
ASSURANCE OF
DOMAIN SPECIFIC
LANGUAGES

ALWYN E. GOODLOE

NASA LANGLEY RESEARCH CENTER

DOMAIN SPECIFIC LANGUAGES

• Domain specific languages (DSL) are
programming languages tailored to a specific
application domain.

• SQL – Relational databases.

• LaTeX – Typesetting.

• Matlab – Matrix algebra and linear systems.

• A program in a DSL is often sufficiently
abstract to be a specification.

• DSLs can be stand-alone programming
languages.

2

EMBEDDED DOMAIN SPECIFIC
LANGUAGES

• Embedded Domain Specific Languages (EDSL) are
embedded in a host language.

• Cryptol - Cryptographic protocols.

• Lava – Programming FPGAs.

• Parsing and type checking are handled by host language.

• EDSLs are usually defined as a library of high-level
language.

• EDSL programs can be directly executable, or generate
code in another language, like C or VHDL.

3

REPEATING BAD HABITS

• DSL designers often repeat the mistakes of general purpose
language design.

• Syntax that is difficult to parse.

• No defined semantics and type system.

• The language grows very complex with age as many people work on
it.

• Complex DSLs lacking formal definition are very difficult to
reason about informally and formally.

• Theme: You need a programming language expert on the
team from the beginning not just domain experts who code.

4

RUNTIME VERIFICATION

• “Runtime verification is the discipline of computer
science/engineering that deals with the study, development, and
application of those verification techniques that allow checking
whether a run of a system under scrutiny satisfies or
violates a given correctness property” Leucker et.al.

• Runtime verification (RV) refers to the use of monitors to observe
the behavior of a system and detect if it is inconsistent with a
given specification.

• Lightweight formal method complements design-time
approaches .

5

COPILOT: RV FRAMEWORK

• Haskell-based Embedded Domain Specific Language (DSL).
• Takes advantage of the wonderful Haskell type system.

• Abstract functional specifications written in a Lustre-like language.

• Synthesize monitors targeting real-time embedded systems.

• Generates Misra-like C monitors.
• Constant time, constant memory.

• Minimum instrumentation of system under observation source
code.

• Samples the system under observation.

• Can miss state changes if not sampled, but effective for cyber-physical
systems.

6

DSL DESIGN PHILOSOPHY

• Challenge: A good DSL should encompass
the features of modern programming
languages that enable assurance while still
being domain specific.

• Sophisticated type systems catch errors.

• Referential transparency enforces repeatability.

• Solution: Embedding the DSL in sophisticated
typed functional languages such as Haskell
and OCAML. 7

SPECIFYING AN EDSL

• Challenge: You cannot verify programs if there is no
formal definition.

• Solution: Construct the necessary formal definitions.

• BNF Syntax.

• Typing rules.

• Axiomatic semantics.

• Denotational semantics.

• Operational semantics.

• Can be executable.

8

IS YOUR PROGRAM CORRECT

• Challenge: It should be easy to assure DSL programs as they are
more abstract, but in practice the abstractions used are often
poorly defined and tool support is lacking.

• Solution: Apply the tools and techniques developed by computer
scientists.

• Write and publish a mathematical semantics of the DSL.

• Build an interpreter so that users can experiment with their
programs.

• Integrate proof tools like SMT solvers, model checkers, interactive
provers to facilitate correctness proofs of the DSL program.

9

10

Focus on Assuring Generated
Code

TRACEABILITY

• Challenge: Maintaining traceability from the generated code to
the source code.

• Solutions: Build in support for traceability.

• Many code generators produce unreadable code. Use or build a
code generator favoring readability over efficiency.

• Generate comments and assertions that make it easy to relate
generated code to the DSL.

• ANSI C Specification Language (ACSL) assertions for C code.

• Generate diagrammatic representations of relationships between
source and generated code.

11

OVERFLOWS, TIMING, AND
SUCH

• Challenge: Buffer overflows and numerical overflows as well as
numerical errors and scheduling issues are a source of a wide range
of problems in real-time embedded systems.

• Solution: Use existing tools where possible.

• Apply a collection of analysis tools to the generated code to ensure
the absence of the buffer overflows, undefined behavior, numerical
errors, and scheduling issues.

• Abstract interpretation.

• Dynamic Analysis (RV Match).

• Worst case timing analysis tools.

• When possible do the analysis on the DSL.

12

 EQUIVALENCE CHECKING I

• Challenge: Can we have a formal proof that the
generated code is equivalent to the DSL program.

• Solution I: Model the semantics of source and
target language in a theorem prover and built the
translation and proof within the prover.

• CompCert is C complier built in Coq.

• There are a number of academic efforts applying
this approach, but such an approach requires
experts at conducting interactive proof.

13

 EQUIVALENCE CHECKING II

• Challenge: Can we have a formal proof that the generated
code is equivalent to the DSL program.

• Solution: For small well defined DSLs, apply automated
equivalence checking tools.

• Galois’ Software Assurance Workbench (SAW) can show that
generated C code is indeed equivalent to a DSL specification.

• Spec and C code get translated to an intermediate language that SMT
solvers can apply equivalence checking decision procedures to.

• C code is compiled to LLVM, symbolic execution is used to unroll
loops, etc. and then C is translated to the intermediate language.

• Copilot is typed functional language so translation to the intermediate
language should be simple.

14

SUPPORT FOR TESTING

• Challenge: Testing the generated code.

• Solution: Apply approaches from the interaction
of testing and programming languages.

• Property-based testing.

• Generating random tests from specs. (Quickcheck).

• Unit testing for each module generated.

• Coverage analysis.

15

QUESTIONS?

16

Contact Information:
Alwyn E. Goodloe
a.goodloe@nasa.gov

IMPROVING OUR PROCESSES

• Copilot was developed as part of a decade-long research
program into runtime verification.

• Open source, NASA Class E software.

• We are in the process migrating Copilot framework to NASA
Class D software.

• Class D – Basic Science/Engineering Design and Research
Technology Software.

• The generated monitors will be need to be NASA Class C
software.

• Class C –Intended for Mission Support or Aeronautic Vehicles.

17

SIMPLE COPILOT EXAMPLE

• Copilot stream language specification of
Fibonacci numbers: 0, 1,1,2,3, 5, 8, …

• fib :: Stream Int32

• fib = [0, 1] ++ (fib + drop 1 fib)

18

	Slide 1
	Domain Specific LaNguages
	Embedded Domain specific Languages
	Repeating bad habits
	Runtime Verification
	Copilot: RV Framework
	DSL Design Philosophy
	Specifying an EDSL
	Is your program correct
	Slide 10
	Traceability
	Overflows, Timing, and Such
	Equivalence Checking I
	Equivalence Checking Ii
	Support for Testing
	Questions?
	Improving our Processes
	Simple Copilot Example

