


L pro"'--.-. na DSL Is often ciently
abstract to be a specification.

languages.

j * DSLs can be stand-alone programming



* EDSL prograr'h can be di ‘-" executable, or generate
code in another language, like C or VHDL.

%




\ ifﬁcult to

- Theme: You ne 1ming la 'g'uége expert on the
team from the beginning not just domain experts who code.

%



. Lightwe-"i' fc
approaches .

%




on source

* Samples the sy
e Can miss state changes if not sa

/ systems.




rces repeatability.

* Solution: Emdlng the DSL in sophisticated
typed functional languages such as Haskell
j and OCAML.

%







‘with their

« Integrate proof tools like SMT solvers, model checkers, interactive
provers to facilitate correctness proofs of the DSL program.

%







sy to relate

» ANSI C Speci S€ ons for C code.

« Generate diagrammatic representations of relationships between
source and generated code.

%




- numerical

. DynamiC Analy

 Worst case timing analysis tools.

* When possible do the analysis on the DSL.

%




%



that SMT
) dures to.

N is used to unroll
intermediate language.

* Copilot is typed' anguage so translation to the intermediate

/ language should be simple.




* Coverage analysis.

%







* The generated mo e need to be NASA Class C
software. T——
* Class C -Intended for Mission Support or Aeronautic Vehicles.

%






	Slide 1
	Domain Specific LaNguages
	Embedded Domain specific Languages
	Repeating bad habits
	Runtime Verification
	Copilot: RV Framework
	DSL Design Philosophy
	Specifying an EDSL
	Is your program correct
	Slide 10
	Traceability
	Overflows, Timing, and Such
	Equivalence Checking I
	Equivalence Checking Ii
	Support for Testing
	Questions?
	Improving our Processes
	Simple Copilot Example

