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Abstract 

A long-standing problem in system verification is establishing fault tolerance at the ultra-high 

level by experiment. It is considered impossible because of system complexity and the enormous 

number of trials needed. This paper considers the problem for a class of digital systems that use 

redundancy to achieve reliability. The class is the systems that operate for a period of time 

without maintenance followed by a maintenance check that replaces components identified as 

faulty. The paper considers simulating a natural life test where a natural life test observes a 

number of operating periods. If the system does not fail during the test, it can be said to have a 

certain reliability at a certain confidence level. The approach in this paper is to make the 

simulated life test more efficient while maintaining realism by integrating structural arguments, 

information on fault occurrence, and fault injection in the lab. The major result of this paper is 

constructing a global fault model using the failure rate of the components and proving theorems 

about the model that tell how many, what kind, when, and where to inject faults. A simple 

example illustrates applying the theorems.   

I. INTRODUCTION

A. Objective

We propose a method of verifying fault tolerance at the ultra-high level by experiment for a class 

of systems and faults. We consider microprocessors for control and monitoring that use 

redundancy for reliability. They may or may not use reconfiguration. These systems have an 

operating period with no maintenance followed by a maintenance check where all components 

detected as faulty are replaced. The approach is simulated life testing where each trial represents 

an operating period. During a trial, we inject faults into the system based on the distributions for 

fault occurrence. We also use structural arguments that a system operates correctly if all the 

components are functioning correctly. Hence, the approach integrates data on fault occurrence, 

structural arguments, and laboratory experiments.  

There are a number of aspects to reliability. One division is validation and verification where 

validation asks if we built the right thing and verification asks if we built it right. There are 

structural arguments that consider such topics as whether or not the system will work correctly if 

all the components are fault free. There are stochastic investigations that examine the effect of 

noise and fault occurrence on the system. This paper considers the probability of the system 

surviving fault occurrence. 

B. Background and Motivation

The use of computers as controllers and monitors is becoming more widespread [1, 2], and some 

applications are safety critical [2, 3, 4]. A National Research Council document states that the 

lack of verification methods is a barrier to upgrading the National Airspace [2]. There is a desire 

for more performance-based, empirical demonstrations of reliability [38]. One topic is a 
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demonstration of fault tolerance at the ultra-high level. The obstacles are system complexity and 

the enormous number of trials necessary to establish fault tolerance at a high confidence level. 

This has been an open problem for fifty years and considered impossible for thirty years [4, 5, 6]. 

The sections below offer a solution.   

C. Outline 

Section two examines some of the literature in the field. It begins with references stating the 

growing use of microcontrollers and the importance of their reliability. It continues with 

references describing the difficulty of establishing ultra-reliability by experiment. Since there is a 

large amount of material on fault injection, the bibliography next considers the activity in the last 

decade seeking any evidence of the existence of any method of verification. This is followed by 

numerous papers describing efforts to characterize faults and inject them efficiently. The premise 

is that fault injection yields information that can improve system reliability.  

Section three considers current approaches to verification while section four compares this 

paper’s definition of a fault with another popular definition. Section five outlines the 

experimental approach. Section six presents the fault model and derives the theorems needed to 

apply it. Section seven describes the structure of a reconfigurable fourplex while the eighth 

applies the theorems in section six to design a fault injection experiment. Section nine illustrates 

integrating the experiment with an argument-from-design. Section ten considers extensions of 

the results in this paper.  

 

II. BIBLIOGRAPHY 

This bibliography describes the field of fault injection by topics: the importance of fault 

tolerance but the impossibility of establishing ultra-high fault tolerance by experiment, the 

problem of fault detection, using fault detection to test design, and the efficient injection of 

faults. This paper does not use any technical content of any of these papers. If the project 

continues, it may incorporate some of the results below. 

A number of papers mention the importance of fault tolerance but the impossibility of 
establishing ultra-high fault tolerance by experiment. These papers provide the motivation for 
this endeavor. A publication [1] observes that digital controllers will become more prevalent. 

Another [2] lists the benefits of autonomous flight, it states that amongst the four highest 
priorities are verification and validation. A report [3] states that appropriate methods for 
assessing safety and reliability are key to establishing the acceptability of digital information and 
control systems in safety-critical plants. A chapter in a compendium [4] states that decades of 

theoretical and experimental work and numerous recent successful applications have established 
fault tolerance as a standard objective in computer system design, but in contrast to the objective 
of high speed, satisfaction of fault-tolerance requirements cannot be demonstrated by testing 
alone, but requires formal analysis. A publication [5] observes that safety-critical systems play 

an important role in modern societies, with increasing numbers of applications in many domains 
like transportation, nuclear energy and healthcare, but how to assess systems that require very 
high reliability remains a challenging task after almost 30 years since the first publications to 
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highlight the problem. A paper [6] concludes the insertion of artificial faults into a real or 
simulated computer system yields benefits, but to evaluate a system’s fault tolerance capabilities 
is a much harder task, impossible even. An article [7] makes the case that greater reliance on 

computers in a variety of applications implies the consequences of failure have become more 
severe, but fault injection to determine a system’s response offers an effective solution to this 
problem. The article surveys several fault-injection studies and tools. In a paper [8], the authors 
argue that early validation of fault tolerance is essential in developing dependable computer 

systems, and they defined a strategy for testing fault tolerance.  

An important factor in reliability is the ability of a system to detect faults, called the diagnostic 

level, and recover from them. Otherwise, faults can accumulate and overwhelm the fault 

handling capabilities. An extensive effort [9] converts methods of simulating faults into injecting 

faults into hardware to study system properties and to estimate the diagnostic level. A 

consideration of memory errors [10] seeks to reduce the area and power requirement of error 

correcting codes without affecting delay in detection. In order to tolerate faults that emerge in 

operating Networks-on-Chip, diagnosis techniques are employed for fault detection and 

localization, and a paper [11] offers an improvement in diagnostics by combining different 

techniques. Field-Programmable Gate Arrays are rapidly gaining popularity as implementation 

platforms, and a paper [12] presents a method for transient and permanent fault mitigation and 

run-time fault recovery. Systems that are used in high dependability and integrity applications 

need to be designed with the capability to on-line detect and recover from the errors caused by 

faults, and since the majority of errors are usually transient and not reproducible, a paper [13] 

presents a set of system-level checks comprising for the on-line detection of errors. A paper [14] 

presents an approach to estimate the fault coverage of the implementation of a VLSI design 

obtained by fault simulation at the function level, and the results show a good correlation 

between the estimated fault coverage, based on fault simulation at the functional level, and the 

actual fault coverage obtained by fault simulation on a gate level implementation. A paper [15] 

discusses an experimental methodology for simulation-based validation of fault tolerant 

microprocessor architectures. It injects transient faults, and estimates the diagnostic level.  

Fault injection has been used to test design features. An effort was made to uncover defects in 

system design by fault injection [16], but the effort revealed that random fault injection was not 
an efficient approach. A paper [17] observes that transient and permanent faults have been 
deeply studied while this work goes a step further and assess the dependability of a fault-tolerant 
computer system against intermittent faults. The effect of single event transient on reliability has 

become a significant concern for digital circuits, and a paper [18] proposes an algorithm for 
evaluating the reliability of digital circuits given their occurrence. Redundant execution is a 
common approach to achieve fault-tolerance, but a paper [19] observes it is energy inefficient 
and proposes a more efficient approach. The effect of compensating module faults on the 

reliability of majority voting based VLSI fault-tolerant circuits is investigated [20] using a fault 
injection simulation method where the simulation method facilitates consideration of multiple 
faults in the replicated circuit modules as well as the majority voting circuits. A paper [21] gives 
a brief description of a teraflops supercomputer and assesses signal sensitivity to transient faults 

and the effectiveness of the fault/error handling mechanisms by fault injection. 
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There is considerable effort with the goal of efficiently injecting faults. Optimized and custom 
arithmetic circuits are widely used in embedded systems, and a paper [22] presents an automated 
test generation and bug localization technique for debugging arithmetic circuits with 

experimental results demonstrating that the proposed approach can be used for automated 
debugging of large and complex arithmetic circuits. To achieve high reliability in on-chip 
networks, it is necessary to test the network continuously with Built-in Self-Tests so that the 
faults can be detected quickly and the number of affected packets can be minimized, but since 

built-in-self-tests cause significant performance loss due to data dependencies, a paper [23] 
proposes a comprehensive test strategy with minimized influence on system performance. Since 
efficient handling of faults during operation is highly dependent on the interval from the time 
embedded monitoring instruments detect faults to the time when the fault manager localizes the 

faults, an article [24] proposes a self-reconfiguring network in which all instruments that have 
detected faults are automatically included in the scan path, and a fault detection and localization 
module in hardware that detects the configuration of the network after self-reconfiguration and 
extracts the error codes reported by the fault monitoring instruments. A paper [25] presents a 

new fault injection method to increase the fault emulation performance by converting the 
original circuit into a fault-injectable circuit mapping the fault-injectable circuit onto the 
emulator. A paper [26] proposes three new techniques that substantially reduce the parallel fault 
simulation time where the new techniques are 1) reduction of faults simulated in parallel through 

mapping non-stem faults to stem faults, 2) a new fault injection method called functional fault 
injection, and 3) a combination of a static fault ordering method and a dynamic fault ordering 
method. A paper [27] addresses the problem of simulating and generating tests for transition 
faults in non scan or partial scan sequential circuits by enhancing the transition fault model for 

the gate-delay faults and the stuck-open faults in synchronous sequential circuits. Since the size 
and complexity of modern dependable computing systems has significantly compromised the 
ability to accurately measure system dependability attributes such as fault coverage and fault 
latency and fault injection techniques are difficult to apply because the size of the fault set is 

essentially infinite, a research effort [28] has developed a new deterministic, automated 
dependability evaluation technique using fault injection to yield more useful information. To 
maximize the efficacy of fault injection, a paper [29] presents two fault injection methodologies: 
stress-based injection and path-based injection. A paper [30] notes that ultra-dependable 

computing demands verification of fault-tolerant mechanisms in the hardware, and this research 
tries to bridge that gap by developing a new fault-injection methodology for processors based on 
a register-transfer-language fault model. A paper [31] presents the results of several experiments 
conducted using a fault injection-based automated testing system where the experiments 

consisted of exhaustively injecting three separate fault types into various locations of two distinct 
applications. Fault injection has been used to evaluate the dependability of computer systems, 
but most fault-injection studies concentrate on the final impact of faults on the system with an 
emphasis on fault latency and coverage issues, but a paper [32] develops a fault injection and 

monitoring environment as a tool to study fault propagation. 

 

III. ALTERNATE APPROACHES 

There are three arguments that we do not need to perform an experiment. The first is that enough 
flights have been completed to establish the hardware is reliable. The second is that we can 

establish reliability by a safety case. The third is that we can compute the reliability using a semi-
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Markov model of the system. We consider each, describe their limitations, and observe what 
each has to contribute to conducting a laboratory experiment. 

 

A. Natural Life Testing 

A natural life experiment would subject an embedded controller to a certain number of operating 

periods where we base the number of periods on the desired probability of failure and desired 

confidence level. The motivation for the confidence level is that if there are random elements 

present an experiment can mislead us. We take the interpretation of confidence level as the 

complement of the probability that the experiment has misled us. A confidence level of 99% 

means there is a 1% chance (or less) that the experiment has misled us. Since a confidence level 

is a quantitative measure of the quality of the experiment, we will ask that the quality of the 

experiment match the quantity being measured. For a probability of failure ≤ 1e-9, we require a 

confidence level of 100(1 – 1e-9)% .  

A natural-life experiment consists of binary trials where the outcome of any trial is success or 

failure. If no failures are observed, the formula for the number of trials required, n, to establish a 

probability of failure ≤ p at a confidence level of 100(1 – γ)%  is given by the formula  

    (1 − 𝑝) 𝑛 =  𝛾                                                                                                                     (1) 

For p = γ = 1e-9, n = 21 billion. 

The size of the US commercial fleet is about 7,000, and we have had fly-by-wire for about 30 

years [51, 52, 53]. Assume every aircraft has the same flight control computer, aircraft fly 

continuously, and there are 10,000 hours in a year. To establish the probability of failure during a 

ten-hour flight is ≤ 1e-9 at the 100(1 – 1e-9)% confidence level requires the 7,000 aircraft to fly 

3,000 years with no failures.   

The experiment will simulate the 21 billion trials. As mentioned, we will gain efficiency by 

using the structural argument that the system will operate correctly if fault free. We will retain 

realism by using a fault occurrence model based on the failure rate of components. If the failure 

rate is low, the model will tell us that many operating periods have no fault occurrences. 

B. Safety Cases 

There are two methods used in safety cases: prescriptive and performance based [38]. Currently, 
safety cases principally rely on prescriptive methods that set guidelines for product features and 

development processes. Required product features may include elements such as fail-safe or 
back-up systems. Standards for development processes specify the procedure used in producing 
the product. In contrast, performance based criteria consider desired, measurable outcomes, 
leaving how to achieve the criteria to the designer. There is a general desire for the program to 

use more performance-based standards, especially among vendors supplying products for 
approval. This paper develops a performance-based procedure. 

On the positive side, we assume a safety case has established at an acceptable level that the 

system operates correctly if the components are fault free.  
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C. Semi-Markov Models 

An approach to verification is using a semi-Markov model to compute the probability of failure. 

A problem with this approach is that we need an extremely accurate description of the 

reconfiguration process to be authentic. The problem is heightened because there are multiple 

parameters which increases the experimental burden to maintain an overall confidence level, we 

must increase the confidence level for each parameter. The general result is that the loss of 

confidence is additive. We will also use the theorem below in the next section when we consider 

placing components on test. 

Theorem [39]:  Suppose [  i ,  i ] is a 100(1 - h i )% confidence interval for p i for  1  i  n, 

then  ([  1 ,  1 ],..., [  n ,  n ] )  is a 100(1- h 1 - ... - h n )% confidence interval for the 

parameters (p 1 ,..., p n ). 

Given a reliability requirement of 1e-9 and four parameters, each parameter must be estimated at 

the 100(1 – 2.5e-10)% confidence level. Describing system reconfiguration at this confidence 

level appears intractable since reconfiguration is a complex procedure consisting of fault 

detection, fault identification, and faulty component removal that involves both hardware and 

software. 

We illustrate this with a simple model, depicted in figure 1, of a reconfigurable fourplex subject 

to permanent faults. In this model, λ is the failure rate of a component. D1 and D2 are the 

diagnostic level for the system as a fourplex and as a threeplex. The difficult parameters to 

estimate are the reconfiguration transition functions δ1 and δ2 that remove component identified 

as faulty from the system. S represents the states that are fault free; R the recovery mode states; F 

the failure states due to undetected faults; C the failure states due to nearly coincident faults; and 

E the failure state due to exhaustion of parts. 

 Instead of attempting to determine the reconfiguration density function at an ultra-high level, a 

modeler can attempt to decompose it into several simpler steps. An example is in figure 2 where 

the three steps are detection, identification, and removal with constant rate transitions.  

One objection to this decomposition is that some elements of reconfiguration are fixed-time 

procedures that are not modeled by constant rate (memoryless) transitions. Another is that the 

intermediate states of detection and identification may not be observable, making it difficult to 

estimate the transitions between them. 
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Figure 1: Semi-Markov model of a reconfigurable fourplex with only permanent faults  

 

 

 

 

 

             Figure 2: Proposed decomposition of the reconfiguration process 

In general, no detail of reconfiguration can be ignored since any ignored element can have a 

greater effect on the computation than the extremely small quantity to be computed, but a 

detailed description of reconfiguration yields intractable models with hidden states. 
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This subsection does not claim that establishing ultra-reliability by semi-Markov models is 

impossible. It merely points out that the current approach appears intractable.  

 

IV. NATURE OF FAULTS 

We consider the definition of a fault used in this paper, an alternate definition, and establishing 

the failure rate of commercial off the shelf components. 

A. Definition of Fault for this Paper 

In this paper, a fault is an input-output malfunction of a device. That lets a fault be observable 

when collecting field data and increases the likelihood of detection when it occurs in a system 

although there are obstacles to both objectives. One is that we may have the failure rate of a 

component but we do not know the faulty behavior of a component. To counter this, design a 

system to detect any input-output malfunction. 

Another is that observability requires integrated circuits to be practical. Consider the simplified 

computer in figure 3 where the chip shaded black has become faulty. In the depicted 

configuration, it has no direct link to the output pins, and consequently, it’s not certain we can 

get its faulty behavior to the computer’s output pins.      

                             

 

 

 

 

 

 

                  Figure 3: Computer with moderate level of circuit integration 

 

Most likely, we would have to redesign the computer to achieve a high diagnostic level. The new 

design would not be as efficient, but it would be a question of effectiveness (verifiability) being 
more important. 

For this reason, for this experiment, we assume we have a computer on a chip, and its failure rate 
refers to the moment when incorrect values begin to appear on its output pins.  

For future consideration, one method of achieving a high diagnostic level is to have dual units 
that flag an error if they disagree. For four computers, an architecture would be a double-dual 
where each pair acts in lockstep.   

  



 

10 
 

B. Alternate Definition of Faults 

Another definition is that a fault is a defect that may or may not cause an error while an error is 

an observable manifestation of a fault [50]. By this set of definitions, the experiment in this paper 

would be called error injection. The definition of a fault as a defect that may or may not cause an 

error increases the likelihood that a fault will not be detected.  

Undetected faults receive attention because of the possibility they will accumulate until some 

event causes them to produce multiple errors that overwhelm the system. If faults are 

accumulating in components that can eventually cause the system to fail, then the components 

are wearing out. For components that wear out, there is often a replace-before-failure policy 

based on the wear-out distribution and the age of the component. In this case, we would derive 

the wear-out distribution from the percentage of faults that are not detected. 

C. Commercial-Off-The-Shelf (COTS) Components  

Commercial off the shelf components offer an opportunity to establish their failure rate because 

they are inexpensive and because a constant failure rate lets us trade numbers for time. We 

consider a confidence level higher than the reliability since a system can use different types of 

components. For the computations below, we assume a maximum of ten different components. 

To establish a probability of failure ≤ 1e-4/hour at the 100(1 – 1e-5)% level requires placing 54 

components on test for three months and observing no failures. For 1e-5/hour at the 100(1 – 1e-

6)% level, place 320 components on test for six months. 

In contrast, to establish probability of failure ≤ 1e-6/hour at the 100(1 – 1e-7)% level requires 

placing 1000 units on test for 2 years. 

Trading numbers for time permits conducting the test in a reasonable amount of time, but it may 

not let us determine whether or not the components are wearing out. 

D. Relevant Literature 

A paper considers imperfect diagnostics and computes the conditional probability of system 

failure during an operating period given the system has not yet failed [33]. A source for the 

failure rate of components is [34]. Discussions of the reliability of COTS are in [35, 36, 37]. 

 

V. EXPERIMENTAL APPROACH 

We wish to demonstrate fault tolerance, and we base the experiment on modified natural-life 

testing for a class of systems. The systems are those that have an operating period with no 

maintenance followed by maintenance between operating periods. A natural life test would 

subject the system to a number of operating periods, and if we observe no failures, declare the 

system has a certain reliability at some confidence level. The number of trials is given by 

formula (1). 

In a simulated natural-life test, each trial simulates an operating period, but it gains efficiency by 

using the structural argument that the system operates correctly if the components are fault free. 
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Using this result, we need only observe the system from fault injection to system recovery. In a 

well-designed system, recovery is fast in order to prevent an accumulation of faults that could 

overwhelm the system. 

Using the failure rate of the components, we develop a model that describes all possible fault 

occurrences and derive theorems that tell us how many, what kind, when and where to inject 

faults during a trial. 

The simulated life test described in this paper does impose failure conditions that are not present 

during natural life testing. In a natural life test, the system need only survive the required number 

of operating periods. It does not need to detect the faults or correctly identify the faults or 

reconfigure correctly. We require all of these in the simulated test. Furthermore, the system 

needs to perform these actions quickly to achieve the necessary efficiency. 

In a complete test, during fault recovery, the system must maintain process control or plant 

monitoring. If the system does not perform its intended function during fault recovery, that 

counts as a failure. 

Finally, any experiment with experimental error and a confidence level requires that the system 

be more reliable than originally required to pass the test. For example, suppose the requirement 

is a probability of failure ≤ 1e-9. If the system has a probability of failure of 1e-9 and we conduct 

21 billion trials, we can expect 21 failures during the experiment.  

 

VI. THE GLOBAL FAULT MODEL 

This section constructs a global fault model and derives theorems about the model that show how 
to choose the number, occurrence time, type, and location of the faults for a trial (representing 
one operating period) in the experiment. The model assumes the events are independent and 
occur at a constant rate, but the events are general. The event could be a permanent, transient, or 

intermittent fault. It could be independent faults or faults correlated in time or space or both. It 
could represent one fault inducing other faults. The first four subsections review four standard 
distributions.  The fifth derives a basic result on fault occurrence and the sixth interprets the 
result in terms of the four standard distributions. 

A.  Independent and Competing Constant Rate Events 

Suppose there are  m  events each with rate   i  as depicted in figure 2.  In the exposition below 

these events will be a detailed description of all possible fault occurrences.  For instance, S  1  can 
be the occurrence of a permanent fault in component 1, while S 2  can be the occurrence of a 
transient fault in component 1.    
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  Figure 4: The Fan-out for fault occurrence  

For the model in figure 4, the probability that event  i  has occurred given some event has 

occurred is 

          
m1

i






                                                                                                          (2)                                                                                                                     

B.  The Poisson Distribution 

The Poisson distribution is a renewal process that occurs at a constant rate.  The model with rate  

  is given in figure 5. 



 S 0          S 1       ...          S k-1         S k         S k+1

 

Figure 5: Poisson Renewal Process 

For the model in figure 3, the probability of being in state  k  at time  T  is  
 

              
 

!k

T-ekT 
 .                                                                                                              (3) 

The fault injection procedure will have to be adapted to the assumption of a constant rate used by 
the Poisson process. If the system removes failed components, the failure rate of the system does 
not remain constant.  One method of handling this is to treat the removed components as virtual 
components.  This means that the component is theoretically subject to later fault injections, but 

in practice these faults will not be injected if the system has already removed the component.  If 
the system has not yet removed the faulty component, then the second fault can be injected into 
the same component.  This double injection checks that the occurrence of a second fault does not 
interfere with the detection and removal of a faulty component. 
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C  The Ordered Uniform Distribution 

Choose a sample of size  n  ( x 1 , x 2 , ... , x n ) from the uniform distribution on the interval [0 T].  

Order it as  n)2)1) xxx (((   .  The distribution 
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                                                                                       (4) 

is called the ordered uniform distribution. 

D.  The Multinomial Distribution 

Suppose we sample with replacement from a population with  m  classes of objects.  Suppose the 
probability of choosing an object from class  i  is  pi .  For a sample of size  n  the probability of 
choosing  ki  objects from class  i  (i=1,...,n)  is 

     mk
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!n


 !!!
                                                                                        (5) 

In particular, if the class of objects is the set of faults given in figure 4, then the probability of  ki  
faults of type  i  occurring given  n  faults have occurred is given by the expression  
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                                                                       (6) 

where  m1   .  In the formulas (5) and (6) some of the  ki’s  can be zero.  

E.  Global fault model 
 

Suppose there are  m  classes of faults with   i   the rate for class i.  The total rate is  

m1    .  The global model for precisely  n  faults occurring during an operating period 

is given in figure 4. The fan out from all the intermediate states is the same as the fan out from 
state S 0 . There are  n+2  columns beginning with column  0  and ending with column  n+1.  The 
first and last columns have a single row.  The process begins in state  S 0  and ends in one of the 
states in the  n th  column.   The final state  S n+1  is included because the mathematical 

formulation specifies that precisely  n  faults have occurred (during the operating period) by 
requiring that the process reaches the  n th  column during the operating period, but the transition 
into  S n+1  does not occur until after the operating period.  
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     Figure 6: Global fault occurrence model 
 
Suppose  k i  faults of type  i   (i = 1,..., m)  with   n = k 1  + ... + k m) have occurred in some 
specified order, and let   j  be the rate of the  jth   fault (j=1,..., n) that has occurred.  We have, 

     

m21
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and   =  1 + ... +  m .  The probability that the  n  designated faults occur in the designated 

order and that the  jth  fault occurs before time  s j  is given by the convolution integrals below. 
The expression in brackets is the probability that the transition into state Sn+1 does not occur, 
ensuring that precisely n faults have occurred       

 ∫ 𝛽1 𝑒𝛽1𝑡1 𝑒−(𝛼−𝛽1) 𝑡1
𝑠1

0    

   ∫ 𝛽2𝑒𝛽2(𝑡2− 𝑡1)  𝑒−(𝛼−𝛽2) (𝑡2− 𝑡1)𝑠2

𝑡1
 

              ⋮ 

        ∫ 𝛽𝑛𝑒𝛽𝑛(𝑡𝑛− 𝑡𝑛−1)  𝑒−(𝛼−𝛽𝑛) (𝑡𝑛− 𝑡𝑛−1)𝑠𝑛

𝑡𝑛−1
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              ∫  
𝑠1

0  ∫ …  ∫  𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
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   =  (∝1)𝑘1 … (∝𝑚)𝑘𝑚 𝑒−∝𝑇 

              ∫  
𝑠1

0  ∫ …  ∫  𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
                                                                             (8) 

This last expression is the occurrence probability for precisely  n  faults of  a specified type and 
location in a specified order at specified times. 

Expression (8) does not depend on the specified order of the faults.  Since any ordering yields the 
same probability, all orderings are equally likely.  Hence the occurrence probability for precisely  
n  faults of specified type and location at specified times in any order whatsoever is 
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                                                                                             (9)                                                                              

F.  Interpretation of the derivation 

We have 

      
𝑛!

𝑘1!  𝑘2!… 𝑘𝑛!
 (∝1) 𝑘1 … (∝𝑚)𝑘𝑚 𝑒−∝𝑇 ∫  

𝑠1

0  ∫ …  ∫  𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
         

     =  
𝑛!

𝑘1!   𝑘2!… 𝑘𝑛!
 (∝1)𝑘1 …  (∝𝑚)𝑘𝑚 𝑒−∝𝑇   

                        [
∝𝑛

∝𝑛
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𝑛!
 

𝑇𝑛

𝑇𝑛
] ∫  

𝑠1

0  ∫ …  ∫  𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
      

  

 =  [ 
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𝑘1!   𝑘2!… 𝑘𝑛!
 (

∝1

∝
)

𝑘1

… (
∝𝑚

∝
)

𝑘𝑚
] [

(∝𝑇)𝑛 𝑒−∝𝑇

𝑛!
] 

              [  
𝑛!

𝑇𝑛
 ∫  

𝑠1

0  ∫ …  ∫  𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
]                                                                        (10) 

The expression (9) (and hence the probability) is algebraically equivalent to a product of three 
probability distributions as given in expression (10).  The multiplicative property implies these 
three distributions act independently. 

The three distributions are the Poisson renewal process, the ordered uniform, and the 

multinomial distribution.  Since they act independently, the faults for any trial (representing one 
operating period) in the simulation can be chosen as follows.

 Theorem: 

       (i)The number of faults is given by the Poisson. 

(ii)The occurrence times are given by the ordered uniform  

(iii)At each occurrence time the location and type of fault is given by the multinomial 

(iv)These distributions act independently 
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We might think that since transients occur at a faster rate than permanents that if a transient and a 
permanent have occurred then it is more likely that the transient has occurred first, but both 
orderings are equally likely. Another theorem about the global fault model is the following.  

Theorem: Given that a set of faults has occurred, all orderings are equally likely. 

Even though all orderings are equally likely, different orderings can have different effects on the 
system. Suppose we have a fourplex, and a transient and permanent occur. If the permanent 
occurs first, then the permanent encounters a fourplex while the transient encounters a threeplex. 

If the transient occurs first and there is sufficient time between the occurrences for the system to 
have recovered from the transient, both the transient and the permanent encounter a fourplex.  

G. Partitioning to Improve Efficiency 

This subsection discusses using knowledge about system structure and characteristics to improve 

the efficiency of the experiment.  As described above, for each trial the number of injected faults 
is chosen by random sampling.  Likewise, the time and place for fault injection. 

That the number of trials with  k  fault occurrences is a random variable introduces several 
problems.  First, it is possible to randomly choose a large number of faults for a single trial.  For 

instance, for the fourplex example any trial with three or more faults has the potential for causing 
the system to fail. Second, it can also produce a large number of trials with no or few faults. Both 
of these events can cause concern about the entire experiment being misleading because of an 
unusual run of random numbers.   

The procedure divides the trials into three classes according to the fault occurrences during the 
trial.  The first class, labeled BF for benign faults, are those trials that have fault occurrences that 
will not cause system failure.  The second class, labeled IF for injected faults, are those to be 
studied by experiment.  The third class, labeled CF for catastrophic faults, are those trials we 

declare to cause system failure because of the fault occurrences during the trial.   

The next part requires careful exposition since we need two different quantities. One is an upper 

bound on P{fail | IF}, the probability of system failure given the set of injected faults. The other 

is a confidence level (the complement of the probability that the experiment has misled us) for 

the upper bound on P{fail | IF}. 

Suppose BF is the set of benign faults that do not cause system failure, CF is the set of 

catastrophic faults assume to cause system failure, and IF the set of faults we will inject. Then 

    P{Fail} = P{Fail | BF}P{BF} + P{Fail | IF}P{IF} + P{Fail | CF}P{CF} 

      = 0 + P{Fail | IF}P{IF} + P{CF}                                                                               (11) 

or 

     P{Fail | IF} = [ P{Fail} – P{CF} ] / P{IF}.                                                                           (12) 

Using the frequentist interpretation that the confidence level is the complement of the probability 

that the experiment has misled us, P{misled}, gives 

    P{misled} = P{misled | BF}P{BF} + P{misled | IF}P{IF} + P{misled | CF}P{CF}           (13) 
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Now, P{misled | BF} = 0. For P{misled | CF}, we reason that we are considering a one-sided 

confidence level: the complement of the probability that the experiment has misled us into 

thinking that the system is reliable when it is not. Declaring the system will fail if certain faults 

have occurred has zero chance of misleading us that the system is reliable. Hence, P{misled | 

CF} = 0. We have 

    P{misled | IF} = P{misled} / P{IF}.                                                                                       (14) 

Given no failures are observed, the number of trials needed to establish the required confidence 

level is given by using formula (1). 

    n = [ log( P{misled | IF} ] / [ log( 1 – P{Fail | IF} ) ].                                                           (15) 

 

VII. FOURPLEX ARCHITECTURE 

This section describes a reconfigurable fourplex and its diagnostic routine.  

A. System Structure and Fault Classes 

The system has four processors and twelve unidirectional links depicted in figure 7. 

We consider both permanent and transient faults. A transient lasts one control cycle. A faulty 

processor sends three (different) random numbers to the other processors. A faulty link sends a 

random number to its destination processor. We assume a 16-bit machine and choose the random 

numbers from the uniform distribution on 1 to 65536.       

                    

 

 

 

 

 

 

 

 

 

                             Figure 7: Reconfigurable Fourplex  
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B. Diagnostic Procedure 

The diagnostic routine is a three-step procedure performed during a single control cycle; it uses 

each processor’s control command; and the system performs the diagnostic procedure before 

sending its majority-determined control command to the actuators.  

In the first step, each processor sends its result to the other processors. Each processor compares 

what it receives from the other processors to its result. It assigns a 1 to another processor if it 

agrees with the other processor and a 0 if it does not. A processor always agrees with its own 

result. Each processor forms a vector of zeros and ones. 

    [

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 1
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 2

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 3
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 4

] 

In the second step, each processor sends its vector to the other processors. Each processor now 

has a 4x4 matrix with column j containing the vector it received from processor j. Each processor 

examines its 4x4 matrix and decides which, if any, component is faulty. 

In the third step, each processor sends its diagnostic to the other processors. All processors vote, 

and a majority of good processors record their vote and send their control command to the 

actuators. 

At the completion of the fifth control cycle, each processor considers its five diagnostic results, 

performs a three-out-of-five vote to determine if a component is permanently faulty, and sends 

its results to the other processors. If a majority decide a component is permanently faulty, it is 

removed from the system.  

If processor k is faulty, the good processors will have four zeros in row k. If the link from j to k 

is faulty, the processors other than k will have a zero in row j and column k. 

C. Examples 

Suppose processor 1 is faulty. After completion of the second step above, 

    processor 1 has the matrix   [

1 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1

] 

    while processors 2, 3 and 4 have the matrix  [

0 0 0 0 
0 1 1 1
0 1 1 1
0 1 1 1

] 

By examining the first row, processors 2, 3, and 4 decide that processor 1 is faulty during that 

control cycle. 

Suppose the link from processor 1 to processor 2 is faulty. After completion of the second step, 
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    processors 1, 3, and 4 have the matrix   [

1 0 1 1
1 1 1 1
1 1 1 1
 1 1 1 1 

]  

    while processor 2 has the matrix  [

0 0 1 1
 0 1 1 1 
0 1 1 1

 0 1 1 1 

]  

Examining the matrices, all processors decide that the link from processor 1 to processor 2 is 

faulty during that control cycle. It is not a faulty processor since no row has three or more zeros.  

This diagnostic procedure only handles a single fault. The next section will show that if the 

diagnostic procedure always correctly identifies the faulty component within five control cycles 

during the experiment, then the diagnostic procedure does not need to handle two faulty 

components for the system to be highly reliable. 

D. Reduced Fourplex 

If a processor is removed, the remaining processors consider a 3x3 matrix. If a link is removed, 

the processors consider a 4x4 matrix where the removed link is assumed to have sent a 1. Since 

the diagnostics consider the pattern of zeros, the removed link is ignored. 

D. Lack of Diagnostics  

There are two sources for the lack of diagnostics. First, some diagnostics will have to be 

performed during maintenance. If a processor fails, the system ignores the six links connecting 

that processor to the others. If two links from a processor fails, the system ignores that processor, 

its third link, and the three links to that processor. Second, the random numbers can match the 

correct answer. This is highly unlikely for the three-out-of-five vote for a permanent fault, but 

there is a 1 in 65536 chance for a transient link fault. Missing a transient fault, however, does no 

harm.  

VIII. DESIGNING AN EXPERIMENT FOR THE FOURPLEX 

A. Overview 

This section applies the theorems of section six to the reconfigurable fourplex described in the 

previous section and depicted in figure 7. This system permits applying all the results in section 

six.  

There are two failure conditions for this example (i) if the system is operating as a twoplex and a 
fault occurs, or (ii) if the system does not detect and correctly identify a fault within five control 
cycles. The second condition is modified for transient faults: It is acceptable to ignore a transient 
fault, but it is a failure if the system incorrectly identifies the fault.  This initial example does not 

monitor performance. 

The goal of this section is to determine what fault injections we need to perform for the trials in 
the experiment. It uses the theorems on partitioning in section VI to increase the efficiency of the 
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experiment. Subsection B presents the initial results without regard to partitioning. Subsection C 
describes the partitioning. Subsections D and E perform the computations for two of the 
partitions. Subsection F summarizes the results of subsections D and E. Subsection G describes 

the class of injectable faults and uses its results and the results of subsections C through F to 
determine the number of trials. Subsection H considers the order of fault occurrence for the 
injectable faults. The order determines which faults will be injected into a fourplex and which 
into a threeplex. Subsection I descries the simulation.   

B. Initial Numerical Results 

The operating time is 10 hours, and the reliability requirement for the system is ≤ 1e-9 chance of 
failure during the operating period. The control cycle is 50 milliseconds or 720,000 cycles per 
operating period. 

The failure rates for each component are 

   permanent 1e-6/hour 

   transient 1e-5/hour 

We normalize operating time to 1, which gives component failure rates of 

      permanent 1e-5/10 hours 

      transient     1e-4/10 hours 

for an overall failure rate of 1.76e-3/operating period. By equation (1), the initial number of trials 
in round numbers, is n = 21e+9 where each trial simulates one operating period. The probability 

of a certain number of faults during an operating period and the expected number of trials for 
that number of faults in given by table 1. 

 

                              Table 1: Initial numerical results 

Number of Faults Probability Expected  Fault Injections 

0 9.9824e-1 2.0687e+10 

1 1.7569e-3 3.6409e+7 

2 1.5461e-6 3.2040e+4 

3 9.0703e-10 1.8796e+1 

≥ 4 3.9923e-13 8.3838e-3 

 

The expected injections per number of faults is only an expectation. The actual number is 

decided by random sampling. In addition, the expected number is only an initial indicator since 

we are going to modify the experiment by partitioning the sample space as described in section 

six. 

C. Partitioning the Sample Space 

As before, BF is the set of benign faults that do not cause system failure, CF is the set of 

catastrophic faults assumed to cause system failure, and IF the set of faults we will inject.  
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We divide CF into three parts. CF1 is the large number of faults class. CF2 is nearly coincident 

faults when there are two fault occurrence during a trial. CF3 is a combination of two 

phenomenon: nearly coincident faults when there are three fault occurrences during a trial and 

more than one permanent fault when there are three fault occurrences during a trial.  

We base the exclusion criterion for nearly coincident faults on the assumption that the system 

detects all faults within five control cycles, but this is not guaranteed. If, during the experiment, 

the system does not correctly identify all faults, then we will have to perform a different analysis.  

Two of the classes of faults are immediate: 

   The class consists of zero fault occurrence: P{BF} = 9.9824e-1. 

   The large number of fault class is P{CF1} = P{≥ 4 faults} = 3.9923e-13. 

The classes CF2 and CF3 ae more complex 

D. Computation of CF2 

Turning to nearly coincident faults and setting the operating period equal to 1, five control cycles 

equals Δ = 5/720000. Using the ordered uniform distribution, the probability of nearly coincident 

faults given two faults is 

     𝑄1 = 2 ∫ 1
1−∆

0 ∫ 1
𝑡1+∆

𝑡1
+ 2 ∫ 1

1

1−∆ ∫ 1
1

𝑡1
= 2 ∆ (1 − ∆) = 1.3889𝑒 − 5.                            (16) 

Hence, CF2 =  P{ two faults } Q1 = 2.1474e-11. 

E. Computation of CF3 

For nearly coincident faults given three faults, let A be the first and second faults are within Δ, 

and B be the second and third faults are within Δ. P{A or B} = P{A} + P{B} - P{A and B}. 

𝑃{𝐴} = 6 ∫ 1
1−∆

0  ∫ 1
𝑡1+∆

𝑡1
∫ 1 +   6 ∫ 1 ∫ 1

1

𝑡1

1

1−∆ ∫ 1 =  3∆ − 3∆2 +  ∆3    
1

𝑡2

1

𝑡2
                        (17) 

 

     𝑃{𝐵} =  6 ∫ 1
1

0 ∫ 1 ∫ 1 + 
𝑡2+∆

𝑡2

1−∆

𝑡1
6 ∫ 1

1

0 ∫ 1 ∫ 1
1

𝑡2
 =  3∆ − 3∆2  

1

1−∆                                     (18) 

 

     𝑃{𝐴 𝑎𝑛𝑑 𝐵} = 6 ∫ 1
1−2∆

0 ∫ 1
𝑡1+∆

𝑡1
∫ 1

𝑡2+∆

𝑡2
  

                               + 6 ∫ 1
1−∆

1−2∆ ∫ 1
1−∆

𝑡1
∫ 1

𝑡2+∆

𝑡2
+ 6 ∫ 1

1−∆

1−2∆ ∫ 1
𝑡1+∆

1−∆ ∫ 1
1

𝑡2
 

                                 + 6 ∫ 1
1

1−∆ ∫ 1
1

𝑡1
∫ 1

1

𝑡2
 

                            = 6∆2 − 6∆3                                                                                                  (19) 
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Hence, the probability of a nearly coincident fault given three faults is  Q2 = 𝑃{𝐴} + 𝑃{𝐵} −

𝑃{𝐴 𝑎𝑛𝑑 𝐵} = 6∆ − 12∆2 + 7∆3 = 4.1666e-5 

If three faults occur, three permanents or two permanents followed by a transient could cause the 

system to fail. We restrict the three-fault case to zero or one permanent. The probability a fault is 

permanent is p = 1/11. The probability of more than one permanent given three faults is 

     𝑄3 =  𝑝3 + 3 𝑝2 (1 − 𝑝) = 2.3291𝑒 − 2                                                                          (20) 

We combine the above to get the probability of excluded faults for three fault occurrences. 

    P{CF3} = P{ 3 faults } [ Q2 + Q3 – Q2Q3] = 2.1163e-11.                                                 (21) 

F. Computation for the class CF 

Since P{CF1}, P{CF2}, and P[CF3} are probabilities of disjoint sets,  

      P{CF} = P{CF1}+ P{CF2} + P{CF3} = 4.3036e-11.                                                      (22) 

G. The class IF 

Turning to the injected faults, let IF1 be the occurrence of a single fault; IF2 be the occurrence of 

two faults separated by Δ; and IF3 be the occurrence of three faults containing nor more than one 

permanent and separated by Δ. 

P{IF1] = P{single fault} = 1.7569e-3                                                                                      (23) 

   P{IF2} = P{two faults} x [1-Q1] = 1.5461e-6                                                                         (24) 

   P{IF3} = P{three faults} x [1 – Q2 – Q3 + Q2Q3] = 8.8587e-10                                           (25) 

Since P{IF1}, P{IF2}, and P{IF3} are probabilities of disjoint sets,  

P{IF} = P{IF1} + P{IF2} + P{IF3} = 1.7584 e-3                                                                   (26)                                                              

By formula (12), the required upper bound on P{Fail | IF} is  

    P{Fail | IF} = [ P{Fail} – P{CF} ] / P{IF} = 5.4422e-7                                                        (27) 

By formula (14), the required confidence level is 

    P{misled | IF} = P{misled} / P{IF} = 5.6870e-7                                                                  (28) 

Given no failures are observed, the number of trials needed to establish the required confidence 

level is given by substituting into formula (15). 

    n = [ log( P{misled | IF} ] / [ log( 1 – P{Fail | IF} ) ] = 2.6423e+7                                       (29) 

H. The Order of Fault Occurrence for the Class IF 

We consider the order of fault occurrence since that determines whether we inject a fault into a 

threeplex or a fourplex For instance, suppose two faults occur: a permanent and a transient. If the 
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first fault is permanent, the second fault is injected into a threeplex whereas if the first fault is 

transient, the second fault is injected into a fourplex.  

Suppose r = probability a fault is permanent fault = 1/11 

  P{perm-perm | two faults} = r2 = 8.2645e-3                                                                            (30) 

   P{perm-tran | two faults} = r(1-r) = 8.2645e-2                                                                        (31) 

   P{tran-perm|two faults} = r(1-r) = 8.2645e-2                                                                          (32) 

   Prob{tran-tran | two faults} = (1-r)(1-r) = 8.2645e-1                                                               (33) 

and 

   P{perm-tran-tran | 3 faults} = r(1-r)(1-r) = 7.5131e-2                                                             (34) 

   P{tran-perm-tran | 3 faults} = r(1-r)(1-r) = 7.5232e-2                                                             (35) 

   P{tran-tran-perm | 3 faults} = r(1-r)(1-r) = 7.5131e-2                                                             (36) 

   P{tran-tran-tran | 3 faults} = (1-r)(1-r)(1-r) = 7.5131e-1                                                         (37) 

Using the result that the number of faults and the type of faults act multiplicatively, we have 

    P{IF1} = 1.7569e-3                                                                                                                 (38)                                                                                                                   

   P{IF2 and p-p} = P{IF2} P{perm-perm | two faults} = 1.2778e-8                                         (39)  

   P{IF2 and p-t} = P{IF2} P{perm-tran | two faults} = 1.2778e-7                                            (40) 

   P{IF2 and t-p} = P{IF2} P{tran-perm | two faults} = 1.2778e-7                                             (41 

   P{IF2 and t–t} = P{IF2} Prob{tran-tran | two faults} =  1.2778e-6                                        (42) 

   P{IF3 and p-t-t} = P{IF3} Prob{tran-tran | two faults} = 6.6556e-11                                    (43) 

   P{IF3 and t-p-t} = P{IF3} P{tran-perm-tran | 3 faults} = 6.6556e-11                                    (44) 

   P{IF3 and t-t-p} = P{IF3} P{tran-tran-perm | 3 faults} = 6.6556e-11                                    (45) 

   P{IF3 and t-t-t} = P{IF3} P{tran-tran-tran | 3 faults} = 6.6556e-10                                       (46) 

Since we sample from the class IF, we condition the above quantities by P{IF}. The resulting 

conditional probabilities and the resulting expected number of trials for each sub-partition given 

the total number of trials is 2.6423e+7 is given by table 2. 
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 Table 2: Number of trials based on partitioning 

Conditional Probability Expected Number of Trials 
Based on Conditional Probability 

P{IF1}/P{IF} = 9.9915e-1 2.6401e+7 

P{p-p and IF2}/P{IF} = 7.2668e-6 1.9201e+2 

P{p-t and IF2}/P{IF} =  7.2668e-5 1.9201e+3 

P{t-p and IF2}/P{IF} = 7.2668e-5 1.9201e+3 

P{t-t and IF2}/P{IF} = 7.2668e-4 1.9201e+4 

P{p-t-t and IF3}/P{IF} = 3.7850e-8 1.0001 

P{t-p-t and IF3}/P{IF} = 3.7850e-8 1.0001 
P{t-t-p and IF3}/P{IF} = 3.7850e-8 1.0001 

P{t-t-t and IF3}/P{IF} = 3.7850e-7 1.0001e+1 

I. Simulation

A simulation checked the diagnostic routine. At the beginning of each trial, it chose the faults 

according to the distributions described above. The diagnostic routine detected and correctly 

identified the faults for all the 27 million trials. The exception was that about one in every 100 

thousand trials, it did not detect a transient link fault because the random error matched the 

correct value. Not detecting the transient link fault had no effect on the reliability of the system. 

One million trials on a desktop running an interpretive language took 90 seconds. All the trials 

took less than one hour. For a more complex system, we can run 1000 hours, use 100 desktops, 

and shift to a compiled language. We can accept a system five or six orders of magnitude more 

complex. 

The fourplex example did not include any applications, but a simulation of a complete system 

would check that the system maintained process control or plant monitoring during fault 

detection and recovery. In this case, the time of fault occurrence and the condition of the plant 

would be a factor. The time of occurrence and the condition of the plant can be chosen randomly 

from normal operating conditions. In addition, the experimenters may wish to conduct some 

trials simulating the more hazardous operating conditions. For instance, if a quadcopter is 

required to stay within a boundary, the experiment can include numerous trials where the 

quadcopter is close to the boundary. 

One method of increasing the likelihood that the system maintains performance during fault 

recovery is to designate time slots during a control cycle dedicated to fault detection and 

recovery. With this scheme, it may take longer to recover from a fault than if the system 

dedicated itself to fault recovery. If faults are infrequent, this is an overhead that will seldom be 

used. This approach requires a system with higher performance.   
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IX.  INTEGRATING AN ARGUMENT FROM DESIGN 

We consider integrating an argument-from-design and statistical analysis for the design of the 

experiment. A result in computer science is that a system of 3k+1 components can correctly 

identify k faulty components in a system. Hence, while a reconfigurable fourplex has four 

components, it can correctly identify a single faulty component. There are two cases depending 

on whether or not the argument-from-design establishes the number of control cycles it takes to 

identify the faulty component. 

A. First Case 

In our first example, we assume there is a demonstration that all faults will be correctly identified 

when there are four components in the system but no demonstration about detection within a 

time limit although we assume the system detects the fault sometime during the operating period. 

In this case, we can classify the trials with a single fault as benign. We have 

    P{BF} = P{ 0 faults} + P{ 1 fault} = 9.999969e-1                                                             (47) 

The injectable faults are 1F2 and 1F3 of the previous section, which gives 

    P{IF} = P{IF2} + P{IF3} = 1.5470e-6                                                                              48) 

The catastrophic faults remain CF = 4.3036e-11 

The upper bound for the probability of failure for the injected faults is 

      P{Fail | IF} = [ P{Fail} – P{CF} ] / P{IF} =  6.1823e-6                                                  (49) 

The confidence level for this probability is     

        P{misled | IF} = P{misled} / P{IF} = 6.4641e-4                                                            (50) 

The number of trials is 

       n = [ log( P{misled | IF} ] / [ log( 1 – P{Fail | IF} ) ] = 1.1879e+6                                 (51) 

B. Second Case 

In our second example, we assume the argument-from-design establishes an upper bound θ on 

the time needed to identify the faulty component. We use this θ instead of the Δ for computing 

the probability of nearly coincident faults. For this example, we assume θ = Δ = 5/720000. 

For this case, the trials with all transients and the trials with the permanent fault the last 

occurring fault join the benign class. 
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               Table 3: Classification for second argument from design  

Classification and probability  
For no argument-from-design 

Reclassification for 
Argument-from-design 

That includes recovery time 
 

P{ 0 faults}= 9.9824e-1 BF 

P{IF1} = 1.7569e-3 BF 

P{p-p and IF2} = 1.2778e-8 IF 
P{p-t and IF2} =  1.2778e-7 IF 

P{t-p and IF2} = 1.2778e-7 BF 

P{t-t and IF2} = 1.2778e-6 BF 

P{p-t-t and IF3} = 6.6556e-11 IF 

P{t-p-t and IF3} = 6.6556e-11 IF 

P{t-t-p and IF3} = 6.6556e-11 BF 

P{t-t-t and IF3} = 6.6556e-10 BF 

P{CF} =  4.3036e-11 CF 

 

For the experiment where the argument from design includes the recovery time 

    PA{BF} = P{0 faults} + P{IF1} + P{t-p and IF1}  

                       + P{t-t and IF1} + P{t-t-p and IF3} + P{t-t-t and IF3} 

                  = 9.99958e-1                                                                                                      (52) 

    PA{IF} = P{p-p and IF2} + P{p-t and IF2} + P{p-t-t and IF3} + P{t-p-t and IF3}  

                 =  1.40691e-7                                                                                                (53) 

    PA{CF} = P{CF} = 4.30360e-11                                                                                        (54) 

The upper bound for the probability of failure for the injected faults is 

      PA{Fail | IF} = [ PA{Fail} – PA{CF} ] / PA{IF} = 6.80180e-3                             (55) 

The confidence level for this probability is     

P{misled | IF} = P{misled} / PA{IF} = 7.10777e-3                                                         (56) 

The number of trials is 

       n = [ log( P{misled | IF} ] / [ log( 1 – PA{Fail | IF} ) ] = 725                                         (57) 

As expected, incorporating a structural element (argument-from-deign) reduces the experimental 

effort. 

X.  EXTENSIONS 

When considering more realistic applications of the results above, there are synchronous and 

asynchronous systems. Synchronous systems operate in near lockstep in order for all the good 
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processors to arrive at the same result. This facilitates error detection and determining the signals 

sent to the actuators, but it creates an operational overhead. There is interactive consistency 

where information arrives from different, noisy sensors at different times, and the computers 

must decide on a common value to produce identical results. There is clock synchronization. 

Asynchronous systems avoid the overhead, but fault detection and determining the proper 

control commands are more difficult. An asynchronous system might be suitable for monitoring 

where the goal is deciding when certain parameters are out of bounds.    

We can include results from the literature such as various characterizations of faults and efficient 

fault-injection tools.  

We can attempt extending this approach to sensors and actuators. 

We can place commercial-off-the-shelf components on test. We can have a desktop or laptop 

monitor several components where the monitoring depends on what is observed. Determining the 

hard-failure rate requires only occasional checking. Determining transient occurrence and 

perturbations requires nearly continuous monitoring.  

We can design systems using commercial components. This project would assume a failure rate 

for the components and determine what designs could achieve certain system reliabilities. The 

results of this endeavor could be used to determine what failure rate needs to be established by 

the test above. Successful designs would justify the experiments needed to estimate the failure 

rates of components. 

We can examine the class of systems with maintenance-on-demand. A space station or 

installations on a moon or planet might use such a routine. The mathematical results in section 

six remain the same, but the application of the theorems and the simulation will change. If the 

requirement is that a plant have a small probability of failure during a ten-year period, a trial 

consists of simulating a ten-year period.   

We can apply the global fault model to other problems. Events in the model include permanent, 

transient, and intermittent faults. It includes independent faults and faults correlated in space or 

time or both. One application includes communication systems. A fault tree approach applied at 

the end of an operating period only considers permanent faults, but a communication system can 

fail during the operating period due to transients. Communication systems are also prone to 

correlated faults. We can do a quantitative analysis of protocols that are designed to restore 

connectivity after a fault occurrence. 

For any system, we can use the global fault model to consider hard deadlines for performance or 

reliability. The current approach for performance is to use a Markov model and compute the 

mean downtime, but downtimes of 1/6 of a second every minute and 1 day every year are nearly 

the same, while the effects can be different.   
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XI. SUMMARY

This paper outlines a fault-injection experiment based on simulating natural-life testing for a 

class of systems. The class consists of those systems obtaining reliability by redundancy with an 

operating period without maintenance followed by a maintenance check that removes faulty 

components. A trial emulates an operating period, and the paper presents a formula for how 

many trials are needed to establish a given reliability at a given confidence level. This approach 

achieves efficiency by using structural arguments that the system operates correctly if fault free, 

which implies we need only observe the system from fault injection to fault recovery. We inject 

faults according to a global fault model based on the failure rate of the components. Theorems 

about the global fault model give the probability distributions for how many, when, where, and 

what kind of faults to inject during a trial. An example reconfigurable fourplex illustrates how to 

apply the theorems. The example includes a fault detection routine. A program simulates 

choosing, injecting, and detecting the faults. The example fourplex successfully completed the 

required number of trials.   
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