
June 2021

NASA/TM–20210013688

Establishing Fault Tolerance for a Class of Systems

by Experiment

Allan L White
Langley Research Center, Hampton, Virginia

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

 TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

 TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

 Access the NASA STI program home page at
http://www.sti.nasa.gov

 Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/
and select the “General” help request type.

https://www.sti.nasa.gov/sti-contact-form/

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia
23681-2199

June 2021

NASA/TM–20210013688

Establishing Fault Tolerance for a Class of Systems

by Experiment

Allan L White
Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

2

Abstract

A long-standing problem in system verification is establishing fault tolerance at the ultra-high

level by experiment. It is considered impossible because of system complexity and the enormous

number of trials needed. This paper considers the problem for a class of digital systems that use

redundancy to achieve reliability. The class is the systems that operate for a period of time

without maintenance followed by a maintenance check that replaces components identified as

faulty. The paper considers simulating a natural life test where a natural life test observes a

number of operating periods. If the system does not fail during the test, it can be said to have a

certain reliability at a certain confidence level. The approach in this paper is to make the

simulated life test more efficient while maintaining realism by integrating structural arguments,

information on fault occurrence, and fault injection in the lab. The major result of this paper is

constructing a global fault model using the failure rate of the components and proving theorems

about the model that tell how many, what kind, when, and where to inject faults. A simple

example illustrates applying the theorems.

I. INTRODUCTION

A. Objective

We propose a method of verifying fault tolerance at the ultra-high level by experiment for a class

of systems and faults. We consider microprocessors for control and monitoring that use

redundancy for reliability. They may or may not use reconfiguration. These systems have an

operating period with no maintenance followed by a maintenance check where all components

detected as faulty are replaced. The approach is simulated life testing where each trial represents

an operating period. During a trial, we inject faults into the system based on the distributions for

fault occurrence. We also use structural arguments that a system operates correctly if all the

components are functioning correctly. Hence, the approach integrates data on fault occurrence,

structural arguments, and laboratory experiments.

There are a number of aspects to reliability. One division is validation and verification where

validation asks if we built the right thing and verification asks if we built it right. There are

structural arguments that consider such topics as whether or not the system will work correctly if

all the components are fault free. There are stochastic investigations that examine the effect of

noise and fault occurrence on the system. This paper considers the probability of the system

surviving fault occurrence.

B. Background and Motivation

The use of computers as controllers and monitors is becoming more widespread [1, 2], and some

applications are safety critical [2, 3, 4]. A National Research Council document states that the

lack of verification methods is a barrier to upgrading the National Airspace [2]. There is a desire

for more performance-based, empirical demonstrations of reliability [38]. One topic is a

3

demonstration of fault tolerance at the ultra-high level. The obstacles are system complexity and

the enormous number of trials necessary to establish fault tolerance at a high confidence level.

This has been an open problem for fifty years and considered impossible for thirty years [4, 5, 6].

The sections below offer a solution.

C. Outline

Section two examines some of the literature in the field. It begins with references stating the

growing use of microcontrollers and the importance of their reliability. It continues with

references describing the difficulty of establishing ultra-reliability by experiment. Since there is a

large amount of material on fault injection, the bibliography next considers the activity in the last

decade seeking any evidence of the existence of any method of verification. This is followed by

numerous papers describing efforts to characterize faults and inject them efficiently. The premise

is that fault injection yields information that can improve system reliability.

Section three considers current approaches to verification while section four compares this

paper’s definition of a fault with another popular definition. Section five outlines the

experimental approach. Section six presents the fault model and derives the theorems needed to

apply it. Section seven describes the structure of a reconfigurable fourplex while the eighth

applies the theorems in section six to design a fault injection experiment. Section nine illustrates

integrating the experiment with an argument-from-design. Section ten considers extensions of

the results in this paper.

II. BIBLIOGRAPHY

This bibliography describes the field of fault injection by topics: the importance of fault

tolerance but the impossibility of establishing ultra-high fault tolerance by experiment, the

problem of fault detection, using fault detection to test design, and the efficient injection of

faults. This paper does not use any technical content of any of these papers. If the project

continues, it may incorporate some of the results below.

A number of papers mention the importance of fault tolerance but the impossibility of
establishing ultra-high fault tolerance by experiment. These papers provide the motivation for
this endeavor. A publication [1] observes that digital controllers will become more prevalent.

Another [2] lists the benefits of autonomous flight, it states that amongst the four highest
priorities are verification and validation. A report [3] states that appropriate methods for
assessing safety and reliability are key to establishing the acceptability of digital information and
control systems in safety-critical plants. A chapter in a compendium [4] states that decades of

theoretical and experimental work and numerous recent successful applications have established
fault tolerance as a standard objective in computer system design, but in contrast to the objective
of high speed, satisfaction of fault-tolerance requirements cannot be demonstrated by testing
alone, but requires formal analysis. A publication [5] observes that safety-critical systems play

an important role in modern societies, with increasing numbers of applications in many domains
like transportation, nuclear energy and healthcare, but how to assess systems that require very
high reliability remains a challenging task after almost 30 years since the first publications to

4

highlight the problem. A paper [6] concludes the insertion of artificial faults into a real or
simulated computer system yields benefits, but to evaluate a system’s fault tolerance capabilities
is a much harder task, impossible even. An article [7] makes the case that greater reliance on

computers in a variety of applications implies the consequences of failure have become more
severe, but fault injection to determine a system’s response offers an effective solution to this
problem. The article surveys several fault-injection studies and tools. In a paper [8], the authors
argue that early validation of fault tolerance is essential in developing dependable computer

systems, and they defined a strategy for testing fault tolerance.

An important factor in reliability is the ability of a system to detect faults, called the diagnostic

level, and recover from them. Otherwise, faults can accumulate and overwhelm the fault

handling capabilities. An extensive effort [9] converts methods of simulating faults into injecting

faults into hardware to study system properties and to estimate the diagnostic level. A

consideration of memory errors [10] seeks to reduce the area and power requirement of error

correcting codes without affecting delay in detection. In order to tolerate faults that emerge in

operating Networks-on-Chip, diagnosis techniques are employed for fault detection and

localization, and a paper [11] offers an improvement in diagnostics by combining different

techniques. Field-Programmable Gate Arrays are rapidly gaining popularity as implementation

platforms, and a paper [12] presents a method for transient and permanent fault mitigation and

run-time fault recovery. Systems that are used in high dependability and integrity applications

need to be designed with the capability to on-line detect and recover from the errors caused by

faults, and since the majority of errors are usually transient and not reproducible, a paper [13]

presents a set of system-level checks comprising for the on-line detection of errors. A paper [14]

presents an approach to estimate the fault coverage of the implementation of a VLSI design

obtained by fault simulation at the function level, and the results show a good correlation

between the estimated fault coverage, based on fault simulation at the functional level, and the

actual fault coverage obtained by fault simulation on a gate level implementation. A paper [15]

discusses an experimental methodology for simulation-based validation of fault tolerant

microprocessor architectures. It injects transient faults, and estimates the diagnostic level.

Fault injection has been used to test design features. An effort was made to uncover defects in

system design by fault injection [16], but the effort revealed that random fault injection was not
an efficient approach. A paper [17] observes that transient and permanent faults have been
deeply studied while this work goes a step further and assess the dependability of a fault-tolerant
computer system against intermittent faults. The effect of single event transient on reliability has

become a significant concern for digital circuits, and a paper [18] proposes an algorithm for
evaluating the reliability of digital circuits given their occurrence. Redundant execution is a
common approach to achieve fault-tolerance, but a paper [19] observes it is energy inefficient
and proposes a more efficient approach. The effect of compensating module faults on the

reliability of majority voting based VLSI fault-tolerant circuits is investigated [20] using a fault
injection simulation method where the simulation method facilitates consideration of multiple
faults in the replicated circuit modules as well as the majority voting circuits. A paper [21] gives
a brief description of a teraflops supercomputer and assesses signal sensitivity to transient faults

and the effectiveness of the fault/error handling mechanisms by fault injection.

5

There is considerable effort with the goal of efficiently injecting faults. Optimized and custom
arithmetic circuits are widely used in embedded systems, and a paper [22] presents an automated
test generation and bug localization technique for debugging arithmetic circuits with

experimental results demonstrating that the proposed approach can be used for automated
debugging of large and complex arithmetic circuits. To achieve high reliability in on-chip
networks, it is necessary to test the network continuously with Built-in Self-Tests so that the
faults can be detected quickly and the number of affected packets can be minimized, but since

built-in-self-tests cause significant performance loss due to data dependencies, a paper [23]
proposes a comprehensive test strategy with minimized influence on system performance. Since
efficient handling of faults during operation is highly dependent on the interval from the time
embedded monitoring instruments detect faults to the time when the fault manager localizes the

faults, an article [24] proposes a self-reconfiguring network in which all instruments that have
detected faults are automatically included in the scan path, and a fault detection and localization
module in hardware that detects the configuration of the network after self-reconfiguration and
extracts the error codes reported by the fault monitoring instruments. A paper [25] presents a

new fault injection method to increase the fault emulation performance by converting the
original circuit into a fault-injectable circuit mapping the fault-injectable circuit onto the
emulator. A paper [26] proposes three new techniques that substantially reduce the parallel fault
simulation time where the new techniques are 1) reduction of faults simulated in parallel through

mapping non-stem faults to stem faults, 2) a new fault injection method called functional fault
injection, and 3) a combination of a static fault ordering method and a dynamic fault ordering
method. A paper [27] addresses the problem of simulating and generating tests for transition
faults in non scan or partial scan sequential circuits by enhancing the transition fault model for

the gate-delay faults and the stuck-open faults in synchronous sequential circuits. Since the size
and complexity of modern dependable computing systems has significantly compromised the
ability to accurately measure system dependability attributes such as fault coverage and fault
latency and fault injection techniques are difficult to apply because the size of the fault set is

essentially infinite, a research effort [28] has developed a new deterministic, automated
dependability evaluation technique using fault injection to yield more useful information. To
maximize the efficacy of fault injection, a paper [29] presents two fault injection methodologies:
stress-based injection and path-based injection. A paper [30] notes that ultra-dependable

computing demands verification of fault-tolerant mechanisms in the hardware, and this research
tries to bridge that gap by developing a new fault-injection methodology for processors based on
a register-transfer-language fault model. A paper [31] presents the results of several experiments
conducted using a fault injection-based automated testing system where the experiments

consisted of exhaustively injecting three separate fault types into various locations of two distinct
applications. Fault injection has been used to evaluate the dependability of computer systems,
but most fault-injection studies concentrate on the final impact of faults on the system with an
emphasis on fault latency and coverage issues, but a paper [32] develops a fault injection and

monitoring environment as a tool to study fault propagation.

III. ALTERNATE APPROACHES

There are three arguments that we do not need to perform an experiment. The first is that enough
flights have been completed to establish the hardware is reliable. The second is that we can

establish reliability by a safety case. The third is that we can compute the reliability using a semi-

6

Markov model of the system. We consider each, describe their limitations, and observe what
each has to contribute to conducting a laboratory experiment.

A. Natural Life Testing

A natural life experiment would subject an embedded controller to a certain number of operating

periods where we base the number of periods on the desired probability of failure and desired

confidence level. The motivation for the confidence level is that if there are random elements

present an experiment can mislead us. We take the interpretation of confidence level as the

complement of the probability that the experiment has misled us. A confidence level of 99%

means there is a 1% chance (or less) that the experiment has misled us. Since a confidence level

is a quantitative measure of the quality of the experiment, we will ask that the quality of the

experiment match the quantity being measured. For a probability of failure ≤ 1e-9, we require a

confidence level of 100(1 – 1e-9)% .

A natural-life experiment consists of binary trials where the outcome of any trial is success or

failure. If no failures are observed, the formula for the number of trials required, n, to establish a

probability of failure ≤ p at a confidence level of 100(1 – γ)% is given by the formula

 (1 − 𝑝) 𝑛 = 𝛾 (1)

For p = γ = 1e-9, n = 21 billion.

The size of the US commercial fleet is about 7,000, and we have had fly-by-wire for about 30

years [51, 52, 53]. Assume every aircraft has the same flight control computer, aircraft fly

continuously, and there are 10,000 hours in a year. To establish the probability of failure during a

ten-hour flight is ≤ 1e-9 at the 100(1 – 1e-9)% confidence level requires the 7,000 aircraft to fly

3,000 years with no failures.

The experiment will simulate the 21 billion trials. As mentioned, we will gain efficiency by

using the structural argument that the system will operate correctly if fault free. We will retain

realism by using a fault occurrence model based on the failure rate of components. If the failure

rate is low, the model will tell us that many operating periods have no fault occurrences.

B. Safety Cases

There are two methods used in safety cases: prescriptive and performance based [38]. Currently,
safety cases principally rely on prescriptive methods that set guidelines for product features and

development processes. Required product features may include elements such as fail-safe or
back-up systems. Standards for development processes specify the procedure used in producing
the product. In contrast, performance based criteria consider desired, measurable outcomes,
leaving how to achieve the criteria to the designer. There is a general desire for the program to

use more performance-based standards, especially among vendors supplying products for
approval. This paper develops a performance-based procedure.

On the positive side, we assume a safety case has established at an acceptable level that the

system operates correctly if the components are fault free.

7

C. Semi-Markov Models

An approach to verification is using a semi-Markov model to compute the probability of failure.

A problem with this approach is that we need an extremely accurate description of the

reconfiguration process to be authentic. The problem is heightened because there are multiple

parameters which increases the experimental burden to maintain an overall confidence level, we

must increase the confidence level for each parameter. The general result is that the loss of

confidence is additive. We will also use the theorem below in the next section when we consider

placing components on test.

Theorem [39]: Suppose [ i ,  i] is a 100(1 - h i)% confidence interval for p i for 1  i  n,

then ([ 1 ,  1],..., [ n ,  n]) is a 100(1- h 1 - ... - h n)% confidence interval for the

parameters (p 1 ,..., p n).

Given a reliability requirement of 1e-9 and four parameters, each parameter must be estimated at

the 100(1 – 2.5e-10)% confidence level. Describing system reconfiguration at this confidence

level appears intractable since reconfiguration is a complex procedure consisting of fault

detection, fault identification, and faulty component removal that involves both hardware and

software.

We illustrate this with a simple model, depicted in figure 1, of a reconfigurable fourplex subject

to permanent faults. In this model, λ is the failure rate of a component. D1 and D2 are the

diagnostic level for the system as a fourplex and as a threeplex. The difficult parameters to

estimate are the reconfiguration transition functions δ1 and δ2 that remove component identified

as faulty from the system. S represents the states that are fault free; R the recovery mode states; F

the failure states due to undetected faults; C the failure states due to nearly coincident faults; and

E the failure state due to exhaustion of parts.

 Instead of attempting to determine the reconfiguration density function at an ultra-high level, a

modeler can attempt to decompose it into several simpler steps. An example is in figure 2 where

the three steps are detection, identification, and removal with constant rate transitions.

One objection to this decomposition is that some elements of reconfiguration are fixed-time

procedures that are not modeled by constant rate (memoryless) transitions. Another is that the

intermediate states of detection and identification may not be observable, making it difficult to

estimate the transitions between them.

8

Figure 1: Semi-Markov model of a reconfigurable fourplex with only permanent faults

 Figure 2: Proposed decomposition of the reconfiguration process

In general, no detail of reconfiguration can be ignored since any ignored element can have a

greater effect on the computation than the extremely small quantity to be computed, but a

detailed description of reconfiguration yields intractable models with hidden states.

 3λ

 L1 F1

 4λ(1-D1) λD1

 4λD1 3λ

 S1 R1 C1 3λ

 L2 F2

 δ1(τ) 3λ(1-D2) λD2

 3λD2 2λ

 S2 R2 C2

 δ2(τ)

 2λ

 S3 E

 ε θ σ

 O D I R

9

This subsection does not claim that establishing ultra-reliability by semi-Markov models is

impossible. It merely points out that the current approach appears intractable.

IV. NATURE OF FAULTS

We consider the definition of a fault used in this paper, an alternate definition, and establishing

the failure rate of commercial off the shelf components.

A. Definition of Fault for this Paper

In this paper, a fault is an input-output malfunction of a device. That lets a fault be observable

when collecting field data and increases the likelihood of detection when it occurs in a system

although there are obstacles to both objectives. One is that we may have the failure rate of a

component but we do not know the faulty behavior of a component. To counter this, design a

system to detect any input-output malfunction.

Another is that observability requires integrated circuits to be practical. Consider the simplified

computer in figure 3 where the chip shaded black has become faulty. In the depicted

configuration, it has no direct link to the output pins, and consequently, it’s not certain we can

get its faulty behavior to the computer’s output pins.

 Figure 3: Computer with moderate level of circuit integration

Most likely, we would have to redesign the computer to achieve a high diagnostic level. The new

design would not be as efficient, but it would be a question of effectiveness (verifiability) being
more important.

For this reason, for this experiment, we assume we have a computer on a chip, and its failure rate
refers to the moment when incorrect values begin to appear on its output pins.

For future consideration, one method of achieving a high diagnostic level is to have dual units
that flag an error if they disagree. For four computers, an architecture would be a double-dual
where each pair acts in lockstep.

10

B. Alternate Definition of Faults

Another definition is that a fault is a defect that may or may not cause an error while an error is

an observable manifestation of a fault [50]. By this set of definitions, the experiment in this paper

would be called error injection. The definition of a fault as a defect that may or may not cause an

error increases the likelihood that a fault will not be detected.

Undetected faults receive attention because of the possibility they will accumulate until some

event causes them to produce multiple errors that overwhelm the system. If faults are

accumulating in components that can eventually cause the system to fail, then the components

are wearing out. For components that wear out, there is often a replace-before-failure policy

based on the wear-out distribution and the age of the component. In this case, we would derive

the wear-out distribution from the percentage of faults that are not detected.

C. Commercial-Off-The-Shelf (COTS) Components

Commercial off the shelf components offer an opportunity to establish their failure rate because

they are inexpensive and because a constant failure rate lets us trade numbers for time. We

consider a confidence level higher than the reliability since a system can use different types of

components. For the computations below, we assume a maximum of ten different components.

To establish a probability of failure ≤ 1e-4/hour at the 100(1 – 1e-5)% level requires placing 54

components on test for three months and observing no failures. For 1e-5/hour at the 100(1 – 1e-

6)% level, place 320 components on test for six months.

In contrast, to establish probability of failure ≤ 1e-6/hour at the 100(1 – 1e-7)% level requires

placing 1000 units on test for 2 years.

Trading numbers for time permits conducting the test in a reasonable amount of time, but it may

not let us determine whether or not the components are wearing out.

D. Relevant Literature

A paper considers imperfect diagnostics and computes the conditional probability of system

failure during an operating period given the system has not yet failed [33]. A source for the

failure rate of components is [34]. Discussions of the reliability of COTS are in [35, 36, 37].

V. EXPERIMENTAL APPROACH

We wish to demonstrate fault tolerance, and we base the experiment on modified natural-life

testing for a class of systems. The systems are those that have an operating period with no

maintenance followed by maintenance between operating periods. A natural life test would

subject the system to a number of operating periods, and if we observe no failures, declare the

system has a certain reliability at some confidence level. The number of trials is given by

formula (1).

In a simulated natural-life test, each trial simulates an operating period, but it gains efficiency by

using the structural argument that the system operates correctly if the components are fault free.

11

Using this result, we need only observe the system from fault injection to system recovery. In a

well-designed system, recovery is fast in order to prevent an accumulation of faults that could

overwhelm the system.

Using the failure rate of the components, we develop a model that describes all possible fault

occurrences and derive theorems that tell us how many, what kind, when and where to inject

faults during a trial.

The simulated life test described in this paper does impose failure conditions that are not present

during natural life testing. In a natural life test, the system need only survive the required number

of operating periods. It does not need to detect the faults or correctly identify the faults or

reconfigure correctly. We require all of these in the simulated test. Furthermore, the system

needs to perform these actions quickly to achieve the necessary efficiency.

In a complete test, during fault recovery, the system must maintain process control or plant

monitoring. If the system does not perform its intended function during fault recovery, that

counts as a failure.

Finally, any experiment with experimental error and a confidence level requires that the system

be more reliable than originally required to pass the test. For example, suppose the requirement

is a probability of failure ≤ 1e-9. If the system has a probability of failure of 1e-9 and we conduct

21 billion trials, we can expect 21 failures during the experiment.

VI. THE GLOBAL FAULT MODEL

This section constructs a global fault model and derives theorems about the model that show how
to choose the number, occurrence time, type, and location of the faults for a trial (representing
one operating period) in the experiment. The model assumes the events are independent and
occur at a constant rate, but the events are general. The event could be a permanent, transient, or

intermittent fault. It could be independent faults or faults correlated in time or space or both. It
could represent one fault inducing other faults. The first four subsections review four standard
distributions. The fifth derives a basic result on fault occurrence and the sixth interprets the
result in terms of the four standard distributions.

A. Independent and Competing Constant Rate Events

Suppose there are m events each with rate  i as depicted in figure 2. In the exposition below

these events will be a detailed description of all possible fault occurrences. For instance, S 1 can
be the occurrence of a permanent fault in component 1, while S 2 can be the occurrence of a
transient fault in component 1.

12

 S1



 S2



 S


m


 Sm

 Figure 4: The Fan-out for fault occurrence

For the model in figure 4, the probability that event i has occurred given some event has

occurred is

m1

i






 (2)

B. The Poisson Distribution

The Poisson distribution is a renewal process that occurs at a constant rate. The model with rate

 is given in figure 5.



 S 0 S 1 ... S k-1 S k S k+1

Figure 5: Poisson Renewal Process

For the model in figure 3, the probability of being in state k at time T is

 

!k

T-ekT 
 . (3)

The fault injection procedure will have to be adapted to the assumption of a constant rate used by
the Poisson process. If the system removes failed components, the failure rate of the system does
not remain constant. One method of handling this is to treat the removed components as virtual
components. This means that the component is theoretically subject to later fault injections, but

in practice these faults will not be injected if the system has already removed the component. If
the system has not yet removed the faulty component, then the second fault can be injected into
the same component. This double injection checks that the occurrence of a second fault does not
interfere with the detection and removal of a faulty component.

13

C The Ordered Uniform Distribution

Choose a sample of size n (x 1 , x 2 , ... , x n) from the uniform distribution on the interval [0 T].

Order it as n)2)1) xxx (((  . The distribution

 

12n

ns

1-nt

2s

1t

1s

0
n

nn)22)11)

dtdtdt
T

!n

sxsxsxProb







 (((,,,

 (4)

is called the ordered uniform distribution.

D. The Multinomial Distribution

Suppose we sample with replacement from a population with m classes of objects. Suppose the
probability of choosing an object from class i is pi . For a sample of size n the probability of
choosing ki objects from class i (i=1,...,n) is

 mk
mp2k

2
p1k

1
p

mk2k1k

!n


 !!!
 (5)

In particular, if the class of objects is the set of faults given in figure 4, then the probability of ki
faults of type i occurring given n faults have occurred is given by the expression

mk
m

2k
2

1k
1

mk2k1k

!n






































 !!!
 (6)

where m1   . In the formulas (5) and (6) some of the ki’s can be zero.

E. Global fault model

Suppose there are m classes of faults with i the rate for class i. The total rate is

m1   . The global model for precisely n faults occurring during an operating period

is given in figure 4. The fan out from all the intermediate states is the same as the fan out from
state S 0 . There are n+2 columns beginning with column 0 and ending with column n+1. The
first and last columns have a single row. The process begins in state S 0 and ends in one of the
states in the n th column. The final state S n+1 is included because the mathematical

formulation specifies that precisely n faults have occurred (during the operating period) by
requiring that the process reaches the n th column during the operating period, but the transition
into S n+1 does not occur until after the operating period.

14

 Figure 6: Global fault occurrence model

Suppose k i faults of type i (i = 1,..., m) with n = k 1 + ... + k m) have occurred in some
specified order, and let  j be the rate of the jth fault (j=1,..., n) that has occurred. We have,

     

m21

mk
m

2k
2

1k
1n21

kkkn 






 (7)

and  =  1 + ... +  m . The probability that the n designated faults occur in the designated

order and that the jth fault occurs before time s j is given by the convolution integrals below.
The expression in brackets is the probability that the transition into state Sn+1 does not occur,
ensuring that precisely n faults have occurred

 ∫ 𝛽1 𝑒𝛽1𝑡1 𝑒−(𝛼−𝛽1) 𝑡1
𝑠1

0

 ∫ 𝛽2𝑒𝛽2(𝑡2− 𝑡1) 𝑒−(𝛼−𝛽2) (𝑡2− 𝑡1)𝑠2

𝑡1

 ⋮

 ∫ 𝛽𝑛𝑒𝛽𝑛(𝑡𝑛− 𝑡𝑛−1) 𝑒−(𝛼−𝛽𝑛) (𝑡𝑛− 𝑡𝑛−1)𝑠𝑛

𝑡𝑛−1

 [1 − ∫ ∝ 𝑒−∝ (𝑡𝑛+1− 𝑡𝑛) 𝑑𝑡𝑛+1
𝑇

𝑡𝑛
]

 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1

 = 𝛽1 𝛽2 … 𝛽𝑛 𝑒 −∝𝑇

 ∫
𝑠1

0 ∫ … ∫ 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1

 S1,1 S2,1 Sn,1

 α1 α

 S2,1 S2,,2 Sn,2

 α

 α2

 S0 Sn+1

 αm α

 Sm,1 Sm,2 Sm,n

15

 = (∝1)𝑘1 … (∝𝑚)𝑘𝑚 𝑒−∝𝑇

 ∫
𝑠1

0 ∫ … ∫ 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
 (8)

This last expression is the occurrence probability for precisely n faults of a specified type and
location in a specified order at specified times.

Expression (8) does not depend on the specified order of the faults. Since any ordering yields the
same probability, all orderings are equally likely. Hence the occurrence probability for precisely
n faults of specified type and location at specified times in any order whatsoever is

      

12n

ns

1-nt

2s

1t

1s

0

T-mk
m

2k
2

1k
1

m21

dtdtdt

e

kkk

!n









 

!!!

 (9)

F. Interpretation of the derivation

We have

𝑛!

𝑘1! 𝑘2!… 𝑘𝑛!
 (∝1) 𝑘1 … (∝𝑚)𝑘𝑚 𝑒−∝𝑇 ∫

𝑠1

0 ∫ … ∫ 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1

 =
𝑛!

𝑘1! 𝑘2!… 𝑘𝑛!
 (∝1)𝑘1 … (∝𝑚)𝑘𝑚 𝑒−∝𝑇

 [
∝𝑛

∝𝑛

𝑛!

𝑛!

𝑇𝑛

𝑇𝑛
] ∫

𝑠1

0 ∫ … ∫ 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1

 = [
𝑛!

𝑘1! 𝑘2!… 𝑘𝑛!
 (

∝1

∝
)

𝑘1

… (
∝𝑚

∝
)

𝑘𝑚
] [

(∝𝑇)𝑛 𝑒−∝𝑇

𝑛!
]

 [
𝑛!

𝑇𝑛
 ∫

𝑠1

0 ∫ … ∫ 𝑑𝑡𝑛 … 𝑑𝑡2 𝑑𝑡1
𝑠𝑛

𝑡𝑛−1

𝑠2

𝑡1
] (10)

The expression (9) (and hence the probability) is algebraically equivalent to a product of three
probability distributions as given in expression (10). The multiplicative property implies these
three distributions act independently.

The three distributions are the Poisson renewal process, the ordered uniform, and the

multinomial distribution. Since they act independently, the faults for any trial (representing one
operating period) in the simulation can be chosen as follows.

 Theorem:

 (i)The number of faults is given by the Poisson.

(ii)The occurrence times are given by the ordered uniform

(iii)At each occurrence time the location and type of fault is given by the multinomial

(iv)These distributions act independently

16

We might think that since transients occur at a faster rate than permanents that if a transient and a
permanent have occurred then it is more likely that the transient has occurred first, but both
orderings are equally likely. Another theorem about the global fault model is the following.

Theorem: Given that a set of faults has occurred, all orderings are equally likely.

Even though all orderings are equally likely, different orderings can have different effects on the
system. Suppose we have a fourplex, and a transient and permanent occur. If the permanent
occurs first, then the permanent encounters a fourplex while the transient encounters a threeplex.

If the transient occurs first and there is sufficient time between the occurrences for the system to
have recovered from the transient, both the transient and the permanent encounter a fourplex.

G. Partitioning to Improve Efficiency

This subsection discusses using knowledge about system structure and characteristics to improve

the efficiency of the experiment. As described above, for each trial the number of injected faults
is chosen by random sampling. Likewise, the time and place for fault injection.

That the number of trials with k fault occurrences is a random variable introduces several
problems. First, it is possible to randomly choose a large number of faults for a single trial. For

instance, for the fourplex example any trial with three or more faults has the potential for causing
the system to fail. Second, it can also produce a large number of trials with no or few faults. Both
of these events can cause concern about the entire experiment being misleading because of an
unusual run of random numbers.

The procedure divides the trials into three classes according to the fault occurrences during the
trial. The first class, labeled BF for benign faults, are those trials that have fault occurrences that
will not cause system failure. The second class, labeled IF for injected faults, are those to be
studied by experiment. The third class, labeled CF for catastrophic faults, are those trials we

declare to cause system failure because of the fault occurrences during the trial.

The next part requires careful exposition since we need two different quantities. One is an upper

bound on P{fail | IF}, the probability of system failure given the set of injected faults. The other

is a confidence level (the complement of the probability that the experiment has misled us) for

the upper bound on P{fail | IF}.

Suppose BF is the set of benign faults that do not cause system failure, CF is the set of

catastrophic faults assume to cause system failure, and IF the set of faults we will inject. Then

 P{Fail} = P{Fail | BF}P{BF} + P{Fail | IF}P{IF} + P{Fail | CF}P{CF}

 = 0 + P{Fail | IF}P{IF} + P{CF} (11)

or

 P{Fail | IF} = [P{Fail} – P{CF}] / P{IF}. (12)

Using the frequentist interpretation that the confidence level is the complement of the probability

that the experiment has misled us, P{misled}, gives

 P{misled} = P{misled | BF}P{BF} + P{misled | IF}P{IF} + P{misled | CF}P{CF} (13)

17

Now, P{misled | BF} = 0. For P{misled | CF}, we reason that we are considering a one-sided

confidence level: the complement of the probability that the experiment has misled us into

thinking that the system is reliable when it is not. Declaring the system will fail if certain faults

have occurred has zero chance of misleading us that the system is reliable. Hence, P{misled |

CF} = 0. We have

 P{misled | IF} = P{misled} / P{IF}. (14)

Given no failures are observed, the number of trials needed to establish the required confidence

level is given by using formula (1).

 n = [log(P{misled | IF}] / [log(1 – P{Fail | IF})]. (15)

VII. FOURPLEX ARCHITECTURE

This section describes a reconfigurable fourplex and its diagnostic routine.

A. System Structure and Fault Classes

The system has four processors and twelve unidirectional links depicted in figure 7.

We consider both permanent and transient faults. A transient lasts one control cycle. A faulty

processor sends three (different) random numbers to the other processors. A faulty link sends a

random number to its destination processor. We assume a 16-bit machine and choose the random

numbers from the uniform distribution on 1 to 65536.

 Figure 7: Reconfigurable Fourplex

18

B. Diagnostic Procedure

The diagnostic routine is a three-step procedure performed during a single control cycle; it uses

each processor’s control command; and the system performs the diagnostic procedure before

sending its majority-determined control command to the actuators.

In the first step, each processor sends its result to the other processors. Each processor compares

what it receives from the other processors to its result. It assigns a 1 to another processor if it

agrees with the other processor and a 0 if it does not. A processor always agrees with its own

result. Each processor forms a vector of zeros and ones.

 [

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 1
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 2

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 3
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 4

]

In the second step, each processor sends its vector to the other processors. Each processor now

has a 4x4 matrix with column j containing the vector it received from processor j. Each processor

examines its 4x4 matrix and decides which, if any, component is faulty.

In the third step, each processor sends its diagnostic to the other processors. All processors vote,

and a majority of good processors record their vote and send their control command to the

actuators.

At the completion of the fifth control cycle, each processor considers its five diagnostic results,

performs a three-out-of-five vote to determine if a component is permanently faulty, and sends

its results to the other processors. If a majority decide a component is permanently faulty, it is

removed from the system.

If processor k is faulty, the good processors will have four zeros in row k. If the link from j to k

is faulty, the processors other than k will have a zero in row j and column k.

C. Examples

Suppose processor 1 is faulty. After completion of the second step above,

 processor 1 has the matrix [

1 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1

]

 while processors 2, 3 and 4 have the matrix [

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

]

By examining the first row, processors 2, 3, and 4 decide that processor 1 is faulty during that

control cycle.

Suppose the link from processor 1 to processor 2 is faulty. After completion of the second step,

19

 processors 1, 3, and 4 have the matrix [

1 0 1 1
1 1 1 1
1 1 1 1
 1 1 1 1

]

 while processor 2 has the matrix [

0 0 1 1
 0 1 1 1
0 1 1 1

 0 1 1 1

]

Examining the matrices, all processors decide that the link from processor 1 to processor 2 is

faulty during that control cycle. It is not a faulty processor since no row has three or more zeros.

This diagnostic procedure only handles a single fault. The next section will show that if the

diagnostic procedure always correctly identifies the faulty component within five control cycles

during the experiment, then the diagnostic procedure does not need to handle two faulty

components for the system to be highly reliable.

D. Reduced Fourplex

If a processor is removed, the remaining processors consider a 3x3 matrix. If a link is removed,

the processors consider a 4x4 matrix where the removed link is assumed to have sent a 1. Since

the diagnostics consider the pattern of zeros, the removed link is ignored.

D. Lack of Diagnostics

There are two sources for the lack of diagnostics. First, some diagnostics will have to be

performed during maintenance. If a processor fails, the system ignores the six links connecting

that processor to the others. If two links from a processor fails, the system ignores that processor,

its third link, and the three links to that processor. Second, the random numbers can match the

correct answer. This is highly unlikely for the three-out-of-five vote for a permanent fault, but

there is a 1 in 65536 chance for a transient link fault. Missing a transient fault, however, does no

harm.

VIII. DESIGNING AN EXPERIMENT FOR THE FOURPLEX

A. Overview

This section applies the theorems of section six to the reconfigurable fourplex described in the

previous section and depicted in figure 7. This system permits applying all the results in section

six.

There are two failure conditions for this example (i) if the system is operating as a twoplex and a
fault occurs, or (ii) if the system does not detect and correctly identify a fault within five control
cycles. The second condition is modified for transient faults: It is acceptable to ignore a transient
fault, but it is a failure if the system incorrectly identifies the fault. This initial example does not

monitor performance.

The goal of this section is to determine what fault injections we need to perform for the trials in
the experiment. It uses the theorems on partitioning in section VI to increase the efficiency of the

20

experiment. Subsection B presents the initial results without regard to partitioning. Subsection C
describes the partitioning. Subsections D and E perform the computations for two of the
partitions. Subsection F summarizes the results of subsections D and E. Subsection G describes

the class of injectable faults and uses its results and the results of subsections C through F to
determine the number of trials. Subsection H considers the order of fault occurrence for the
injectable faults. The order determines which faults will be injected into a fourplex and which
into a threeplex. Subsection I descries the simulation.

B. Initial Numerical Results

The operating time is 10 hours, and the reliability requirement for the system is ≤ 1e-9 chance of
failure during the operating period. The control cycle is 50 milliseconds or 720,000 cycles per
operating period.

The failure rates for each component are

 permanent 1e-6/hour

 transient 1e-5/hour

We normalize operating time to 1, which gives component failure rates of

 permanent 1e-5/10 hours

 transient 1e-4/10 hours

for an overall failure rate of 1.76e-3/operating period. By equation (1), the initial number of trials
in round numbers, is n = 21e+9 where each trial simulates one operating period. The probability

of a certain number of faults during an operating period and the expected number of trials for
that number of faults in given by table 1.

 Table 1: Initial numerical results

Number of Faults Probability Expected Fault Injections

0 9.9824e-1 2.0687e+10

1 1.7569e-3 3.6409e+7

2 1.5461e-6 3.2040e+4

3 9.0703e-10 1.8796e+1

≥ 4 3.9923e-13 8.3838e-3

The expected injections per number of faults is only an expectation. The actual number is

decided by random sampling. In addition, the expected number is only an initial indicator since

we are going to modify the experiment by partitioning the sample space as described in section

six.

C. Partitioning the Sample Space

As before, BF is the set of benign faults that do not cause system failure, CF is the set of

catastrophic faults assumed to cause system failure, and IF the set of faults we will inject.

21

We divide CF into three parts. CF1 is the large number of faults class. CF2 is nearly coincident

faults when there are two fault occurrence during a trial. CF3 is a combination of two

phenomenon: nearly coincident faults when there are three fault occurrences during a trial and

more than one permanent fault when there are three fault occurrences during a trial.

We base the exclusion criterion for nearly coincident faults on the assumption that the system

detects all faults within five control cycles, but this is not guaranteed. If, during the experiment,

the system does not correctly identify all faults, then we will have to perform a different analysis.

Two of the classes of faults are immediate:

 The class consists of zero fault occurrence: P{BF} = 9.9824e-1.

 The large number of fault class is P{CF1} = P{≥ 4 faults} = 3.9923e-13.

The classes CF2 and CF3 ae more complex

D. Computation of CF2

Turning to nearly coincident faults and setting the operating period equal to 1, five control cycles

equals Δ = 5/720000. Using the ordered uniform distribution, the probability of nearly coincident

faults given two faults is

 𝑄1 = 2 ∫ 1
1−∆

0 ∫ 1
𝑡1+∆

𝑡1
+ 2 ∫ 1

1

1−∆ ∫ 1
1

𝑡1
= 2 ∆ (1 − ∆) = 1.3889𝑒 − 5. (16)

Hence, CF2 = P{ two faults } Q1 = 2.1474e-11.

E. Computation of CF3

For nearly coincident faults given three faults, let A be the first and second faults are within Δ,

and B be the second and third faults are within Δ. P{A or B} = P{A} + P{B} - P{A and B}.

𝑃{𝐴} = 6 ∫ 1
1−∆

0 ∫ 1
𝑡1+∆

𝑡1
∫ 1 + 6 ∫ 1 ∫ 1

1

𝑡1

1

1−∆ ∫ 1 = 3∆ − 3∆2 + ∆3
1

𝑡2

1

𝑡2
 (17)

 𝑃{𝐵} = 6 ∫ 1
1

0 ∫ 1 ∫ 1 +
𝑡2+∆

𝑡2

1−∆

𝑡1
6 ∫ 1

1

0 ∫ 1 ∫ 1
1

𝑡2
 = 3∆ − 3∆2

1

1−∆ (18)

 𝑃{𝐴 𝑎𝑛𝑑 𝐵} = 6 ∫ 1
1−2∆

0 ∫ 1
𝑡1+∆

𝑡1
∫ 1

𝑡2+∆

𝑡2

 + 6 ∫ 1
1−∆

1−2∆ ∫ 1
1−∆

𝑡1
∫ 1

𝑡2+∆

𝑡2
+ 6 ∫ 1

1−∆

1−2∆ ∫ 1
𝑡1+∆

1−∆ ∫ 1
1

𝑡2

 + 6 ∫ 1
1

1−∆ ∫ 1
1

𝑡1
∫ 1

1

𝑡2

 = 6∆2 − 6∆3 (19)

22

Hence, the probability of a nearly coincident fault given three faults is Q2 = 𝑃{𝐴} + 𝑃{𝐵} −

𝑃{𝐴 𝑎𝑛𝑑 𝐵} = 6∆ − 12∆2 + 7∆3 = 4.1666e-5

If three faults occur, three permanents or two permanents followed by a transient could cause the

system to fail. We restrict the three-fault case to zero or one permanent. The probability a fault is

permanent is p = 1/11. The probability of more than one permanent given three faults is

 𝑄3 = 𝑝3 + 3 𝑝2 (1 − 𝑝) = 2.3291𝑒 − 2 (20)

We combine the above to get the probability of excluded faults for three fault occurrences.

 P{CF3} = P{ 3 faults } [Q2 + Q3 – Q2Q3] = 2.1163e-11. (21)

F. Computation for the class CF

Since P{CF1}, P{CF2}, and P[CF3} are probabilities of disjoint sets,

 P{CF} = P{CF1}+ P{CF2} + P{CF3} = 4.3036e-11. (22)

G. The class IF

Turning to the injected faults, let IF1 be the occurrence of a single fault; IF2 be the occurrence of

two faults separated by Δ; and IF3 be the occurrence of three faults containing nor more than one

permanent and separated by Δ.

P{IF1] = P{single fault} = 1.7569e-3 (23)

 P{IF2} = P{two faults} x [1-Q1] = 1.5461e-6 (24)

 P{IF3} = P{three faults} x [1 – Q2 – Q3 + Q2Q3] = 8.8587e-10 (25)

Since P{IF1}, P{IF2}, and P{IF3} are probabilities of disjoint sets,

P{IF} = P{IF1} + P{IF2} + P{IF3} = 1.7584 e-3 (26)

By formula (12), the required upper bound on P{Fail | IF} is

 P{Fail | IF} = [P{Fail} – P{CF}] / P{IF} = 5.4422e-7 (27)

By formula (14), the required confidence level is

 P{misled | IF} = P{misled} / P{IF} = 5.6870e-7 (28)

Given no failures are observed, the number of trials needed to establish the required confidence

level is given by substituting into formula (15).

 n = [log(P{misled | IF}] / [log(1 – P{Fail | IF})] = 2.6423e+7 (29)

H. The Order of Fault Occurrence for the Class IF

We consider the order of fault occurrence since that determines whether we inject a fault into a

threeplex or a fourplex For instance, suppose two faults occur: a permanent and a transient. If the

23

first fault is permanent, the second fault is injected into a threeplex whereas if the first fault is

transient, the second fault is injected into a fourplex.

Suppose r = probability a fault is permanent fault = 1/11

 P{perm-perm | two faults} = r2 = 8.2645e-3 (30)

 P{perm-tran | two faults} = r(1-r) = 8.2645e-2 (31)

 P{tran-perm|two faults} = r(1-r) = 8.2645e-2 (32)

 Prob{tran-tran | two faults} = (1-r)(1-r) = 8.2645e-1 (33)

and

 P{perm-tran-tran | 3 faults} = r(1-r)(1-r) = 7.5131e-2 (34)

 P{tran-perm-tran | 3 faults} = r(1-r)(1-r) = 7.5232e-2 (35)

 P{tran-tran-perm | 3 faults} = r(1-r)(1-r) = 7.5131e-2 (36)

 P{tran-tran-tran | 3 faults} = (1-r)(1-r)(1-r) = 7.5131e-1 (37)

Using the result that the number of faults and the type of faults act multiplicatively, we have

 P{IF1} = 1.7569e-3 (38)

 P{IF2 and p-p} = P{IF2} P{perm-perm | two faults} = 1.2778e-8 (39)

 P{IF2 and p-t} = P{IF2} P{perm-tran | two faults} = 1.2778e-7 (40)

 P{IF2 and t-p} = P{IF2} P{tran-perm | two faults} = 1.2778e-7 (41

 P{IF2 and t–t} = P{IF2} Prob{tran-tran | two faults} = 1.2778e-6 (42)

 P{IF3 and p-t-t} = P{IF3} Prob{tran-tran | two faults} = 6.6556e-11 (43)

 P{IF3 and t-p-t} = P{IF3} P{tran-perm-tran | 3 faults} = 6.6556e-11 (44)

 P{IF3 and t-t-p} = P{IF3} P{tran-tran-perm | 3 faults} = 6.6556e-11 (45)

 P{IF3 and t-t-t} = P{IF3} P{tran-tran-tran | 3 faults} = 6.6556e-10 (46)

Since we sample from the class IF, we condition the above quantities by P{IF}. The resulting

conditional probabilities and the resulting expected number of trials for each sub-partition given

the total number of trials is 2.6423e+7 is given by table 2.

24

 Table 2: Number of trials based on partitioning

Conditional Probability Expected Number of Trials
Based on Conditional Probability

P{IF1}/P{IF} = 9.9915e-1 2.6401e+7

P{p-p and IF2}/P{IF} = 7.2668e-6 1.9201e+2

P{p-t and IF2}/P{IF} = 7.2668e-5 1.9201e+3

P{t-p and IF2}/P{IF} = 7.2668e-5 1.9201e+3

P{t-t and IF2}/P{IF} = 7.2668e-4 1.9201e+4

P{p-t-t and IF3}/P{IF} = 3.7850e-8 1.0001

P{t-p-t and IF3}/P{IF} = 3.7850e-8 1.0001
P{t-t-p and IF3}/P{IF} = 3.7850e-8 1.0001

P{t-t-t and IF3}/P{IF} = 3.7850e-7 1.0001e+1

I. Simulation

A simulation checked the diagnostic routine. At the beginning of each trial, it chose the faults

according to the distributions described above. The diagnostic routine detected and correctly

identified the faults for all the 27 million trials. The exception was that about one in every 100

thousand trials, it did not detect a transient link fault because the random error matched the

correct value. Not detecting the transient link fault had no effect on the reliability of the system.

One million trials on a desktop running an interpretive language took 90 seconds. All the trials

took less than one hour. For a more complex system, we can run 1000 hours, use 100 desktops,

and shift to a compiled language. We can accept a system five or six orders of magnitude more

complex.

The fourplex example did not include any applications, but a simulation of a complete system

would check that the system maintained process control or plant monitoring during fault

detection and recovery. In this case, the time of fault occurrence and the condition of the plant

would be a factor. The time of occurrence and the condition of the plant can be chosen randomly

from normal operating conditions. In addition, the experimenters may wish to conduct some

trials simulating the more hazardous operating conditions. For instance, if a quadcopter is

required to stay within a boundary, the experiment can include numerous trials where the

quadcopter is close to the boundary.

One method of increasing the likelihood that the system maintains performance during fault

recovery is to designate time slots during a control cycle dedicated to fault detection and

recovery. With this scheme, it may take longer to recover from a fault than if the system

dedicated itself to fault recovery. If faults are infrequent, this is an overhead that will seldom be

used. This approach requires a system with higher performance.

25

IX. INTEGRATING AN ARGUMENT FROM DESIGN

We consider integrating an argument-from-design and statistical analysis for the design of the

experiment. A result in computer science is that a system of 3k+1 components can correctly

identify k faulty components in a system. Hence, while a reconfigurable fourplex has four

components, it can correctly identify a single faulty component. There are two cases depending

on whether or not the argument-from-design establishes the number of control cycles it takes to

identify the faulty component.

A. First Case

In our first example, we assume there is a demonstration that all faults will be correctly identified

when there are four components in the system but no demonstration about detection within a

time limit although we assume the system detects the fault sometime during the operating period.

In this case, we can classify the trials with a single fault as benign. We have

 P{BF} = P{ 0 faults} + P{ 1 fault} = 9.999969e-1 (47)

The injectable faults are 1F2 and 1F3 of the previous section, which gives

 P{IF} = P{IF2} + P{IF3} = 1.5470e-6 48)

The catastrophic faults remain CF = 4.3036e-11

The upper bound for the probability of failure for the injected faults is

 P{Fail | IF} = [P{Fail} – P{CF}] / P{IF} = 6.1823e-6 (49)

The confidence level for this probability is

 P{misled | IF} = P{misled} / P{IF} = 6.4641e-4 (50)

The number of trials is

 n = [log(P{misled | IF}] / [log(1 – P{Fail | IF})] = 1.1879e+6 (51)

B. Second Case

In our second example, we assume the argument-from-design establishes an upper bound θ on

the time needed to identify the faulty component. We use this θ instead of the Δ for computing

the probability of nearly coincident faults. For this example, we assume θ = Δ = 5/720000.

For this case, the trials with all transients and the trials with the permanent fault the last

occurring fault join the benign class.

26

 Table 3: Classification for second argument from design

Classification and probability
For no argument-from-design

Reclassification for
Argument-from-design

That includes recovery time

P{ 0 faults}= 9.9824e-1 BF

P{IF1} = 1.7569e-3 BF

P{p-p and IF2} = 1.2778e-8 IF
P{p-t and IF2} = 1.2778e-7 IF

P{t-p and IF2} = 1.2778e-7 BF

P{t-t and IF2} = 1.2778e-6 BF

P{p-t-t and IF3} = 6.6556e-11 IF

P{t-p-t and IF3} = 6.6556e-11 IF

P{t-t-p and IF3} = 6.6556e-11 BF

P{t-t-t and IF3} = 6.6556e-10 BF

P{CF} = 4.3036e-11 CF

For the experiment where the argument from design includes the recovery time

 PA{BF} = P{0 faults} + P{IF1} + P{t-p and IF1}

 + P{t-t and IF1} + P{t-t-p and IF3} + P{t-t-t and IF3}

 = 9.99958e-1 (52)

 PA{IF} = P{p-p and IF2} + P{p-t and IF2} + P{p-t-t and IF3} + P{t-p-t and IF3}

 = 1.40691e-7 (53)

 PA{CF} = P{CF} = 4.30360e-11 (54)

The upper bound for the probability of failure for the injected faults is

 PA{Fail | IF} = [PA{Fail} – PA{CF}] / PA{IF} = 6.80180e-3 (55)

The confidence level for this probability is

P{misled | IF} = P{misled} / PA{IF} = 7.10777e-3 (56)

The number of trials is

 n = [log(P{misled | IF}] / [log(1 – PA{Fail | IF})] = 725 (57)

As expected, incorporating a structural element (argument-from-deign) reduces the experimental

effort.

X. EXTENSIONS

When considering more realistic applications of the results above, there are synchronous and

asynchronous systems. Synchronous systems operate in near lockstep in order for all the good

27

processors to arrive at the same result. This facilitates error detection and determining the signals

sent to the actuators, but it creates an operational overhead. There is interactive consistency

where information arrives from different, noisy sensors at different times, and the computers

must decide on a common value to produce identical results. There is clock synchronization.

Asynchronous systems avoid the overhead, but fault detection and determining the proper

control commands are more difficult. An asynchronous system might be suitable for monitoring

where the goal is deciding when certain parameters are out of bounds.

We can include results from the literature such as various characterizations of faults and efficient

fault-injection tools.

We can attempt extending this approach to sensors and actuators.

We can place commercial-off-the-shelf components on test. We can have a desktop or laptop

monitor several components where the monitoring depends on what is observed. Determining the

hard-failure rate requires only occasional checking. Determining transient occurrence and

perturbations requires nearly continuous monitoring.

We can design systems using commercial components. This project would assume a failure rate

for the components and determine what designs could achieve certain system reliabilities. The

results of this endeavor could be used to determine what failure rate needs to be established by

the test above. Successful designs would justify the experiments needed to estimate the failure

rates of components.

We can examine the class of systems with maintenance-on-demand. A space station or

installations on a moon or planet might use such a routine. The mathematical results in section

six remain the same, but the application of the theorems and the simulation will change. If the

requirement is that a plant have a small probability of failure during a ten-year period, a trial

consists of simulating a ten-year period.

We can apply the global fault model to other problems. Events in the model include permanent,

transient, and intermittent faults. It includes independent faults and faults correlated in space or

time or both. One application includes communication systems. A fault tree approach applied at

the end of an operating period only considers permanent faults, but a communication system can

fail during the operating period due to transients. Communication systems are also prone to

correlated faults. We can do a quantitative analysis of protocols that are designed to restore

connectivity after a fault occurrence.

For any system, we can use the global fault model to consider hard deadlines for performance or

reliability. The current approach for performance is to use a Markov model and compute the

mean downtime, but downtimes of 1/6 of a second every minute and 1 day every year are nearly

the same, while the effects can be different.

28

XI. SUMMARY

This paper outlines a fault-injection experiment based on simulating natural-life testing for a

class of systems. The class consists of those systems obtaining reliability by redundancy with an

operating period without maintenance followed by a maintenance check that removes faulty

components. A trial emulates an operating period, and the paper presents a formula for how

many trials are needed to establish a given reliability at a given confidence level. This approach

achieves efficiency by using structural arguments that the system operates correctly if fault free,

which implies we need only observe the system from fault injection to fault recovery. We inject

faults according to a global fault model based on the failure rate of the components. Theorems

about the global fault model give the probability distributions for how many, when, where, and

what kind of faults to inject during a trial. An example reconfigurable fourplex illustrates how to

apply the theorems. The example includes a fault detection routine. A program simulates

choosing, injecting, and detecting the faults. The example fourplex successfully completed the

required number of trials.

REFERENCES

[1] K. Astrom and B. Wittenmark, Computer-Controlled Systems, Prentice Hall, 1997.

[2] National Research Council 2014. Autonomy Research for Civil Aviation: Toward a New Era

of Flight, Washington, DC: The National Academies Press.

[3] Douglas M. Chapin, et al. Digital Instrumentation and Control Systems in Nuclear Power

Plants, National Academy Press, Washington, D.C (1997)

[4] J. Goldberg, “Challenges and Directions in Fault-Tolerant Computing,” in Computer Systems

for Process Control, Springer, 1986,

[5] Xingyu Zhaoa, Kizito Salakob, Lorenzo Striginib, Valentin Robua, David Flynna, “Assessing

Safety-Critical Systems from Operational Testing,” Information and Software Technology,

August 2020.

[6] J. Carreira, D. Costa, J. Silva, “Fault injection spot-checks computer system dependability,”

IEEE Spectrum, August 1999.

[7] J. Clark, D. Pradhan, “Fault injection: a method for validating computer-system
dependability,” Computer, Volume 28 Issue 6 (1995)

[8] J. Ariat, J. Boue, Y. Crouzet, “Validation-based development of dependable systems,” IEEE
Micro, Volume 19 Issue 4 (1999).

[9] C. R. Elks, N. J. George, M. A. Reynolds, M. Miklo, C. Berger, S. Bingham, M. Sekhar, B.

W. Johnson, ‘Development of a Fault Injection-Based Dependability Assessment Methodology

for Digital I&C Systems,” NUREG/CR-7151, December 2012

29

[10 J. Samanta, J. Bhaumik, and S. Barman, “Compact CA-Based Single Byte Error Correcting
Code,” IEEE Transactions on Computers, February 2018.

[11] G. Schley, A. Dalirsann, M. Rggenbergr, N. Hatami, H Wunderlich, and M. Radetzki,

“Multi-Layer Diagnosis for Fault-Tolerant Networks-on-Chip,” IEEE Transactions on
Computers, May 2017.

[12] V. Dumitriu, L. Kirischian, and V. Kirischian, “Run-Time Recovery Mechanism for
Transient and Permanent Hardware Faults Based on Distributed, Self-Organized Dynamic

Partially Reconfigurable Systems,” IEEE Transactions on Computers, September 2016.

[13] Z. Alkhalifa, V. Nair, N. Krishnamurthy, J. Abraham, “Design and evaluation of system-
level checks for on-line control flow error detection,” IEEE Transactions on Parallel and
Distributed Systems, June 1999

[14] G. Silberman and I. Spillinger, “Using functional fault simulation and the difference fault
model to estimate implementation fault coverage,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, December 1990.

[15] G. Choi, R. Iyer, and V. Carreno, “Simulated fault injection: a methodology to evaluate

fault tolerant microprocessor architectures,” IEEE Transactions on Reliability, October 1990.

[16] C. Walter, “Evaluation and design of an ultra-reliable distributed architecture for fault

tolerance,” IEEE transactions on Reliability, October1990.

[17] G. Gil-Tomas, J. Garcia-Moran, J. Baraza-Calvo, L. Saiz-Adaid, and P. Gil-Vocente,
“Injecting intermittent faults for the dependability assessment of a fault-tolerant microprocessor

system,” IEEE Transactions on Reliability, June 2016

[18] B. Liu and L. Cai, “Reliability evaluation for single event transients on digital circuits,”
IEEE Transaction on Reliability, September, 2012.

[19] F. Mireshghallah, M. Bakhshalipour, M, Sadrosadati, and H. Sarbazi-Azad, “Energy-

Efficient Permanent Fault Tolerance in Hard Real-Time Systems,” IEEE Transactions on
Computers. October 2019.

[20] C. Stroud, “Reliability of majority voting based VLSI fault-tolerant circuits,” IEEE
Transactions on Very Large Scale Integration, December1994.

[21] C. Constantinescu, “Teraflops supercomputer: architecture and validation of the fault
tolerant mechanisms,” IEEE Transactions on Computers, Volume 49 Issue 9 (2000).

[22] F. Farahmandi and P. Mishra, “Automated Test Generation for Debugging Multiple Bugs in
Arithmetic Circuits,” IEEE Transactions on Computers, February 2019.

[23] J. Wang, M. Ebrahimi, L. Huang, X. Xie, G. Li, and A. Jantsch, “Efficient Design-for-Test
Approach for Networks on a Chip,” IEEE Transactions on computers, February 2019.

[24] F. Zadegan, D. Niklov, and E. Larson, “On-Chip Fault Monitoring Using Reconfigurable
IEEE 1687 Networks,” IEEE Transactions on Computers, February 2018

30

[25] S.-A. Hwang, J.-H. Hong, C.-W Wu, “Sequential circuit fault simulation using logic
emulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
August 1998.

[26] Hyung Ki Lee, Dong Sam Ha “HOPE: an efficient parallel fault simulator for synchronous
sequential circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, September 1996.

[27] Kwang-Ting Cheng, “Transition fault testing for sequential circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, December 1993).

[28] D. Smith, B. Johnson, and J. Profeta, “System dependability valuation via a fault list
generation algorithm,” IEEE Transactions on Computers, August 1996.

[29] T. Tsai, M. Hsueh, H. Zhao, Z. Kaibarczyk, and R. Iyer, “Stress-based and path-based fault

injection,” IEEE Transactions on Computers, November 1999.

[30] C. Yount and D. Siewiorek, “A methodology for the rapid injection of transient hardware
errors,” IEEE Transactions on Computers, August 1996.

[31] J. Barton, E. Czek, Z. Segall, and D. Siewiorek, “Fault injection experiments using FIAT,”

IEEE Transactions on Computers, April 1990.

[32] W. Kao, r. Iyer, and D. Tang, “FINE: A fault injection and monitoring environment for
tracing the UNIX system behavior under faults”, IEEE Transactions on Software Engineering,
Volume 19 Issue 11 (199).

[33] A. White, “Reliability with imperfect diagnostics,” Micro Electronics Reliability, September
1984.

[34] U.S. Department of Defense, (1991) Military Handbook, “Reliability Prediction of
Electronic Equipment, MIL-HDBK-217F, 2

[35] M. White and J. Bernstein, “Physics-of-Failure Based Modeling and Lifetime Evaluation,”
http://nepp.nasa.gov.

[36] M. White, “Commercial Off-The-Shelf (COTS) Parts Risk & Reliability User &
Application Guide,” JPL Publication 17-5.

[37] DOT/FAA, Review of Pending Guidance and Industry Findings on Commercial Off-The-
Shelf (COTS) Electronics in Airborne Systems, August 2001.

[38] N. Leveson, “The Use of Safety Cases in Certification and Regulation,”
https;//dspace.mit.edu.

[39] S. Wilks, Mathematical Statistics, Wiley, New York, 1963.

http://nepp.nasa.gov/

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

06/01/2021 TECHNICAL MEMORANDUM
4. TITLE AND SUBTITLE

Establishing Fault Tolerance for a Class of Systems by Experiment

White, Allan L.

5f. WORK UNIT NUMBER

340428.01.10.07.01

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-001

NASA

Unclassified - Unlimited
Subject Category -Mathematical and Computer Sciences (General)
Availability: NASA STI Program (757) 864-9658

HQ - STI-infodesk@mail.nasa.gov

757-864-9658
U U U UU

NASA/TM-20210013688

A long-standing problem in system verification is establishing fault tolerance at the ultra-high level by experiment. It is considered impossible because of system
complexity and the enormous number of trials needed. This paper considers the problem for a class of digital systems that use redundancy to achieve reliability.
The class is the systems that operate for a period of time without maintenance followed by a maintenance check that replaces components identified as faulty.
The paper considers simulating a natural life test where a natural life test observes a number of operating periods. If the system does not fail during the test, it
can be said to have a certain reliability at a certain confidence level. The approach in this paper is to make the simulated life test more efficient while
maintaining realism by integrating structural arguments, information on fault occurrence, and fault injection in the lab. The major result of this paper is
constructing a global fault model using the failure rate of the components and proving theorems about the model that tell how many, what kind, when, and
where to inject faults. A simple example illustrates applying the theorems.

design of experiments; fault tolerance

34

