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1. Abstract
The combined effects of increasing urbanization and climate change have 
exacerbated the urban heat island (UHI) effect and heat-related risks for city 
dwellers. Vulnerability to heat-related illnesses is further compounded by risk 
factors such as demographics, socioeconomic status, and pre-existing health 
conditions. The City of Sacramento, as California’s fastest growing city in terms of 
population, is particularly invested in combatting the UHI effect. The team 
collaborated with the City of Sacramento and urban planning firm, Dyett and 
Bhatia, on three main goals: assessing urban heat at the neighborhood scale; 
identifying priority areas for cooling interventions; and assessing heat risk to the 
population. This project utilized NASA Earth observation products to identify 
hotspots within the community areas of Sacramento and create maps of urban 
heat, the heat-mitigation index, and heat risk of the study period from 2016-2020. 
The Surface Reflectance product were used from Landsat 8 Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS) and ECOsystem Spaceborne 
Thermal Radiometer Experiment on Space Station (ECOSTRESS) thermal infrared 
sensor. Additionally, the Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) Urban cooling model was used to assess the impact of increased tree 
canopy scenarios. Urban hotspots were identified in central Sacramento and along 
major transportation corridors such as Stockton Boulevard, while highest risk 
areas were identified in the community areas of Fruitridge/Broadway and North 
Sacramento. This project identified these high-opportunity areas for heat 
mitigation to inform the City of Sacramento's General Plan. This will inform the 
partners’ plans to reduce citizen risk by addressing urban heat islands.

Key Terms
InVEST urban cooling model, Landsat 8 TIRS, ArcGIS Pro, ECOSTRESS, ecosystem
services, heat mitigation

2. Introduction
2.1 Background Information
The City of Sacramento, California is in the process of updating the City’s General 
Plan, which is a policy guide for future development and preservation of resources 
within the City. As one component of broader sustainability goals, the City hopes to
alleviate the urban heat island effect (UHI), which will likely be exacerbated by 
warmer temperatures in coming decades. Heat islands are urbanized areas that 
experience higher temperatures compared to surrounding areas due to impervious 
materials, such as asphalt, that absorb and reemit solar heat more than natural 
vegetation (US EPA, 2014). In the Sacramento Valley, daily temperatures are 
predicted to rise 10° F, and the total number of days above 104° F is predicted to 
be above 40 days a year by 2100 (Kerlin, 2019). 

According to the Centers for Disease Control (CDC), in the United States, extreme 
heat was the leading cause of weather-related deaths from 2000– 2009, with 7,800 
deaths from 1999- 2009 (Extreme Heat—NIHHIS, 2017). Exposure to high 
frequencies of extreme heat events can significantly impact public health and can 
be directly linked to heat-related illnesses including heat cramps, heat exhaustion, 
and heat stroke (Communitywide CAP, 2017). Increases in temperature create 
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barriers for health equity because vulnerable communities often carry a 
disproportionate burden of climate effects (Sacramento County, 2017). These 
communities—which include low-income individuals, those with preexisting health 
conditions, young children, the elderly, the homeless, some tribal nations, and 
socially and linguistically isolated peoples—often reside in neighborhoods with less
infrastructure for urban cooling and are less likely to have access to transportation
that provides an escape to cooler areas (Sacramento County, 2017). They are also 
more likely to live in housing that lacks air-conditioning or forgo air-conditioning to
reduce electric bills (Cooley et al., 2012). Neighborhoods situated in urban heat 
islands have more instances of chronic illness, creating a social and climate justice 
dilemma (Kerlin, 2019). 

A variety of factors influence perceived temperature including radiation, relative 
humidity, and wind speed (Steadman, 1984). In situ measurements of these 
metrics are limited by their scale and resolution. In contrast, remotely-sensed data 
allow researchers to directly assess temperature across any sized area at the 
meter scale. Remote sensing has been used to assess and model urban heat island 
effects and locate urban hotspots using land surface temperature (LST) as a proxy 
for apparent temperature (Wang et al., 2016). This study used the Landsat 8 
Operational Land Imager (OLI) and Thermal Infrared Spectrometer (TIRS) and the 
International Space Station (ISS) Ecosystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) to study daytime and nighttime LST, 
as similarly used for heat studies in other cities (Wang et al., 2016; Hulley et al., 
2019). Previous studies have also found that minimum temperatures during 
heatwaves are greater predictors of health outcomes than maximum temperatures 
(Hajat et al., 2002; Schwartz, 2005; Zhang, et al. 2012). Therefore, capturing 
nighttime temperatures is critical to understanding heat retention in cities and 
addressing the impacts of urban heat. 

The City of Sacramento is equipped with an array of tools to affect change in the 
built environment; however, the City does not currently incorporate remote 
sensing data into its decision process. A spatial analysis of temperature disparities 
during peak summer months (May through September) will help the City’s 
planning team understand the implications of these interventions and prioritize 
areas of the City that are home to a high proportion of vulnerable populations or 
are most likely to experience rapid growth. The results of the team’s work will be 
incorporated into the City of Sacramento General Plan and Climate Action and 
Adaptation Plan in the form of specific policies and standards, including 
interventions such as cool paving or tree canopy coverage in transit priority areas 
to help the City adapt to increasing urban heat. 

2.2 Study Area
The City of Sacramento in California was the study area for this project. Per the 
partners’ request, the study area was aggregated from the official City limits as 
well as two ‘Special Study Areas’ (Natomas Study Area and a section of the 
Fruitridge/Broadway neighborhood) which are currently unincorporated but may 
be annexed by the City in the future (City of Sacramento, 2015). The study area 
was subdivided into 11 neighborhoods (Figure 1). The study period included 
summer months of May through September from 2016 to 2020. Sacramento only 
experienced a 1.1 percent change in population between 2019 and 2020 (California
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Department of Finance, 2020). However, the City is California’s fastest growing 
large city in terms of population and is dedicated to promoting sustainable, 
equitable, and inclusive change.

Figure 1. Study area of the City of Sacramento, California.

2.3 Project Partners & Objectives
The City of Sacramento has hired the urban planning firm, Dyett & Bhatia, to assist
with updating the General Plan for 2040. Previous reports have established that 
the City suffers from an urban heat island problem that disproportionally affects 
vulnerable populations, such as the elderly, the poor, and people with pre-existing 
conditions – vulnerabilities that frequently coincide with one another (Cooley et al.,
2012; Jiang et al., 2020; Sacramento County, 2017; Sacramento Department of 
Public Works, 2018). These studies lack information on the sources of heat at a 
very fine scale. To complement existing data, City management needs high 
resolution data on urban hot spots and how effectively and equitably the UHI is 
currently being mitigated across communities. By using NASA Earth observations, 
the team shows surface temperature patterns at 30m and 70m resolutions for 
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daytime and nighttime temperatures respectively, in contrast to the 2km resolution
of the City’s previous analyses. Analyses of social vulnerability to extreme heat in 
California have typically used cumulative indexes of vulnerability metrics and were
conducted at the county scale (Cooley et al., 2012; Sacramento County, 2017). In 
this study, the team examines social vulnerability to heat among 11 distinct 
metrics informed by literature and previous heat risk studies (Sacramento County, 
2017; USGCRP 2016): age above 65, age above 65 and living alone, age below 11, 
cardiovascular disease, asthma, race/ethnicity, housing burden, homelessness, 
linguistic isolation, poverty, and unemployment. This is the first heat risk index 
that the team is aware of that includes homelessness in Sacramento. The inclusion 
of race/ethnicity is also an improvement over some existing indexes. The team 
combined these vulnerability metrics with heat exposure to create a heat risk index
for the study area. Finally, the team applied the Integrated Valuation of Ecosystem 
Services and Tradeoffs (InVEST) urban cooling model (InVEST | Natural Capital 
Project) to illustrate high-value opportunities for further UHI heat mitigation. 
Insights from this study will guide sustainable and equitable development goals set
forth in the Sacramento General Plan for 2040. 

3. Methodology
3.1 Data Acquisition 
The team retrieved satellite imagery for summer days (1 May – 30 September) via 
two platforms (Table A1). Landsat 8 data for 2016-2020 were retrieved from 
Google Earth Engine. The LANDSAT/LC08/C01/T1_SR Landsat 8 Surface 
Reflectance Tier 1 image collection was retrieved and processed using a script 
developed by the NASA DEVELOP Spring 2020 AZ Philadelphia Health & Air 
Quality team and modified for this project. These images were used to calculate 
albedo and daytime LST. Nighttime LST was assessed using ECOSTRESS LST 
(ECO2LSTE.001) and cloud mask (ECO2CLD.001) level 2 data for 2018-2020, 
requested and downloaded from the NASA Application for Extracting and 
Exploring Analysis Ready Samples (AppEEARS).

Evapotranspiration (ET) data from ISS ECOSTRESS were also requested and 
retrieved through NASA AppEEARS. Level-3 Evapotranspiration (PT_JPL) products 
representing daily ET for summer days in 2018-2020 were downloaded and 
manually filtered. As thirty layers are needed for a stable mean, thirty-one of the 
clearest images were selected from the collection according to the following 
criteria: full coverage of the area of interest with no major data voids from cloud 
coverage as determined by the team, no linear artifacts, and reasonable ET values.

Socioeconomic and demographic data were accessed from three sources: the 
CalEnviroScreen 3.0 product was downloaded from the California Office of 
Environmental Health and Hazard Assessment (OEHHA); supplementary 2017 
American Community Survey Five-Year Estimates was downloaded from the U.S. 
Census Bureau; and homelessness data (311 reports of homeless encampments) 
was provided by the City of Sacramento. Social vulnerability factors were grouped 
into two categories: heat sensitivity and socioeconomic factors. Heat sensitivity 
factors included children under age 11, 65 and older elderly community living 
alone, and those with asthma and cardiovascular disease. Risk-multiplying 
socioeconomic factors included race/ethnicity, homelessness, housing burden, 
linguistic isolation, poverty, and unemployment. 
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The team utilized a land use/land cover (LULC) dataset that was provided by Dyett 
and Bhatia in conjunction with the Multi-Resolution Land Characteristics 
Consortium (MRLC) USA National Land Cover Database (NLCD) 2016 United 
States Forest Service (USFS) Tree Canopy Cover (CONUS) to create a LULC input 
for the InVEST urban cooling model. Similarly, the team received a building 
cartography GIS layer from the City of Sacramento partners which was used to 
calculate building intensity. Humidity data for the InVEST urban cooling model 
heat reduction valuation was acquired from the Weather Atlas (Monthly Weather 
Forecast and Climate Sacramento, CA, 2020). The average humidity was 
calculated from the reported average humidity values in May through September 
for Sacramento, CA.

3.2 Data Processing

3.2.1 Land Surface Temperature (LST)
The team calculated daytime LST from the Landsat 8 Surface Reflectance Tier 1 
Product using the NASA DEVELOP AZ Spring 2020 Philadelphia Health & Air 
Quality script in Google Earth Engine (GEE). Although Landsat 8 provides a 
Provisional Surface Temperature product, it is not yet available in GEE. For this 
reason, the team used the Surface Reflectance product to calculate LST in this 
project. The script first filtered the collection to include only images for summer, 
as defined by project partners (May 1 – September 30), then masked clouds and 
cloud shadows from images using the cloud and quality assurance bands of the 
dataset. The final filtered collection included 152 images. The script then 
calculated Normalized Difference Vegetation Index (NDVI) to calculate emissivity 
(E) (Shen et al., 2015), which was then used with the brightness (BT) band on 
Landsat 8 TIRS (band #10) to calculate LST (Equation 1). 

LST = 
BT

1+(0.0000115×(BT
0.01438 )×log (E ) )

                                                            (1)

After calculating LST for each image, the team calculated the mean LST for each 
pixel for the entire collection to have a final LST image for the study period. 

The team processed nighttime LST data from ECOSTRESS by first filtering the 
downloaded collection in RStudio (Version 1.3.1073) to include only nighttime 
images, defined as 23:00 – 04:00 Pacific time. We then masked clouds and cloud 
shadows from LST images using the ECOSTRESS cloud datasets. The final 
collection included 74 images while excluding images with erroneous data values 
that exceeded the possible temperature range for the study area. Just as for the 
daytime LST images, the team calculated mean LST of all images in the collection 
for a single mean nighttime LST image to represent the entire period.

3.2.2 UHI Identification / Urban Heat Maps
Mean LST for the study area was used to identify urban hotspots. To best depict 
the magnitude of the UHI effect in the study area, the team selected two reference 
sites to compare to the study area. The team created two reference sites of 
predominantly agricultural land cover adjacent to the City of Sacramento. One 
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reference site is located south-southwest of the City and east of Dixon, while the 
other is south-southeast of Sacramento and south of Elk Grove (Figure 2). The 
team selected these reference sites according to the following criteria: outside of 
city limits, little urbanization, and similar elevation. Bodies of water and 
transportation corridors such as highways were excluded. The combined area of 
the selected reference site polygons closely matched that of the study area. 

Figure 2. Study area of the City of Sacramento, California (pink) and the team's
reference site locations (blue).

To calculate an UHI magnitude for the City relative to the reference sites, the team
subtracted the mean LST of the daytime and nighttime reference sites (calculated 
using the Zonal Statistics as Table tool in ArcGIS Pro) from the mean daytime and 
nighttime LST images, respectively.

3.2.3. Evapotranspiration (ET)
The downloaded ET datasets were imported into Esri ArcGIS Pro and manually 
interpreted to discard any layer not matching the criteria highlighted in Data 
Acquisition. The average ET value for each cell was then calculated in ArcGIS Pro 
using the Cell Statistics tool. The units of ET required for the InVEST model were 
mm/day and were converted from W/m2 using Equation 2.
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                   1 mm/day =  1 W m-2  × 0.0864 MJ day -1  W-1  × 0.408 mm day -1  m2  day1  MJ-1     
(2)

3.2.4. Land Use/Land Cover (LULC)
Dyett and Bhatia provided a vector layer of categorized parcels within the city 
limits. However, the file did not include the North Natomas Special Study Area and
had data voids where roads and water existed. The team created and categorized 
new polygons to fill in these gaps and joined them with the LULC layer. Finally, the
team rasterized the vector layer with a 15ft cell size (~4.5m). This resolution was 
chosen because it was roughly ½ to ¾ width of some of the smallest parcels in the 
vector layer. The resolution of the LULC raster determines the resolution of all 
InVEST model output layers

It was necessary to add a “Background” LULC category to the attribute table of 
the raster. The ‘Value’ of this new category was automatically assigned a zero by 
ArcGIS Pro. The ‘Background’ category then needed to be added to the biophysical
table, with its LULC code and all associated values set to 0 in order for the model 
to run. The model will reproject the input layers and a minimum bounding 
rectangle will be drawn around the area of interest. An error occurred where the 
reprojected LULC raster cells just outside the Area of Interest border were 
appearing with values of 127. Because there was no 127 LULC code in the 
biophysical table, this caused the model to fail. This was solved by setting the ‘No 
Data’ value to 127 when the raster is exported to a .tiff in ArcGIS Pro. At the time 
of writing, this was a known bug in several of the InVEST models and developers 
might address this in future releases.

3.2.5. Albedo
The InVEST urban cooling model requires a biophysical table with multiple 
corresponding values for each land use class. One of these values is albedo, which 
represents the proportion of solar radiation directly reflected by the LULC type 
(Sharp et al., 2020). The mean albedo was calculated using a previous Google 
Earth Engine script from the NASA DEVELOP AZ Spring 2020 Philadelphia Health 
& Air Quality project (Equation 3). Blue, Green, Red, NIR, SWIR1 and SWIR2 are 
bands 2, 3, 4, 5, 6, and 7, respectively, in Landsat 8 Surface Reflectance images 
and the coefficients are empirically derived weighting coefficients (Olmedo, 
Ortega-Farías, de la Fuente-Sáiz, Fonseca- Luego, & Fuentes-Peñailillo, 2016).   

albedo = Blue·0.246+Green·0.146+Red·0.191+NIR·0.304+SWIR1·0.105+SWIR2·0.008
(3)

Mean albedo for the City of Sacramento was then overlaid with a land cover 
dataset provided by the City. An average was then calculated for each land cover 
type using the Spatial Analyst Zonal Statistics as Table tool in ArcGIS Pro. Results 
were incorporated into the biophysical table as input for the InVEST urban cooling 
model.

3.2.6. Shade
Shade was another required value in the InVEST urban cooling model biophysical 
table input. Tree canopy cover was used as a proxy for shade. The team used the 
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ESRI USA NLCD Tree Canopy Cover 2016 layer (30m resolution) in ArcGIS Pro 
that was derived from the MRLC analytical version of this dataset in the 
calculation of shade. The team used the Spatial Analyst Zonal Statistics as Table 
tool to calculate the mean tree canopy cover per land cover type from the LULC 
vector layer. Results were then incorporated into the biophysical table as input for 
the InVEST urban cooling model. 

3.2.7. Crop Evapotranspiration (Kc)
The InVEST model uses the crop evapotranspiration coefficients to predict the 
amount of evapotranspiration in a cell. However, since the evapotranspiration 
raster for the area of interest reflects actual evapotranspiration rather than 
potential evapotranspiration, the team assumed the actual evapotranspiration 
derived from ECOSTRESS had already integrated the crop coefficient into the 
calculation. Therefore, because the model requires a Kc value in the biophysical 
table, all Kc values were set to 1 as to not affect input ET. This results in the use of
the original observed actual evapotranspiration within the model.

3.2.8 Building Intensity
Building Intensity is a product of the cumulative floor area of buildings on a certain
land use category divided by the area of land of that category, which we estimated 
to the best of our ability. Our partners provided us with an incomplete 
cartographic layer of buildings in the city. The team performed a one-to-one spatial
join of building polygons to the LULC vector, according to the where the building 
polygon center was located. To fill in the gaps of the dataset, the heights of 
buildings within each LULC category were examined, and reasonable 
representative heights were then assigned to any building within each LULC 
category that did not have height data. Then, building height was divided by a 
typical ceiling height for that building type (see Table B1) to produce an estimate 
of the number of floors in each building, rounded to the nearest whole number and 
any zeroes replaced with a 1. Building Intensity within each LULC category was 
then calculated according to Equation 4. 

Building intensity = ∑ (Building Area ×  Floors )  ÷ Land Area                         (4)

3.2.9. Heat Risk 
The CalEnviroScreen 3.0 shapefile product was clipped to the study area and 
invalid geometries were removed. The census tracts did not perfectly align with 
the study area shapefile (for example, inclusion of the river), so unaligned polygons
and small slivers were edited to align with the study area polygons. For GEE to 
accept the shapefile, it was converted from multipart to singlepart. Small slivers 
and unaligned polygons were again checked to ensure alignment with the study 
area. Small slivers were removed and/or absorbed into adjacent polygons. Fields 
not relevant to the heat risk analysis, such as pollution metrics, were removed 
from the attribute table.

The team joined census tract data from the 2017 U.S. Census 5-Year Estimate 65 
and older population data and instances of homeless encampments from the City of
Sacramento’s 311 dataset to the CalEnviroScreen 3.0 shapefile. This shapefile was 
used to extract nighttime LST per census tract, which was then joined in the 
attribute table. This shapefile was then imported into GEE to calculate mean 
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daytime temperature per census tract. Finally, the team exported the shapefile as a
.csv for analysis further in Excel. 

3.2.10 InVEST Input Data
Input layers into the InVEST urban cooling model include the LULC raster, the 
Area of Interest vector, the Evapotranspiration raster, and a biophysical table .csv 
that includes shade, Kc, albedo, and building intensity averages for each land use 
type (see section 3.2). The team used the biophysical table from the practice data 
folder (available for download on the Natural Capital Project website) of the 
InVEST urban cooling model user guide as a template.

Before using the InVEST urban cooling model, the team read the user manual and 
paid special attention to the formulas mentioned to thoroughly understand how 
each metric was being calculated. The team also audited the InVEST EdX MOOC 
before attempting to run the model and recommends doing so for future 
replication. To prepare the input layers, the team projected them into the same 
coordinate system and ensured the units of measurement were metric. All the 
supporting files for the area of interest vector had to be stored together, even 
though only the .shp was selected as the input in the model GUI; otherwise, the 
model would not run. Raster layers were all in .tiff format and all temperature 
values for InVEST inputs were in degrees Celsius. The team used the default 
values for Air Mixing Distance (2000m) and for Green Area Maximum Cooling 
Distance (400m), as this data was not available from the project partners.

3.3 Data Analysis
3.3.1 InVEST Urban Cooling
The team ran the InVEST urban cooling model under four different scenarios: 
current conditions and city-wide tree canopy cover increases of 10%, 20%, and 
30%, as suggested by the City of Sacramento. The latter three scenarios increased 
shade cover proportionally for all but four of the land use categories. These four 
land use categories (‘vacant’, ‘open space/recreational’, ‘public’, and ‘schools’) are 
under more direct city jurisdiction and were therefore set at the City’s goal of 35% 
tree canopy cover for all scenarios, per the partners’ instruction. The model 
produces several outputs which were used for further analysis and comparison, 
including a cooling capacity raster, a heat mitigation index raster, and an 
estimated temperature raster. Temperature anomaly (Tanom) under current 
conditions and each of the three hypothetical scenarios was calculated by 
subtracting the mean LST of the reference sites from the modeled temperature 
output raster using the Raster Calculator function in ArcPro (Figures B1 – B4). 
Using the same tool, the team then subtracted the current condition temperature 
anomalies from those of the hypothetical scenarios’ temperature anomalies to 
produce a change in overall temperature anomaly (∆ T) (Equation 5). Areas with a 
decrease in temperature anomaly under this scenario would result in negative 
value, while those experiencing an increase in temperature anomaly would result 
in a positive value (Figures B5 – B7).

Tanom =   temp raster−34.58                                                                  (5)

3.3.4 Heat Risk 

9



The heat risk index was calculated in Excel following the methodology of California
OEHHA’s CalEnviroScreen. A detailed example of this calculation can be found in 
CalEnviroScreen 3.0 report. For each individual metric, the percentiles of the raw 
values were calculated and maintained relative to the City of Sacramento. The 
team retained enough significant figures to eliminate rank ties. A mean percentile 
value was calculated for vulnerability and exposure from each of their respective 
metrics. Vulnerability factors were evenly weighted, while exposure factors were 
weighed unevenly. The team chose to weigh daytime LST values half as heavily as 
the nighttime LST values following previous research that suggests that nighttime 
temperatures are greater predictors of heat-related health outcomes than daytime 
temperatures (Hajat et al. 2005; Schwartz et al. 2005; Zhang et al. 2012). The 
team used Equation 6 to calculate exposure, where mDLSTi and mNLSTi are the 
mean daytime and nighttime LST values, respectively, for census tract i:

(6)

Exposure  =
( mDLST i  × 0.5 )  +  mNLSTi

1.5

The values for vulnerability and exposure, termed component scores, were then 
scaled by the city maximum. A composite risk score was then calculated from these
component scores using Equation 7:

Risk  =  Exposure ×  Vulnerability                                                   (7)

The team calculated the percentiles for these scores, which could then be 
visualized spatially by census tract. These final percentile risk index scores are 
used to identify neighborhoods in Sacramento with higher heat risk relative to 
each other. 

4. Results & Discussion
4.1 Analysis of Results
4.1.1 UHI/Hotspot Identification
Sacramento is on average 7.3°F warmer than reference sites outside the City, with
temperature differences ranging from as low as 40°F cooler to as high as 40°F 
warmer during daytime hours (Figure 3, Figure C1). During nighttime hours, the 
City ranged from 6°F cooler to 18°F warmer than the reference sites (Figure 3, 
Figure C2). Most of the areas that experienced high daytime UHI magnitude 
maintained higher temperatures at night, suggesting that these areas offer little 
relief from the heat for their residents. Urban hotspots were identified in the 
following communities: North Natomas, Central City, and eastern 
Fruitridge/Broadway. The greatest differences in temperature occurred in highly 
urbanized areas with little green space such as North Natomas. Areas that were 
cooler on average than the reference sites were green spaces with substantial tree 
cover and shade. 
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Figure 3. Daytime Urban Heat Island (UHI) Magnitude (left) and Nighttime Urban

Heat Island (UHI) (right) for the City of Sacramento.

4.1.2 Heat Risk

Figure 4. Heat Risk Percentile for the City of Sacramento
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Heat exposure (Figure C3) and social vulnerability (Figure C4) did not always 
coincide in Sacramento. For example, the City Center experiences one of the 
highest UHI magnitudes but has a relatively low social vulnerability. In contrast, 
areas such as North Sacramento and the southern portion of South Area have 
relatively high social vulnerability scores but lower UHI magnitudes. Heat Risk 
incorporates both of these variables into a holistic perspective (Figure 4). 

4.1.3 InVEST Urban Cooling Model
Cooling capacity is an intermediary output of the InVEST urban cooling model and 
is a product of shade, albedo, and evapotranspiration by land use type. It 
represents an area’s ability to counteract extreme heat. The darker red areas in 
the daytime cooling capacity map in Figure 5 represent areas that have low 
capacity to cool, typically experience higher temperatures, and are therefore 
opportunity areas for improvement. Large swaths of agricultural land, like in the 
northern most study area, can be misleadingly categorized as having low daytime 
cooling capacity due to their low shade and albedo values. Compare this area to 
the same location into the Daytime Heat Mitigation map (Figure 6); the area shifts 
from red, or low cooling capacity, to blue, or high meat mitigation. Discussed 
below is the importance of open green space in heat mitigation, which is not 
considered in the cooling capacity calculation. 

The nighttime InVEST urban cooling model option considers only building intensity
because buildings retain heat from the day and re-emit it at night. Residential 
areas are particularly red in the nighttime map in Figure 5, meaning low capacity 
for cooling. This is likely a function of the high number of housing units packed 
very tightly together on small parcels of land, more so than a function of their 
height. 
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Figure 5. Daytime and Nighttime Cooling Capacity

The main InVEST urban cooling model output is a heat mitigation index raster. 
Heat mitigation is equal to cooling capacity unless pixels are given the green space
designation in the biophysical table or are within the ‘Green Area Maximum 
Cooling Distance,’ as defined in the model GUI. Cells nearby a green space area 
over two hectares are given a distance-weighted average of heat mitigation 
(InVEST | Natural Capital Project). Dark red areas in the Daytime Heat Mitigation 
map (Figure 6) are places where there is low heat mitigation, higher temperatures,
and therefore represent opportunities for the City to improve, while white/blue 
areas are where heat is being mitigated more effectively. Agricultural land in the 
northwest is deep blue and is providing cooling benefits to the residential areas 
along its border. Small sections in the western portions of the city, which represent
parks, are also providing extra cooling benefits to the surrounding areas. Major 
transit corridors and many blocks appear dark red. These may be good locations 
for City investment in heat-mitigation strategies. These results demonstrate how 
important open green spaces are to urban heat mitigation. 

 
Figure 6. Daytime and Nighttime Heat Mitigation

The City of Sacramento was concerned with both social equity and cost efficiency 
in prioritizing heat mitigation investments. To serve both of these goals, the team 
averaged heat mitigation within census tracts using the ‘Zonal Statistics as Table’ 
tool in ArcPro, then joined the results with the Heat Risk map. Graphing Heat Risk 
against mean HMI in a scatter plot, census tracts in the top percentile were 
selected as priority areas (Figure C5). These 34 census tracts have low current 
capacity for extreme heat mitigation and very high-risk populations. The average 
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HMI is 0.19 and average daytime LST is 105.5ºF. Investment here would impact 
166,371 citizens.

4.2 Uncertainties/ Limitations
Several assumptions were made throughout the project. Firstly, nighttime hours 
were defined as 11pm – 4am local time to represent the coolest part of the night 
and to maximize the number of images to ensure a stable mean. Additionally, the 
default cloud masks were applied for both Landsat and ECOSTRESS satellite 
imagery. Although the cloud mask can introduce error, the nighttime cloud mask 
can be particularly difficult to ensure accuracy as they are based on only 
temperature, not optical imagery. Daytime LST values were half-weighted in the 
heat risk analysis. While this is grounded in current literature that nighttime 
temperature is a greater risk for health-related outcomes, the end users and future
studies may want to consider different weights. 

The InVEST Urban cooling model is a new and imperfect tool. In part, this study 
serves as a test for how useful and accurate the model is. The model can be 
calibrated by manually adjusting coefficients in the model interface, but this 
requires ground-truthing, which was not possible within the ten-week project 
timeframe. Ground-truthing of its results may be needed if users would like to 
calibrate the model to better fit their circumstances. The team made partners 
aware of this option as a potential for future use. The InVEST Urban cooling model
results are spatially explicit. However, the model averages shade, albedo, Kc, and 
building intensity for each LULC category. Therefore, the results are quite 
generalized and do not necessarily reflect conditions on the ground. Additionally, 
cooling capacity and heat mitigation are unitless values and therefore should not 
be interpreted as a percent of heat mitigated. 

Additionally, the InVEST Urban cooling model expects temperature values to refer 
to air temperature, not surface temperature. Therefore, the intermediate air 
temperature outputs are not true air temperature. Using surface temperatures 
introduces more error into the model. While it is preferable to use a more precise 
estimate, the team did not have an estimate for Sacramento and therefore used the
2000m default value for air mixing distance. However, since the reference 
temperature and urban heat magnitude values are based on surface temperature 
(instead of air temperature as the model expects), then this value becomes much 
less important, rendering the intermediary output of temperatures after air mixing 
meaningless. The inputs to the model relied on some assumptions due to a lack of 
precise data. These included using generalized building heights and estimating 
floor numbers, using the default value for green area cooling distance, and 
calculating shade based only on tree canopy cover, which ignores building shade. 
Tree canopy cover was calculated using the lower resolution National Land Cover 
Dataset, which did not always correspond well with City-owned tree data. 

4.3 Future Work
Along with investigating the uncertainties that were described above, further 
research into additional vulnerability datasets could be conducted to include a 
greater understanding of vulnerability and risk. The InVEST model also allows 
users to run additional valuations and scenarios that the team was not able to run 
due to the ten-week timeframe, but the partners can likely still utilize the model to 
continue their research for the update of the 2040 General Plan. These valuations 
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consist of the percent work loss conversion into dollar value based on workforce 
size and salary, and the energy savings optional valuation, which measures the 
kilowatt hours consumed and the economic cost of cooling buildings under 
extreme urban heat.

5. Conclusions
This study shows that Sacramento citizens experience much hotter summer 
temperatures than nearby less developed areas in the Central Valley due to the 
urban heat island effect. Daytime LST is as much as 40ºF higher within the City. 
Extreme heat is unevenly distributed around the city. Local heat islands are 
located in the Central City, North Natomas, Arden Arcade, and 
Fruitridge/Broadway communities. Several areas of the city do not cool down 
significantly overnight, especially in the city center, exposing citizens to constant 
heat stress. Nighttime temperatures can be as much as 18ºF hotter than outside 
the city. While air temperature analyses more accurately assess how people 
experience heat, LST studies, such as this one, illustrate the sources of heat, which
empowers end users to address the core causes of UHI. 

Vulnerable communities are also unevenly distributed across the city. The team 
created a new heat risk index, relative to the City, that incorporates age, race, and 
homelessness, as well as other typical sensitivity and social indicators of 
vulnerability used in existing indexes. This is the first study in Sacramento to 
include a spatial representation of homelessness in the analysis. This work maps 
heat exposure and social vulnerability separately. However, the results illustrate 
the importance of considering both factors in conjunction when identifying targets 
for heat mitigation improvements since high exposure and high vulnerability do not
always coincide. Failure to consider both together may result in inefficient 
allocation of resources. 

The results of the InVEST model map heat mitigating ecosystem services in the 
City of Sacramento. The team has provided spatially explicit insight into where 
cooling capacity may be bolstered to alleviate the urban heat island effect. By cross
referencing the heat mitigation index and the results of the heat risk analysis, the 
team identified 34 census tracts for priority intervention. The partners were 
particularly interested in considering the roll of urban greening as a heat 
mitigation strategy. By running the InVEST urban cooling model under 3 different 
scenarios of tree canopy cover, the team provided an estimate of how increasing 
shade alone can reduce city temperatures. These results also illustrated the 
ecosystem service value of open green space. Open green space provides minor 
refuge from urban heat as well as provides extra cooling benefits to the nearby 
built environment. The study also shows that transit corridors tend to be sources of
urban heat and are not currently well mitigated in the City of Sacramento. 

The partners may use these results to set goals for tree canopy cover and to create
policies for new development going forward in their update to the City of 
Sacramento’s 2040 General Plan. This study also served as a feasibility test for 
using the InVEST urban cooling model. The lessons learned and the limitations 
thereof, discussed above, can be carried forward by the partners or other 
DEVELOP teams to support further studies. 
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7. Glossary
Albedo – the fraction of light that is reflected by a surface
Cooling Capacity – a measure of a system’s ability to remove heat
Earth observations – satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) – satellite mission that aims to measure how the terrestrial 
biosphere changes in response to environmental changes such as water availability
Evapotranspiration – the sum of evaporation of water from land and other 
surfaces and through transpiration by plants
Heat Mitigation Index – an index to estimate temperature reduction by 
vegetation
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – a suite
of models used to map and value the goods and services from nature that benefit 
human life
Land Surface Temperature (LST) – the temperature of the surface of the Earth
Operational Land Imager (OLI) – sensor aboard the Landsat 8 satellite that 
measures visible, near-infrared, and shortwave infrared wavelengths
Thermal Infrared Sensor (TIRS) – sensor aboard the Landsat 8 satellite that 
measures both Earth’s surface temperature and atmosphere temperature
Urban Hotspots – Areas of high urban air temperature
Urban Heat Island (UHI) effect – Heat islands are urbanized areas that 
experience higher temperatures compared to surrounding areas due to impervious 
materials, such as asphalt, that absorb and remit solar heat more than natural 
vegetation (US EPA, 2014)
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9. Appendices
Appendix A

Table A1
Platforms and sensors

Platform & Sensor Parameters Use
Landsat 8 OLI/TIRS Surface reflectance to 

calculate albedo and 
daytime surface 
temperature

The thermal band and 
emissivity of the surface
reflectance product and 
were used to calculate 
daytime land surface 
temperature and 
hotspots for 2016-2020. 
Surface reflectance was 
also used to calculate 
albedo for use in the 
InVEST model. 

ISS ECOSTRESS Nighttime land surface 
temperature images and
cloud masks, 
Evapotranspiration

Nighttime 
measurements of land 
surface temperature 
were gathered from 
ECOSTRESS to enhance
the partners’ 
understanding of urban 
heat dissipation and 
consequent 
neighborhood-level 
health concerns. 
Evapotranspiration 
rates were gathered 
from ECOSTRESS for 
use in the InVEST 
model.
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Appendix B

Table B
Generalized Building Values

Single Family Typical 
Building 
Height (ft)

Estimated 
Ceiling Height
(ft)

Multi-Family 25 9
Retail/Commercial 25 9
Industrial 20 15
Light Industrial 16 15
Office 16 15
Mobile Home 30 9
Mixed Use 10 15
Institution 30 15
School 16 15
Public 25 15
Vacant 25 15
Open 
Space/Recreation

16 15

Utilities 12.5 15
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Figure B1. Temperature Anomaly with Current Conditions
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Figure B2. Temperature Anomaly with 10% Tree Canopy Increase
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Figure B3. Temperature Anomaly with 20% Tree Canopy Increase
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Figure B4. Temperature Anomaly with 30% Tree Canopy Increase
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Figure B5. Difference in Temperature Anomaly between 10% Tree Canopy
Increase and Current Conditions 
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Figure B6. Difference in Temperature Anomaly between 20% Tree Canopy
Increase and Current Conditions
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Figure B7. Difference in Temperature Anomaly between 30% Tree Canopy
Increase and Current Conditions
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Appendix C

Figure C1. Daytime Averaged Land Surface Temperature
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Figure C2. Nighttime Averaged Land Surface Temperature
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Figure C3. Heat Exposure Percentiles for the City of Sacramento
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Figure C4. Social Vulnerability Percentiles for the City of Sacramento
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Figure C5. Priority Census Tracts (Low Current Capacity for Extreme Heat
Mitigation and Very High-Risk Population).
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