

Update on Artemis Astronaut Training

Cynthia Evans¹, Trevor Graff¹, Kelsey Young², Jacob Bleacher³, Sarah Noble⁴
Alex Kanalakos⁵, Scott Wray⁵

¹ NASA Johnson Space Center, Astromaterials Research & Exploration Science

² NASA Goddard Spaceflight Center

³ NASA HQ Human Exploration Operations Mission Directorate

⁴ HQ Science Mission Directorate

⁵ NASA Johnson Space Center, Flight Operations Directorate, EVA Training

Training the Artemis Astronauts

- Multiple forums, including the 2016 LEAG Geologic Astronaut Training SAT (GAT-SAT) and several LSSW papers and break-out sessions have called out the requirement for a well-trained crew, referencing Apollo lessons
 - Geoscience and field training for crew early in the training flow
 - Integrated simulations in relevant field environments
 - Cross training and field training for flight operators, engineers and managers
- A NASA team of planetary and field geologists are already integrated with JSC's Flight Operations Division (FOD) training office and crew office
 - 10 years of close collaboration and coordination with FOD crew and training offices (includes Astronaut Candidate training, and training for ISS Earth Observations)
 - Well-established mechanisms for including external scientist participation
 - Plans underway to integrate fundamental geological sciences, lunar science, planetary processes and field operations into the Artemis training flow for crew and supporting operations staff

FOD Reference Model: Phased Approach for EVA Skills Training

PHASE 1

EVQ

During astronaut candidacy

- Systems
 - Basic, working knowledge of EMU
 - Caution & Warning interface and boldface response
 - Suit-IV role, understanding of Road-to-EVA activities
- Task
 - Optimize suit fit, safely performing basic skills and proficiency to complete 6.5-hour spacewalk
 - Mastery in self-care and ability to rescue partner within 30 minutes
- Plan/Ops
 - Basic execution and participation in EVA development as EV crew and Ground IV.
 - Assist with crew suit donning/doffing

PHASE 2

Proficiency Training

Between completion of initial training & flight assignment

- Maintain EV-Q Proficiency
 - Periodic NBL Runs to maintain EV-Q skills
 - Periodic Systems courses to maintain Suit-IV skills
- EVA Development
 - EVA Hardware review
 - NBL Development tests
- Leadership and Ground-IV development
 - Optional EV-L flow to increase leadership skills and mentor rookie crew
 - Ground-IV training and execution of EVA from MCC

PHASE 3

Assigned Crew Training

Mission specific science training

- ISS Maintenance
 - Focus on Critical Contingency EVA tasks
 - Skills based for both Nominal and Contingency EVAs
 - Evaluation from EVA Evaluation Board
- EMU & A/L Systems
 - Road-to EVA and EMU Maintenance
 - EVA Prep & Post (EV and Suit-IV roles)
- EVA Specific Training
 - Training Specific EVA content which is scheduled within Increment timeframe
 - Develop crew preferences for EMU and EVA timeline
 - Evaluation from EVA Evaluation Board

PHASE 1

Initial Training

During astronaut candidacy

- JSC Classroom Training Modules
 - Geo-Science Fundamentals
 - Earth Systems
 - Planetary Science & Missions
- Field Training
 - Geologic Mapping & Traverse Planning
 - Sampling & Instrumentation
- Expeditionary Components
 - Team Experiences & Leadership Opportunities

PHASE 2

Proficiency Training

Between completion of initial training & flight assignment

- ISS Specific Training
 - Crew Earth Observations
- Analog Mission Operations
 - Science under operational constraints
- Advanced Field Opportunities
 - Astronaut Field Assistantships and other opportunities
- Ops tests in Training Facilities
 - e.g. ARGOS, NBL, Rock Yard, etc.

PHASE 3

Assigned Crew Training

Pre-assigned & Mission specific science training

- Advanced Classroom Instruction
 - Destination-specific training
 - Detailed focus on science objectives & operations
- Facility-Based Mission Simulations
 - In coordination with operations and hardware training and evaluations
- Extensive Field Experiences
 - Numerous geologic/operational training trips to relevant terrains patterned after Apollo

Key Achievements from > 10 years of Phase 1 and 2 Training

- Built a robust geoscience and field training curriculum provided to new astronaut classes (2009, 2013, 2017 classes)
 - Increased field work for new classes (2 weeks) with a focus on mapping
 - Tightly integrated Earth & planetary science classroom and field training, includes capstone exercises
 - Integrated spaceflight/mission relevance by partnering with NASA operational psychologist and including Space Flight Resource Management elements (approaches and language from NOLS classes)
- Established process for field assistantships for trained crew to maintain proficiency
- 2X/year field mapping classes for engineering community (spacesuit engineers, geology tool engineers, flight operators) and management as an introduction to surface operations
- Integrated crew-scientist-engineer operational testing in JSC facilities

South Pole Lighting Tests, JSC Rockyard

Notional Training Schedule (2018 to 2028)

- Continue to address GAT SAT, other community findings
- Continue to build partnerships with Crew & EVA training offices
- Develop funding requests for basic science and science ops training for FY22-27 (NASA annual budgeting process)
- Assess relevant astronaut experience within crew office
 - Majority of crew have been through ASCAN training with 1 or more weeks of field experience
 - Significant number have participated in proficiency activities: field assistant, analog exercises
 - Most crew have been to ISS and have basic understanding of Earth geography, planetary processes and the importance of observations

Artemis Training – Looking Ahead

- Fully integrate our phased approach to crew training (based on EVA model) with FOD Artemis training plans
 - Multi-year training schedule w. FOD that integrates planetary/field science with operations training, leading to integrated simulations
 - Includes basic lunar & planetary science that can be provided to pre-assigned crew
 - Targets a subset of basic training for Artemis Support Team, including flight directors & operations engineers
 - Identifies relevant field training locations and required logistics for the basic training and simulations
 - Ongoing operational testing in JSC facilities (RockYard, NBL, ARGOS, VR) with crew, engineers, trainers to test equipment prototypes and develop preliminary operational concepts

