian constraint H as:

H := 3
R+K � KabK

ab = 16⇡⇢̃, (31)

where 3
R is the spatial Ricci curvature, Kab the extrinsic

curvature, and ⇢̃ the energy density of matter. For our
BBH vacuum metric, a non-zero H means that the space-
time has “fake mass” due to the approximation. This

will introduce errors in the true gravitational potential
and thus in the geodesic motion of matter. Since we
are interested in using this spacetime as a background
scenario for evolving an MHD fluid, it is important to
analyze this quantity and its evolution. We consider the
volume-integrated value of H as a measure of the total
fake mass introduced by the approximated metric:

Mfake =
1

16⇡

Z

V

H dV. (32)

Considering a cube of radius r = 50M around the cen-
ter of mass, we can track the evolution of Mfake for di↵er-
ent orbital separations. As we show in Figure 7, this fake
mass is overall small with respect to the total mass of
the BBH in both SHPN and matching metric but starts
increasing exponentially at ⇠ 8M , where the PN approx-
imation breaks.

Finally, in Figure 8, we plot the Ricci scalar, the
Hamiltonian constraint, the square root of the Momen-
tum constraints, M, and the Kretschmann scalar, K :=
RabcdR

abcd, for the SHPN metric. We observe here that
the Hamiltonian constraint and the Ricci scalar have sim-
ilar behaviors, indicating that the errors of the approxi-
mation come essentially from the fake mass component.
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FIG. 12. Left : Ergosphere region of Kerr BH with spin � = 0.9 for Kerr-Schild coordinates (blue) and harmonic coordinates
(orange). Note that the surfaces in harmonic coordinates are more oblique compared with the Kerr-Schild coordinates. The
radius of the singularity (green) is the same for both coordinate systems. Right : Ergosphere regions for a x-boosted harmonic
Kerr BH with spin � = 0.9 for di↵erent velocities (v/c = 0, 0.1, 0.5, 0.9). The horizon (red) and singularity (green) are the
same in each case, but the ergosphere region increases with increasing velocity.

is bigger than �H. For performing high-spin simulations
with the harmonic coordinates, one could artificially re-
move the singularity by implementing a modification of
the metric inside the horizon, e.g., modifying the function
rBL(xH).

FIG. 13. Convergence factor of our numerical scheme for
di↵erent regions. In the top panel we use h/M = 0.0125,
in the middle panel h/M = 0.1, and in the bottom panel
h/M = 0.8.

Note that the Cartesian Kerr-Schild coordinates used
here are not the usual coordinates that accretion disk

theorists call ‘Kerr-Schild’ [115, 116]. The ‘accretion-
disk Kerr-Schild’ coordinates are a modification of the BL
coordinates that renders the metric horizon-penetrating
but maintains the singularity at rAKS = rBL = 0. The
‘Cartesian Kerr-Schild’ coordinates that we use here are
more common in numerical relativity and appears in the
original work of Kerr [90, 117].

Finally, let us note that our spacetime contains moving
BHs, boosted with respect to the asymptotically flat re-
gion. This means that the morphology of the ergosphere
would be di↵erent from a static BH and these di↵erences
can be significant for high velocities. As discussed in
Ref. [94], even a non-spinning BH acquires an ergosphere
when the BH is boosted. In the case of a spinning BH,
we can see from Figure 12 that the ergosphere increases
when the BH has higher velocities.

Appendix B: Convergence tests

Since we are using a finite di↵erence scheme for com-
puting the metric and connection derivatives, we show
here the convergence to the analytical solution of the
fourth-order discretization. As explained in Ref. [68],
since the metric spans several length scales, we need dif-
ferent mesh spacing to resolve the solution. Given a nu-
merical quantity U , we explore the convergence factor,
Qh(U), defined as:

Qh(U) :=
U

(4h) � U
(2h)

U (2h) � U (h)
, (B1)

v=0.9
v=0.5

v=0.1

v=0.0

Ergoregion varies with spin and velocity:

—> Consequences to energy extraction eff.;
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IV. SUPERPOSED METRIC IN GRMHD
SIMULATIONS

We built our new superposed metric in harmonic co-
ordinates, which allows us to use accurate PN trajecto-
ries and directly compare our simulations with previous
results that use the same gauge. Moreover, the metric
is accurate enough near the BH, allowing us to analyze
what happens with the plasma physics around each BH.

The matching metric approach has been tested in
simulations, both as a background spacetime for MHD
[65, 66], and in numerical relativity [105]. MHD simula-
tions of BBHs accretion disks with the spinning match-
ing metric, as we said, are prohibitively expensive. In

FIG. 6. Ricci violations of the SHPN metric, for r12 = 20M ,
� = 0.5, and di↵erent mass-ratio values.

FIG. 7. Fake mass introduced in the spacetime by the SHPN
and matching metric approximations for di↵erent orbital dis-
tances. FGLA: Change label to Superposed.

contrast, the SHPN metric is computationally cheaper,
allowing us to simulate this type of system for the first
time. In this section, we show the results of a full 3D
GRMHD simulation with the SHPN metric using the
code Harm3d. In particular, we focus on comparing
an accretion disk simulation using the SHPN metric for
non-spinning BHs and the analog simulation presented
in Refs. [23, 25], that uses the non-spinning matching
metric. We will present full details of the spinning BBH
simulation with the new metric in an upcoming work
[106].

A. GRMHD evolution

Assuming the surrounding gas does not influence the
spacetime dynamics, we can use our superposed metric to
simulate the MHD evolution of accretion disks in a BBH
system. For that purpose, we implement the new met-
ric in the GRMHD code Harm3d [38, 107–109], which
evolves the ideal GRMHD equations in flux-conservative
form, for an arbitrary metric and coordinate system. The

Combi, Lopez Armengol, Campanelli, Ireland, Noble, Nakano, Bowen (2021)
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FIG. 3. Absolute value of several metric components for the superposed and matching metric in the fiducial configuration.
Note that the superposed metric components are much smoother than the matching metric because there are no transition
regions.

the matching metric for a binary of the same characteris-
tics. First, we see that R varies very little under di↵erent
spin parameters, consistent with Ref. [68]. Note that the
matching metric is better in the IZ but the violations are
worse at the transition regions outside the ISCO, where
the SHPN is smoother and performs better. A good met-
ric accuracy in this region is an important feature for de-
termining the correct gas dynamics of an accreting disk
near the hole. In Figure 5, we show an equatorial plot of
the Ricci scalar. As expected, the higher violations are
concentrated in the middle region between the BHs and
drop sharply with distance. In Figure 6, we plot the Ricci
violations for di↵erent mass-ratios q := M1/M2. We find
the values of R depend smoothly on q, improving in the
middle region for smaller q.

Besides R, we can explore other curvature scalars to
assess the global behavior of the metric. In particular,
considering the ADM equations for a general spacetime,
we can define the Hamiltonian constraint H as:

H := 3
R+K � KabK

ab = 16⇡⇢̃, (31)

where 3
R is the spatial Ricci curvature, Kab the extrinsic

curvature, and ⇢̃ the energy density of matter. For our
BBH vacuum metric, a non-zero H means that the space-
time has “fake mass” due to the approximation. This

will introduce errors in the true gravitational potential
and thus in the geodesic motion of matter. Since we
are interested in using this spacetime as a background
scenario for evolving an MHD fluid, it is important to
analyze this quantity and its evolution. We consider the
volume-integrated value of H as a measure of the total
fake mass introduced by the approximated metric:

Mfake =
1

16⇡

Z

V

H dV. (32)

Considering a cube of radius r = 50M around the cen-
ter of mass, we can track the evolution of Mfake for di↵er-
ent orbital separations. As we show in Figure 7, this fake
mass is overall small with respect to the total mass of
the BBH in both SHPN and matching metric but starts
increasing exponentially at ⇠ 8M , where the PN approx-
imation breaks.

Finally, in Figure 8, we plot the Ricci scalar, the
Hamiltonian constraint, the square root of the Momen-
tum constraints, M, and the Kretschmann scalar, K :=
RabcdR

abcd, for the SHPN metric. We observe here that
the Hamiltonian constraint and the Ricci scalar have sim-
ilar behaviors, indicating that the errors of the approxi-
mation come essentially from the fake mass component.
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mass is overall small with respect to the total mass of
the BBH in both SHPN and matching metric but starts
increasing exponentially at ⇠ 8M , where the PN approx-
imation breaks.

Finally, in Figure 8, we plot the Ricci scalar, the
Hamiltonian constraint, the square root of the Momen-
tum constraints, M, and the Kretschmann scalar, K :=
RabcdR

abcd, for the SHPN metric. We observe here that
the Hamiltonian constraint and the Ricci scalar have sim-
ilar behaviors, indicating that the errors of the approxi-
mation come essentially from the fake mass component.
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FIG. 4. Ricci scalar for the matching and superposed metric
with r12 = 20M , equal mass-ratio, and di↵erent values of spin.
The dashed green lines denote the location of the horizon
and the solid green lines the location of the ISCO for a non
spinning BH.
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SHPN metric with r12 = 20M , equal masses, and � = 0.9
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We built our new superposed metric in harmonic co-
ordinates, which allows us to use accurate PN trajecto-
ries and directly compare our simulations with previous
results that use the same gauge. Moreover, the metric
is accurate enough near the BH, allowing us to analyze
what happens with the plasma physics around each BH.

The matching metric approach has been tested in
simulations, both as a background spacetime for MHD
[65, 66], and in numerical relativity [105]. MHD simula-
tions of BBHs accretion disks with the spinning match-
ing metric, as we said, are prohibitively expensive. In
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contrast, the SHPN metric is computationally cheaper,
allowing us to simulate this type of system for the first
time. In this section, we show the results of a full 3D
GRMHD simulation with the SHPN metric using the
code Harm3d. In particular, we focus on comparing
an accretion disk simulation using the SHPN metric for
non-spinning BHs and the analog simulation presented
in Refs. [23, 25], that uses the non-spinning matching
metric. We will present full details of the spinning BBH
simulation with the new metric in an upcoming work
[106].

A. GRMHD evolution

Assuming the surrounding gas does not influence the
spacetime dynamics, we can use our superposed metric to
simulate the MHD evolution of accretion disks in a BBH
system. For that purpose, we implement the new met-
ric in the GRMHD code Harm3d [38, 107–109], which
evolves the ideal GRMHD equations in flux-conservative
form, for an arbitrary metric and coordinate system. The
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contrast, the SHPN metric is computationally cheaper,
allowing us to simulate this type of system for the first
time. In this section, we show the results of a full 3D
GRMHD simulation with the SHPN metric using the
code Harm3d. In particular, we focus on comparing
an accretion disk simulation using the SHPN metric for
non-spinning BHs and the analog simulation presented
in Refs. [23, 25], that uses the non-spinning matching
metric. We will present full details of the spinning BBH
simulation with the new metric in an upcoming work
[106].

A. GRMHD evolution

Assuming the surrounding gas does not influence the
spacetime dynamics, we can use our superposed metric to
simulate the MHD evolution of accretion disks in a BBH
system. For that purpose, we implement the new met-
ric in the GRMHD code Harm3d [38, 107–109], which
evolves the ideal GRMHD equations in flux-conservative
form, for an arbitrary metric and coordinate system. The
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FIG. 9. Equatorial plot of the rest-mass density ⇢ in logarithmic scale for (right) the superposed metric and (left) the matching
metric, at T = 1810M , which represents approximately ⇠ 3 orbits.

As we mentioned, for an equal-mass binary, the mini-
disks are subject to a filling and depletion cycle. While
the circumbinary lump feeds material to one of the mini-
disks, the plasma in the other BH is completely accreted,
and the BH starves. After the initial transient, we see a
remarkable overlap of each mini-disk mass Mi for both
simulations. The cycle is evident earlier in the super-
posed metric simulation. Since we are using the same ini-
tial data for both simulations (not just the same prescrip-
tion), the equilibration of the mini-disks changes in the
transient phase for the superposed, as the equilibrated
mini-tori were set up using the matching metric. We also
observe a good agreement in the behavior of the magnetic
energy contained in each mini-disk after the transient.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t[tbin]

0.2

0.4

0.6

0.8

1.0

M
i

BH1

BH2

FIG. 10. Mass in each BH’s mini-disk region for the super-
posed metric simulation (thick lines) and the matching metric
simulation (dashed lines).

FIG. 11. Magnetic energy in each BH’s mini-disk region for
the superposed metric simulation (thick lines) and the match-
ing metric simulation (dashed lines).

V. CONCLUSIONS

We have presented a new approximate solution of Ein-
stein’s field equations for a spinning BBH in the inspi-
ral regime. We built this solution as a linear superposi-
tion of boosted Kerr BHs in harmonic coordinates, sup-
plemented with PN trajectories at 3.5 PN order. We
compared our new metric with the well-tested asymp-
totic matching approach through an analysis of spacetime
scalars. Although the matching approach has better ac-
curacy in some specific regions, we found that the super-
posed metric has comparable accuracy, is smoother, and
much cheaper. We also compared the performance of the
metric in an GRMHD simulation using the same setup
as previous simulations with the matching metric. We
found that the superposed metric reproduces the same
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tion of boosted Kerr BHs in harmonic coordinates, sup-
plemented with PN trajectories at 3.5 PN order. We
compared our new metric with the well-tested asymp-
totic matching approach through an analysis of spacetime
scalars. Although the matching approach has better ac-
curacy in some specific regions, we found that the super-
posed metric has comparable accuracy, is smoother, and
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Figure 13. Vertically integrated and �-averaged density ⌃(r) averaged over �t = 2⇥103M for the period t = 70 – 150⇥103 M
(violet to red curves). The dotted curve represents the initial data, and the dashed curve the average of colored curves.
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Figure 14. Fourier power spectrum of the accretion rate at the innermost radial boundary of the domain during the steady
state period (left), and of the radial position of the lump in the interval 40 ⇥ 103 M < t � tlump < 80 ⇥ 103 M (right). To
enhance the periodic behavior, we analyze the di↵erence of these quantities with adjusted polynomials of first order, and we
apply a Blackman-Harris window function.

Figure 15. Top: Accretion rate as a function of r averaged over �t = 20⇥ 103M in the period t = 70 – 150⇥ 103M (dark to
light curves), and the average over the full period (dashed, red).
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Figure 4. Integrated luminosity L (see Eq. (A6)) as a func-
tion of time for three of our runs.

Following Noble et al. (2012), many of our639

results will be expressed in units of ⌃0, the640

initial maximum value of the surface density641

⌃(r, �) (see Eq. (A1)). These values are ⌃0 =642

0.1070M
�1

, 0.1066M
�1

, 0.1066M
�1

, 0.1066M
�1 and643

0.1063M
�1 for runs b20-spins, b20 v0, b20 v1, b20 v2644

and b20+spins, respectively (see Table 1).645

5.1. Spin-Sensitive Results646

The spin of a BH has important e↵ects on matter or-647

biting near the horizon, but these e↵ects decline rapidly648

with radius; frame-dragging terms in the e↵ective grav-649

itational potential for spinning black holes are / r
�3

650

(see Appendix B). For this reason, we do not expect651

the spin of the BHs will have a direct impact on the652

bulk properties of the circumbinary disk, whose inner653

edge lies at r ⇡ 50M . The accretion streams, on the654

contrary, reach distances close enough to the black hole655

that these e↵ects may be relevant.656

Since the accretion streams carry nearly all the mat-657

ter accreted by the binary, we begin by exploring the658

e↵ect of the spins on the accretion rate. For all three659

non-spinning cases, the time-averaged accretion rate at660

the inner boundary during the steady state period is661

(see Fig. 3) (5.0 ± 0.4) ⇥ 10�3
p

Mb ⌃0. Strikingly, runs662

b20-spins and b20+spins deviate from this mean value663

by +5.7 and �1.8 standard deviations, respectively. In664

other words, the circumbinary accretion rate is enhanced665

(reduced) by +45% (�14%) if the spin of the BHs are666

anti-parallel (parallel) to the angular momentum of the667

binary.668

As found in previous works with similar parameters669

(Shi et al. 2012; Noble et al. 2012), a portion of the670

falling streams receives enough angular momentum from671

the binary and is flung back to the circumbinary disk,672

impacting the inner edge and causing strong shocks673

whose dissipation contributes significantly to the lumi-674

nosity. Having found that the accretion rate is sensitive675

to spin, we might therefore expect that the luminosity676

is likewise. In particular, compared with non-spinning677

runs, the stronger streams of b20-spins should increase678

the total luminosity of the system, and the opposite for679

the weaker streams of b20+spins. In Fig. 4 we plot680

L as a function of time for our runs. The average of681

L during the steady state period of non-spinning runs682

was (1.76 ± 0.07) ⇥ 10�3
GM⌃0c

�2. The correspond-683

ing averages for b20-spins and b20+spins depart from684

this mean by +7.49 and �3.17 standard deviations, re-685

spectively, a very significant e↵ect. These di↵erences686

correspond to a change of +29% and �12% in the total687

luminosity of the system, respectively, with respect to688

non-spinning runs.689

Besides carrying the accretion flow and driving shocks690

that contribute to the integrated luminosity, the streams691

also play an important role in angular momentum trans-692

port. As they plunge toward the binary, the streams are693

subjected to strong torques by the binary. The por-694

tion of the stream flung back outward then transfers695

this added angular momentum to the inner edge of the696

circumbinary disk. As explained by Shi et al. (2012),697

because the local angular momentum J =
R

j
tp�gdV698

with j
µ = T

µ
� should be constant in a time-steady disk,699

this supplemental angular momentum is transferred to700

adjacent layers by internal stresses.701

To study the angular momentum budget of the cir-702

cumbinary disk, we unpack @r@tJ into its several com-703

ponents. We refer the reader to Appendix C of Noble704

et al. (2012) for the explicit expansion (see also Farris705

et al. 2011). Five stresses contribute: the gravitational706

stress TG, whose radial gradient produces the gravi-707

tational torque T
µ
⌫�⌫

µ�; the Maxwell stress @rM
r
�,708

which is the EM part of T
r
�; turbulent Reynold stresses709

@rR
r
� = ⇢�u

r
�u

�, resulting from local perturbations of710

the fluid velocity; the advected Reynolds stress A
r
� as-711

sociated with the mean velocities u
r and u

�; and the712

radiative stress F� from the radiative cooling function.713

Summed, these produce the local torque714

@r@tJ = @rTG � {F�} � @r {M
r
�} (46)

�@r {R
r
�} � @r {A

r
�} ,

In Fig. 5 we plot each term on the RHS of Eq. (47)715

as a function of r, averaged over the period t = 70716

– 150 ⇥ 103M . The total angular momentum flux717

(black) is approximately constant as a function of ra-718

dius, as expected for a steady state flow. In the cav-719
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b [M ] M (1,2) [M ] ⌦bin a(1,2) lin [M ] ⌃0 [M
�1]

b20-spins 20 0.5 b�3/2 �0.9M (1,2) 8.62 0.1070

b20 v0 20 0.5 b�3/2 0.0 8.60 0.1066

b20 v1 20 0.5 b�3/2 0.0 8.60 0.1066

b20 v2 20 0.5 b�3/2 0.0 8.60 0.1066

b20+spins 20 0.5 b�3/2 0.9M (1,2) 8.57 0.1063

Table 1. Properties of the binary system for our runs, and the initial values of lin and ⌃0. In every case the BHs separation is
fixed to b = 20M , they have equal masses M (1,2) = 0.5M , and move in Keplerian orbits with ⌦bin = b�3/2. We explore di↵erent
values for the spins of the BHs. Notice runs b20 v0, b20 v1 and b20 v2 have identical settings. They only di↵er on the random
initial perturbations on the internal energy u.
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Figure 3. Accretion rate integrated at the innermost boundary of the grid, as a function of time. From this plot, we distinguish
three dynamical stages: MRI growth (t = 0 – 30 ⇥ 103M), relaxation (t = 30 – 75 ⇥ 103M), and steady state (t = 75 –
150⇥ 103M).

sequent relaxation (t = 30 – 75 ⇥ 103M), in which the605

accretion rate progressively diminishes over time; and a606

steady state (t = 75 – 150 ⇥ 103M). The first is a tran-607

sient period, and will not be included in our analysis.608

The second stage is still a↵ected by the initial transient609

and will not be used for our main conclusions. We will610

focus, instead, on the steady state epoch.611

We organize our results in three subsections. First, we612

focus on the properties of the plasma that are sensitive613

to the spins; these properties are mostly related to the614

cavity and the accretion streams. Then, in the second615

subsection, we interpret these spin-sensitive results in616

terms of the gravitational potential of the linearized SKS617

metric. Finally, in the third subsection, we describe the618

bulk properties of the circumbinary disk, all of them619

insensitive to the spin of the BHs.620

Because MHD turbulence is a fundamental property621

of accretion disks, all our results are subject to intrinsic622

variance. This fact complicates the identification of sub-623

tle physical processes such as the e↵ect of the spins on624

the circumbinary disk. To quantify this variance, we use625

the subset of runs b20 v0, b20 v1, and b20 v2. The pa-626

rameters of these three runs are identical and their only627

di↵erences arise from stochastic processes triggered by628

random initial perturbations in the internal energy of629

the fluid. Specifically, given a physical quantity Pi with630

i = 0, 1, 2 for runs b20 v0, b20 v1, and b20 v2, we will631

express the result as hPia=0 ± �P , where632

hPia=0 =
1

3

2X

i=0

Pi (43)

is the mean of Pi over the non-spinning runs, and633

�P =

vuut
2X

i=0

(hPia=0 � Pi)
2

3 � 1
(44)

is a coarse measure of the corresponding standard devia-634

tion. To determine whether a run with di↵erent param-635

eters di↵ers significantly from the three non-spinning636

runs, we measure the deviation Z of its prediction P 0,637

in units of standard deviations by638

Z =
P 0 � hPia=0

�P
. (45)
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• Lump's orbit stabilizes after ~200 
binary orbits; 

• Lump’s frequency is ~ 1/5 of binary’s, 
at the background flow’s local 
Keplerian rate at rlump; 

• Lump gains eccentricity, asymptotic 
to 0.05,  

• tlump determined using “lump criterion” 
already mentioned; 

• Even though each run yields different 
tlump, all runs’ trends coincide when 
displayed in reference to tlump . 

—> Transition to lump dominance is 
stochastic, while subsequent lump 
dynamics is not. 
—> Lump’s dynamics is a relatively 
robust phenomenon. 
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• Anti-parallel spins enhance: 
• Accretion rate; 
• Luminosity;  
• Surface density; 

• Enhancement due to deepening of effective 
potential as spins grow negative: 

• Frame dragging acts to lag (lead) accretion 
streams for anti-parallel (parallel) spins; 

Accretion 
Rate Luminosity

Parallel 
Spins 86% 88%

Non-
spinning 100% 100%

Anti-parallel 
Spins 145% 129%
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mentum at the inner-edge radius falls in so slowly that806

the binary torques raise its angular momentum and the807

gas is cast back out to the circumbinary disk. Only gas808

with angular momentum at least ' 15% less than that809

of a circular orbit can fall in quickly enough to avoid ac-810

quiring too much angular momentum. Such gas parcels811

must, in addition, begin their fall from a specific angle812

relative to the binary separation axis. The upper limit813

for the angular momentum J of the fluid to be accreted is814

well approximated by the condition �e↵(rin)  0, where815

�e↵ is the gravitational e↵ective potential of the binary,816

evaluated at the inner boundary of the domain. As de-817

rived in Eq. (B26):818

�E↵ = �M

r
� 1

16

b
2
M

r3
+

J
2

2r2
+

MJ

3r3

✓
2a +

L

4

◆
. (48)

The condition �e↵(rin)  0 is equivalent to J 819

(6.54, 6.51, 6.48) for a = (�0.9, 0, 0.9), respectively. In820

other words, spins opposite (parallel) to the angular821

momentum of the binary extend (reduce) the volume822

of infalling trajectories in the phase-space of position823

and velocity of the orbiting fluid. This fact explains824

the enhanced (reduced) accretion in the run b20-spins825

(b20+spins).826

In Fig. 8 we noticed the accretion streams for827

b20-spins (b20+spins) lie behind (ahead) in �cor with828

respect to non-spinning runs. In other words, the gas829

swings in azimuth by a smaller (larger) angle while830

traversing the cavity before passing through the inner831

boundary. This is also consistent with frame-dragging832

e↵ects.833

5.3. Spin-Insensitive Results and Comparison with834

Previous Works835

In this subsection, we describe the properties of the836

circumbinary disk that are not significantly a↵ected by837

spins, but the length of our simulations has revealed838

new aspects of them, not seen in previous, shorter sim-839

ulations.840

In binaries with mass-ratio close to unity and low841

orbital eccentricity, a remarkable m = 1 mode in the842

�-distribution of matter develops in the radial range843

2b < r < 4b; the so-called lump. This lump arises as844

a result of phase-coherence in the trajectory of matter845

that falls a short way but then is propelled back out af-846

ter the binary torques add to its angular momentum (see847

Shi et al. 2012; Noble et al. 2012; D’Orazio et al. 2013;848

Farris et al. 2014; Miranda et al. 2016; Tang et al. 2017).849

As we will show, our longer simulations reveal that the850

dynamics of the lump are predictable from the time of its851

formation, and its orbit stabilizes after �t ⇠ 40⇥103M .852

Figure 9. Power of m = 1 mode of the vertically integrated
density, as function of radii and time, for b20 v2. We notice
the growth and saturation of the lump at 2b < r < 4b. The
dashed line represents the moment of lump formation tlump.

To characterize the amplitude of the lump, we calcu-853

late the power of the Fourier modes m = 0 and m = 1854

in the vertically integrated density as a function of ra-855

dius and time (see Eq. (A8), and Cuadra et al. (2009),856

Noble et al. (2021), in prep.). We denote these modes857

A0(t, r) and A1(t, r), respectively. In Fig. 9, we plot858

A1(t, r) for b20 v2 and, indeed, we notice the growth859

and saturation of the lump at 2b < r < 4b.860

To determine the time tlump when the lump forms, we861

integrate Am(t, r) over the radial range 2b < r < 3b862

and define tlump as the time when the ratio of this in-863

tegral of A1(t, r) to the total surface density (this in-864

tegral of A0(t, r)) is larger than 0.2. To visualize the865

di↵erent tlump for each run, in Fig. 10 we plot the evo-866

lution of the ratio of the m = 1 and m = 0 inte-867

grals for our runs. For non-spinning runs, the lump868

forms at 36390, 64650, 47550 M , resulting in an average869

tlump = (5.0±1.5)⇥104M . In Fig. 11 (top, right) we plot870

the surface density ⌃(r, �) (see Eq. (A1)) at t = tlump871

for b20 v0, where we notice the recently formed lump872

in the positive y hemisphere. For runs b20-spins and873

b20+spins, the lump forms at 50280M and 39690M re-874

spectively, in concordance with non-spinning values.875

To characterize the orbital dynamics of the lump, we876

define rlump(t) as the radial position of the maximum877

value of A1(t, r) as a function of time (see Fig. 9). We878
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Circumbinary + 
Mini- Disk Regions

• Starting from same initial accretion flow 
conditions; 

• Because of smaller ISCO, the volume of 
stability in mini-disk region increases for 
larger (parallel) spin;  

—>More persistent mini-disks; 
—> Longer inflow time scales; 
—> Comparable accretion rates; 
—> Smaller fluctuations at 2x beat freq.

Combi, Lopez Armengol, (in prep, 2021)Accretion onto Spinning BBHs
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2.4. Diagnostics

For simulation diagnostics, we compute properties in
either the center of mass or in the black hole frame. We
define the BH frame, for a given time, with boosted co-
ordinates centered in the BH (see ?). We denote these
coordinates with a bar, {t̄, r̄, ✓̄, �̄}. Fluxes and local prop-
erties in this frame are computed in post-process inter-
polating the global grid into a spherical grid centered
in the BH with the Python package naturalneighbor

that implements a fast Discrete Sibson interpolation ?.
Weighted averages of a quantity Q with respect to a
quantity � are defined as:

hQi� :=

R
dA � QR
dA �

, (10)

where dA := d✓d�
p

�g. Time averages are indicated as
hhQii, where we always sum over a given time interval
after the initial transient.

3. RESULTS

In the steady-state of an equal-mass SMBBH, a lump
orbits the edge of the circumbinary disk at a frequency
h⌦lumpi = 0.28⌦B (Noble et al. 2012; Shi et al. 2012b;
D’Orazio et al. 2013; ?; ?; Farris et al. 2015; ?) mod-
ulating the accretion into the cavity. When one of the
BHs passes near the lump, it peels o↵ part of lump’s in-
ner edge, forming a stream that feeds the black hole at
a beat frequency of h⌦beati := h⌦Bi � h⌦lumpi. Part of
this material can circularize and form mini-disks around
the BHs Indeed, the stream is formed mostly by ballis-
tic particles with relatively low angular momentum that
manage to overcome the binary torques (Shi & Krolik
2015). As explained in ?, when the average specific an-
gular momentum of the stream is higher than the angular
momentum at the ISCO, angular momentum is always
transported outwards. At first, when the mini-disk is
small, the net e↵ect of the transport is to expand the
disk until it reaches the truncation radius of the binary,
preventing further expansion.
For relativistic binaries, the tidal truncation radius is

approximately at rt ⇠ 0.4 ⇤ r12(t) (Bowen et al. 2017),
similar to the Newtonian value ?. Since spin is a second
order e↵ect in the e↵ective potential, mild values of spin
do not change the truncation radius significantly. The
most relevant di↵erence between our simulations SHPN06
and M0 is the place of the ISCO, being rISCO(� = 0.6) =
2.392 MBHi for SHPN06 and rISCO(� = 0.0) = 5.5 MBHi

for M0 (in harmonic coordinates). The smaller ISCO of
the spinning black holes allows more material with lower
angular momentum from the stream to circularize closer
to the BH instead of plunging in directly. In the following
sections, we will analyze how the size of the ISCOs play a
role in the accretion rate, inflow time, and periodicities,
as well as in the structure of the mini-disks.

3.1. Mass evolution, accretion rate, and inflow time

We start the analysis calculating the conserved mass
of each mini-disk, defined as:

M :=

Z rt(t)

rH

dV ⇢u
t (11)

for the spinning and non-spinning simulations, where
rt(t) is the truncation radius and rH is the BH hori-
zon, and dV :=

p
�gd

3
x. In both simulations there is an

initial transient due to the initial conditions that last ap-
proximately ⇠ 3 orbits for M0 and ⇠ 4 orbits for SHPN06
(see Figure 4). Both simulation starts with two quasi-
equilibrated mini-tori around the holes, with a specific
angular momentum distribution adapted specifically for
non-spinning black holes, following the prescription de-
scribed in ??. Since we are also using this initial data
for the spinning simulation, the initial tori have an ex-
cess of angular momentum with respect to M0 , making
the transient slightly longer in SHPN06 . We analyze each
simulation after this transient, marked in the plots as a
vertical line.
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Figure 4. (Upper panel) The mass fraction evolution Mi of each
minidisk for SHPN06 (thick lines) and M0 (dashed lines), where we
define Mtot := M1(t) +M2(t). (Lower panel) total mass evolution
for SHPN06 (thick line) and M0 , where M0 := M1(0) +M2(0). The
green line indicates the end of the transient phase.

We find that mini-disks around spinning BHs in
SHPN06 are more massive than in M0 by a factor of 2
through out most of the evolution, both following a sim-
ilar decay as we can see in Figure 4 (lower panel). In the
end of the simulation, this di↵erence reduces to a factor
of 1.75. The asymmetric inflow of material provided by
the lump into the cavity sets the mass of each mini-disk
in a filling-depletion cycle, as shown in Figure 4 (upper
panel). When the mass fraction of the mini-disk is more
than 50% of the total mass, we say that the disk is in
its high state and otherwise in its low state. The cy-
cle of the mass fraction is similar in both simulations,
although marginally smaller in amplitude for SHPN06 .
The frequency of the cycle is associated with the orbital
frequency and thus is higher in the spinning case, as can

5

be seen plainly after ⇠ 8 orbits (upper panel). Note also
that after 12 orbits, the cycle is suppressed and restarts
after 2 orbits. Besides the total mass budget, we can
investigate the accretion rate at the horizon in the black
hole rest-frame, which is given by:

Ṁ :=

I

rH

dĀ u
r̄
⇢. (12)

We find that the accretion rate follows the modula-
tions of the mini-disk mass while having a di↵erent short
timescale behavior. The accretion rate also follows a sim-
ilar decay but has more variability in the last part of the
evolution. Contrary to the mass of each mini-disk, the
accretion rate between spinning and non-spinning is sim-
ilar in magnitude. The di↵erences in the masses per cycle
are more closely related to the inflow time of particles in
the mini-disk. It is useful then to define an (Eulerian)
inflow time as the characterstic time for a fluid a element
to move past a fixed radius r ?. In average, this is given
by:

t
�1
inflow :=

1

r̄

D
hV

r̄
i⇢

E
, (13)

where V
r̄ := u

r̄
/u

t̄ is the transport velocity. In Figure
6, we show the inflow time as a function of coordinate
radius for BH1, averaged in time for the first part (thick
lines) and second part (dashed lines) of the simulations.
The inflow time and its total average is higher in SHPN06

by a factor of ⇠ 1.75TB at 2M . As the binary shrinks,
the inflow time diminishes in average from ⇠ 0.41TB to
⇠ 0.31TB for the spinning simulation. Note that there is
a local maximum at the truncation radius, which shifts
to lower values in the second part of the simulation.
The average inflow time is well below the beat period

hTbeati = 1.3TB, where the mini-disk refills most of its
mass accreting the lump stream. Since the mini-disk
does not deplete the mass completely after a cycle, this
seems to imply that the mean inflow rate here is dom-
inated by the material that plunges directly from the
inner edge of circumbinary disk to the black hole. This
is also supported by the similar measures of accretion
rates at the ISCO for SHPN06 and M0 (see again Figure
5), which points to a shared dominant accretion mecha-
nism. We will explore this in the next section.
Consdering now the total mass, we can see from 4 that

it follows a similar decaying trend in both simulations.
This decay is associated to the inspiral, as the truncation
radius follows rt / r12(t). As the binary approaches
merger, minidisks would reduce their size up to rt =
rISCO where no minidisk can be sustained (?). At t =
11TB, however, we observe a slight increase of mass in the
system. Because the lump grows and oscillates radially
around the cavity, it generates periodic accretion events
onto the black holes (see ?). This disrupts the filling-
refilling cycle between t 2 [11, 14] TB, as one of the holes
receives mass when the other is starting its high state.
The quasi-periodic behavior of the system can be de-

scribed through a power density spectrum (PSD) of the
mini-disk’s masses, as shown in Figure 7 for SHPN06 and
M0 . Most features of the system’s quasi-periodicities are
shared in both simulations and were described in detail in
?. We find, still, some interesting di↵erences. The PSD
of M1 and M2 are centered at the beat frequency, when
the BH enters in phase with the lump. This is slightly

Figure 5. Accretion rate evolution Ṁ for mini-disks at BH1
(lower panel) and BH2 (upper panel) for SHPN06 (thick lines) and
M0 (dashed lines).

Figure 6. Inflow time as a function of radius for BH1 in SHPN06

(maroon color) and M0 (dark blue). Thick lines are averages over
the first half of the simulation, while dot-dashed lines are averages
of the last half of the simulation.

higher for SHPN06 (⌦beat = 0.71⌦B) compared with M0

(⌦beat = 0.68⌦B) as the orbital frequency of the spinning
BBH is higher. Further, since we evolved the binary for
longer, in SHPN06 we find a more defined amplitude of
the frequency associated with the radial oscillations of
the lump, ⌦lump = 0.2⌦B. In Figure 7 we also include
the PSD of the total mass of the mini-disks M1 + M2
and find that, while in M0 there is a peak at 2⌦beat, the
latter is severely damped in SHPN06 . Indeed, if the indi-
vidual masses vary with a characteristic frequency ⌦beat,
and these are out of phase, we expect their sum to vary
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be seen plainly after ⇠ 8 orbits (upper panel). Note also
that after 12 orbits, the cycle is suppressed and restarts
after 2 orbits. Besides the total mass budget, we can
investigate the accretion rate at the horizon in the black
hole rest-frame, which is given by:

Ṁ :=

I

rH

dĀ u
r̄
⇢. (12)

We find that the accretion rate follows the modula-
tions of the mini-disk mass while having a di↵erent short
timescale behavior. The accretion rate also follows a sim-
ilar decay but has more variability in the last part of the
evolution. Contrary to the mass of each mini-disk, the
accretion rate between spinning and non-spinning is sim-
ilar in magnitude. The di↵erences in the masses per cycle
are more closely related to the inflow time of particles in
the mini-disk. It is useful then to define an (Eulerian)
inflow time as the characterstic time for a fluid a element
to move past a fixed radius r ?. In average, this is given
by:

t
�1
inflow :=

1

r̄

D
hV

r̄
i⇢

E
, (13)

where V
r̄ := u

r̄
/u

t̄ is the transport velocity. In Figure
6, we show the inflow time as a function of coordinate
radius for BH1, averaged in time for the first part (thick
lines) and second part (dashed lines) of the simulations.
The inflow time and its total average is higher in SHPN06

by a factor of ⇠ 1.75TB at 2M . As the binary shrinks,
the inflow time diminishes in average from ⇠ 0.41TB to
⇠ 0.31TB for the spinning simulation. Note that there is
a local maximum at the truncation radius, which shifts
to lower values in the second part of the simulation.
The average inflow time is well below the beat period

hTbeati = 1.3TB, where the mini-disk refills most of its
mass accreting the lump stream. Since the mini-disk
does not deplete the mass completely after a cycle, this
seems to imply that the mean inflow rate here is dom-
inated by the material that plunges directly from the
inner edge of circumbinary disk to the black hole. This
is also supported by the similar measures of accretion
rates at the ISCO for SHPN06 and M0 (see again Figure
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Figure 6. Inflow time as a function of radius for BH1 in SHPN06

(maroon color) and M0 (dark blue). Thick lines are averages over
the first half of the simulation, while dot-dashed lines are averages
of the last half of the simulation.
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longer, in SHPN06 we find a more defined amplitude of
the frequency associated with the radial oscillations of
the lump, ⌦lump = 0.2⌦B. In Figure 7 we also include
the PSD of the total mass of the mini-disks M1 + M2
and find that, while in M0 there is a peak at 2⌦beat, the
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Figure 7. Power spectral density of the mini-disk’s masses for
SHPN06 (upper panel) and M0 (lower pannel) using a Welch algo-
rithm with a Hamming window size and a frequency of 10M . The
confidence intervals at 3� are shown as shadowed areas.

with 2⌦beat. In SHPN06 , however, the inflow time of the
mini-disks is larger and the depletion period of a mini-
disk briefly coexists with the filling period of the other
mini-disk, reducing the variability of the total mass.
Finally, because we use a spherical grid with a central

cutout, we cannot analyze the e↵ects of the sloshing of
matter between mini-disks (Bowen et al. 2017). To es-
timate how much mass we lose through the cutout, we
checked the accretion rate at the inner boundary of the
grid, where the gas exits the simulations. This mass loss
constitutes, in average, only a 5% of the mass acreted
by the BHs, although the instantenous accretion can be
close to 20% of the accretion onto a BH. This might
change some dynamical features of the mini-disk and
produce additional electromagnetic signatures. We do
not expect, however, that this fact would alter the main
conclusions of this work, namely, the overall di↵erences
between mini-disks in spinnings and non-spinning BBH.
In the next section, we analyze the general structure of
the minidisks and the e↵ects of the spins.

3.2. Structure and orbital motion in mini-disks

As we saw before, the main change introduced by the
BH spin is the amount of mass contained in the mini-
disks over a cycle. In this section, we analyze how this
mass increase changes the structure of the mini-disks
compared with non-spinning black holes, and what is
the angular momentum of the material that circularize
around the BH.
In Figure ??, we plot the surface density in both

SHPN06 and M0 , for the same orbital phase at the 7th
orbit. In this plot, the mini-disk around BH1 (right side)
is at the high peak of the mass cycle. In both simulations
here, we can clearly note the predominant lump stream
plunging directly into the hole. This occurs on top of
a mini-disk structure, which is denser in SHPN06 . On
the other hand, we observe that BH2 on the left, in its
low state, has a disk-like structure in SHPN06 , while the
material is mostly accreted in M0 .
We further quantify the di↵erences computing the sur-

Figure 8. Surface density average snapshot for SHPN06 (upper
row) and M0 (lower row) at t = 4000M and t = 4060M respectively,
where the phase of the binary is the same in both simulations.
White dashed lines indicate the truncation radius and thick white
lines the ISCO. In this figure, the sense of rotation of the binary is
counter-clockwise

Figure 9. Surface density averaged in the azimuthal ranges
��1 = (⇡/4, 3⇡/4) (positive axis) and ��2 = (5⇡/4, 7⇡/4) (nega-
tive axis) for BH1, and averaged in time over the low-state (lower
panel) and high-state (upper panel) of the mass fraction. For ref-
erence, we indicate the direction of the orbital BH velocity

face density of the mini-disk around BH1, averaged in
time, and averaged in two ranges of �BH representing
the front and back of the mini-disk with respect to the
orbital motion. In Figure 9 we observe that the surface
density is higher in SHPN06 by a factor of ⇠ 2. For both
simulations, the mini-disks accumulates more material
at the front, corresponding to the region where it cap-
tures the lump stream. In SHPN06 , the density peaks are
closer to the BHs and the density profile is more steep
near the ISCO. At the back of the mini-disk, the surface
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with 2⌦beat. In SHPN06 , however, the inflow time of the
mini-disks is larger and the depletion period of a mini-
disk briefly coexists with the filling period of the other
mini-disk, reducing the variability of the total mass.
Finally, because we use a spherical grid with a central

cutout, we cannot analyze the e↵ects of the sloshing of
matter between mini-disks (Bowen et al. 2017). To es-
timate how much mass we lose through the cutout, we
checked the accretion rate at the inner boundary of the
grid, where the gas exits the simulations. This mass loss
constitutes, in average, only a 5% of the mass acreted
by the BHs, although the instantenous accretion can be
close to 20% of the accretion onto a BH. This might
change some dynamical features of the mini-disk and
produce additional electromagnetic signatures. We do
not expect, however, that this fact would alter the main
conclusions of this work, namely, the overall di↵erences
between mini-disks in spinnings and non-spinning BBH.
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is at the high peak of the mass cycle. In both simulations
here, we can clearly note the predominant lump stream
plunging directly into the hole. This occurs on top of
a mini-disk structure, which is denser in SHPN06 . On
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material is mostly accreted in M0 .
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face density of the mini-disk around BH1, averaged in
time, and averaged in two ranges of �BH representing
the front and back of the mini-disk with respect to the
orbital motion. In Figure 9 we observe that the surface
density is higher in SHPN06 by a factor of ⇠ 2. For both
simulations, the mini-disks accumulates more material
at the front, corresponding to the region where it cap-
tures the lump stream. In SHPN06 , the density peaks are
closer to the BHs and the density profile is more steep
near the ISCO. At the back of the mini-disk, the surface
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Circumbinary + 
Mini- Disk Regions

• Spinning black holes launch jets!  
• BH jets are powerful radio sources; 
• Possible signature of helical field 

orientation in emission’s polarization?! 
• Poynting luminosity modulated by 

accretion rate from circumbinary disk 
and accreted magnetic field flux; 

• All sorts of exciting possibilities with 
binary jet dynamics!

Combi, Lopez Armengol, (in prep, 2021)
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Figure 19. .

Las ĺıneas punteadas son los flujos de Pointing?

También explicar las curvas Cutout y Signed.

Figure 20. .

We can compare the variability of the magnetic flux,
poynting flux and mass flux (accretion rate) (Figure 21)
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Figure 19. .

Las ĺıneas punteadas son los flujos de Pointing?

También explicar las curvas Cutout y Signed.

Figure 20. .

We can compare the variability of the magnetic flux,
poynting flux and mass flux (accretion rate) (Figure 21)

5. CONCLUSIONS
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Figure 15. Meridional plot of a time average Poynting scalar for BH1 in SHPN06 (left) and in M0 (right)

Figure 16. Meridional plot of the plasma � parameter of BH1 in
SHPN06

curva.

Figure 17. .

Figure 18. .

The EM flux is modulated by the beat frequency of the
system and it is, in average, three times higher in SHPN06

. It has a secular increase and start decreasing at around
8 orbits. High peaks in SHPN06 coincide with the lump
accretion event around 12 orbits. At the end there is
more variability, as seen e.g. in the accretion rate. The
EM fluxes in 20M and 30M are similar in SHPN06 but
di↵ers a little in M0 . LC: explain this further Hydro
fluxes are more similar between SHPN06 and M0 and also
increase as a function of time. They di↵er between 20M
(just mini-disk outflows) and 30M (mini-disks outflows
+ some inner part of the circ disk).
We can also explore the EM fluxes around the individ-

ual BHs and track their evolution (Figure ??). Similar
behavior as we saw around the cavity. The decline is
more appreciated here and there is not much variabil-
ity. In both cases the e�ciency of the jet is around 5%.
FGLA: Agregar las curvas para los non-spinning?

Agregar definición de esa eficiencia. Hawley &

Krolik (2006) da algunos valores para single-BHs,

comparar . The Poynting fluxes are correlated with
the magnetic fluxes around the BH ISCO (Figure 20).
LC: Blandford Znajeck here? . FGLA: Agre-

gar definición de flujo magnético, y el caption.
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�++

<latexit sha1_base64="VIxO+EtQnlT+2Ud0GKyE8+3+dbM=">AAAB8HicbVDLSgNBEOyNrxhfUY9eRoMQCYRdUfQY9OIxgnlIdgmzk0kyZGZ2mZkVwpJv8ODFgyJe/Qw/wZsf4t3J46DRgoaiqpvurjDmTBvX/XQyC4tLyyvZ1dza+sbmVn57p66jRBFaIxGPVDPEmnImac0ww2kzVhSLkNNGOLgc+407qjSL5I0ZxjQQuCdZlxFsrHTrkz5rp6XSqJ0vuGV3AvSXeDNSqOwXv97v/aNqO//hdyKSCCoN4VjrlufGJkixMoxwOsr5iaYxJgPcoy1LJRZUB+nk4BE6tEoHdSNlSxo0UX9OpFhoPRSh7RTY9PW8Nxb/81qJ6Z4HKZNxYqgk00XdhCMTofH3qMMUJYYPLcFEMXsrIn2sMDE2o5wNwZt/+S+pH5e9k/LptU3jAqbIwh4cQBE8OIMKXEEVakBAwAM8wbOjnEfnxXmdtmac2cwu/ILz9g3JWZNp</latexit>

�00

<latexit sha1_base64="JGGqf5kzvQClNXcjZ0xaxWduvVE=">AAAB8HicbVDLSgNBEOyNrxhfUY+KDAbBU9gVRY9BLx4TMA9JljA7mU2GzMwuM7NCWHL0C7x4UMSrX5Dv8OY3+BNOHgdNLGgoqrrp7gpizrRx3S8ns7S8srqWXc9tbG5t7+R392o6ShShVRLxSDUCrClnklYNM5w2YkWxCDitB/2bsV9/oEqzSN6ZQUx9gbuShYxgY6X7Fumxduq6w3a+4BbdCdAi8WakUDocVb4fj0bldv6z1YlIIqg0hGOtm54bGz/FyjDC6TDXSjSNMenjLm1aKrGg2k8nBw/RiVU6KIyULWnQRP09kWKh9UAEtlNg09Pz3lj8z2smJrzyUybjxFBJpovChCMTofH3qMMUJYYPLMFEMXsrIj2sMDE2o5wNwZt/eZHUzoreefGiYtO4himycADHcAoeXEIJbqEMVSAg4Ale4NVRzrPz5rxPWzPObGYf/sD5+AFMzZPK</latexit>

BH1

Poynting Scalar

BH1 BH1



PatchworkMHD : Mini-disks + Circumbinary Disk

• Key Challenges: How do we efficiently simulate 107-108 cells for 106-107 
steps?  PatchworkMHD!

• Starting from CBD data of Noble++2012, let mini-disks fill in.

• 34 binary orbits;

• Cartesian Patch: Uniform in x,y but graded in z. 

• Spherical Patch: Same grid as Noble++2012, no interpolation. 

• Cartesian patch avoids the focusing of cells near the origin and axis, 
increasing the size of time steps we can take, plus covers the missing 
volume.

Avara @APS: H09.00006Avara et. al, (in prep) 5

Figure 12. Plots of total mini-disk masses as function of time.

Figure 13. Mass accretion rate onto BH2 and the sloshing flux
toward BH2. A third line is the contribution from BH1 subtracted
o↵ for comparison.

Figure 14. Spatial dependence of mass flux through slosh plane,
toward BH2, a plane perpendicular to the rotating axis threading
the BHs and passing through the center of mass.

Figure 15. Upsilon for both BHs.

paper (the BHOGspin paper).
Can I show a coupling of fields from one disk to the

other? Maybe related to a 3d rendering with streamlines
or a movie if there’s time.

5.1. Temporal Structure

Perhaps more relevant to jet launching, even though
we don’t have spin, is the ⌥ parameter, so that’s plotted
for both BHs in Figure ??

On horizons Figure ??

Within disks

5.2. Geometric evolution

Connection to streams and CBD

(maybe put sloshing region magnetic behavior here)

magnetic domination vs gas pressure dominated regions

MRI
– discussion of contribution of magnetic stress to mini-
accretion structure accretion/circularization
– (+ any more complex analysis like correlations or
anything? turbulence? nah....not disky enough to
warrant, and not high enough resolution to get right.)

6. COOLING AND DISSIPATION

cooling function - description and motivation of back-
ward compatibility with warpedBHOG and other
RIT+Hopkins et al. work

light curves
– presentation of raw energy dissipation in terms of
e�ciency
– breakdown of relative contributions from di↵erent
spatial and hydro selections (Figure ??)

- impact of cooling function choices
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• No cutout!
• PWMHD allows us to measure the mass exchange between 

mini-disks for the first time!

• Mass flux between mini-disks is a minority contribution, 
though energy dissipated by mass transfer may be more 
significant;vers the missing volume.



PatchworkMHD : Mini-disks + Circumbinary Disk

• Accretion rate onto each BH modulated by their passage near the lump. 

• Accretion rate still significant even while BBH rapidly inspirals. 

• PWMHD provides the affordability to runs for the O(30-40) orbits necessary to let the 
system settle into a steady-state, providing light curves from relaxed mini-disks for 
the first time;

Avara et. al, (in prep)
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Light Curves from 
Accretion onto Spinning 

BBHs

Gutierrez, Combi, Lopez Armengol++(in prep)
Spinning BBHs: a=0.6M, up-up

Non-Spinning BBHs

• Following  
• Using sim data from: 

• BH spins (even at these modest values): 
• Brighter mini-disks; 
• More variable mini-disks; 
• More substantial mini-disks broaden the 

circumbinary disk’s thermal peak; 

• The spinning case provides new 
signatures to search for: 
• Broaden thermal peak in optical-UV; 
• Variability in the UV on the binary’s 

orbital timescale; 
• Stronger variability in X-rays;  

• We expect SMBBHs, especially in gaseous 
environments, to be spinning even faster, 
these effects may be even stronger in real 
systems.

d’Ascoli++2018

Combi, Lopez Armengol, (in prep, 2021)



Gutierrez, Combi, Lopez Armengol++(in prep)

Non-Spinning BBHs

• Binary signature is most significant in X-rays; 
• TAP, Athena, LYNX, Strobe-X, AXIS…;  

• UV offers interesting opportunity too as this is 
where the mini-disk’s thermal disk spectrum 
peaks;   
• Hubble, LUVOIR, Dorado possibilities;

 = 16.7

Total Emission

LUVOIR

Light Curves from 
Accretion onto Spinning 

BBHs

Spinning BBHs: a=0.6M, up-up



Summary & Conclusion
•Numerical GRMHD simulations are critical to 
predicting EM emission from SMBBH systems and 
establishing their multi-messenger connection. 

•The circumbinary lump modulates accretion onto 
the BBH at O(1) levels for  mass-ratios >~ 0.2, and 
leads to a powerful EM signature of BBHs.  

• Lump formation in GRMHD simulations is generic 
and robust to perturbations after a relaxation period. 

• Binaries with spins give rise to jets that may 
provide additional observational signatures of their 
binary-ness.

•PatchworkMHD has been demonstrated to be a 
powerful tool at providing the means to cover the 
entire domain to sufficiently resolve MHD 
turbulence in an efficient manner.  

•Future work will explore how coupled radiation-MHD 
physics will alter BBH disk dynamics and their EM 
emission. h"ps://arxiv.org/abs/2102.00243 

h"ps://arxiv.org/abs/2103.12100   
h"ps://arxiv.org/abs/2103.15707

https://arxiv.org/abs/2102.00243
https://arxiv.org/abs/2103.12100
https://arxiv.org/abs/2103.15707


Global Trends of the Lump

• The lump is clearly tracked as the principal m=1 mode for  q>0.2; 
• Consistent trend exists between m=1 mode strength, eccentricity, and coherent m=1 angular velocity;  
• All oscillate in phase, modulated by lump and binary orbital frequencies;

q=0.1q=1 q=0.5 q=0.2 q=0.1q=1 q=0.5 q=0.2

Noble, Krolik, Campanelli, Zlochower, Mundim, Nakano, Zilhao (2021)
h"ps://arxiv.org/abs/2103.12100  Mass Ratio Survey

https://arxiv.org/abs/2103.12100


Circumbinary + 
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Figure 2. Rest-mass density of the fluid in the equatorial plane for SHPN06 (left) and M0 (right).

where ⌘ab is the Cartesian Minkowski metric, H
A
ab is the

boosted black hole term for A = 1, 2, MA is the mass,
and {~xA(t),~vA(t)} are the position and velocity of the
black hole. The trajectories are obtained solving the
Post-Newtonian equations of motion for a spinning BBH
in quasi-circular motion at 3.5 PN order. The metric
(9) is computational e�cient, compared with previous
approaches, and easy to handle for di↵erent parameters.
In the non-spinning simulation, the spacetime was repre-
sented by an analytical metric built by stitching di↵erent
approximate solutions of Einstein’s equation (Mundim
et al. 2014). In Combi (????), we showed that both ap-
proximations are in good agreement and thus it is possi-
ble to compare our spinning superimposed metric simu-
lation with the non-spinning matching metric simulation.
Although the metric is only valid in the inspiral regime

for separations > 10M , our approximation includes the
black holes horizons; hence, no artificial sink terms or
large excisions are needed. We apply a mask inside the
horizon to avoid the singularity of each black hole. In
particular, we interpolate the values of the metric from
certain radius inside the horizon into the center of the
BH. This allows us to evolve the induction equations
in the whole domain and preserve the solenoidal con-
straints.
For this simulation, we use an equal-mass black hole

binary, M1 = M2 = M/2, with an initial separation
of r12(0) = 20 M , where relativistic e↵ects are impor-
tantBowen et al. (2017) and the orbit is shrinking due to
gravitational radiation. In SPN we set the spins of the
black holes aligned to the orbital plane (i.e. no preces-
sion) with a moderate value of � = a/M = 0.6. Since
spin couples with the orbital motion, the trajectories of
the holes change with respect to a non-spinning system.
In particular, inspiral is delayed because of the hang-up

e↵ect ?, and the orbital frequency increases (see Figure
3).
The initial data for the matter fields is the same as

Bowen et al. (2018) for both simulations here. We start
with a snapshot of the circumbinary disk from (Noble

Figure 3. Properties a binary black hole system with aligned
spins of � = 0.0 (blue dashed line), � = 0.6 (thick orange line),
and � = 0.9 (green dashed line). In the top panel, we plot the
relative increase in the radial velocity, in the middle panel the
orbital separation, and in the bottom panel the frequency of the
orbit.

et al. 2012), evolved for 5 ⇥ 104M . At this time, the
system is in a turbulent state and the accretion into the
cavity is dominated by the m = 1 density mode, the
lump, that is orbiting the inner edge of the CBD. In
Noble et al. (2012) a zero spin PN metric in Harmonic
coordinates was used to evolve the system. As shown in
?, the bulk properties of the circumbinary disk are not
changed for high values of spin, so it is a good initial
state for the circumbinary disk for our spinning simula-
tion as well. We interpolate this data onto our grid and
we initialize two mini-tori inside the cavity, see Figure
1. We then clean magnetic divergences introduced by
the interpolation to the new grid using X as explained in
Bowen et al. (2018).
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Accretion onto Misaligned Spinning BBHs
Combi, Gutierrez, Lopez Armengol++(in prep)

Circumbinary + Mini- Disk Regions

• Jet Interaction?! 
• Additional variability in the emission possible from hot 

spots in collisions between jet-wind, or jet-jet regions.  
• Inclined BH spins to circumbinary disk leads to tilted 

mini-disks, complicating mini-disk replenishment 
cycle and modulation.  



PatchworkMHD : Single BH Test

•  Test: Single accreting black hole. 
•  3 spherical patches:
• 1 aligned with z-axis;
• 2 aligned with x-axis covering the 

poles;
• Avoids coordinate singularity along 

the z-axis and admits larger time 
steps; 

Avara et. al, (in prep)

•  Allows us to stitch together coordinate 
patches that follow local symmetries efficiently 
and eliminate coordinate singularities that 
arise in spherical/cylindrical coordinates.  

• Adding support for MHD and preservation of 
solenoidal (aka “no magnetic monopoles”) 
constraint into the hydrodynamic Patchwork 
code (Shiokawa++2018).

• Generalize Patchwork for the wide range of 
coordinate systems and patch situations (e.g., 
patch motion/rotation/overlap) desirable to 
execute our planned simulations. 

•  Developed method to adjust fluxes along 
patch boundaries to dissipate monopoles and 
flux differences. 

Avara @APS: H09.00006


