

Life Support for Long Duration Missions

John A. Hogan, Ph.D. Chief, Bioengineering Branch PI - STMD GCD Synthetic Biology Project NASA Ames Research Center

> ARC Space Portal April 21, 2021

Earth's Life Support Systems (ELSS)

Physical/Chemical Properties & Processes

- Resource diversity/distribution/cycling
- Radiation protection Earth's core
- Proper gravitational field
- Stable rotation
- Proper solar radiation levels
- Proper atmospheric pressure

Earth's Ecosystem Services

Water/waste purification

Air quality regulation

Aesthetic/Spiritual values Recreation/Ecotourism

Disease regulation

Natural hazard regulation

Ref.: Millennium Ecosystem Assessment United Nations Environment Programme (2005)

Human Space Exploration

Early Missions

3 Missions - 28, 59, 84 days

Life Support Requirements Mass Breakdown (Per Person-Day)

DAILY INPUTS - NOMINAL

	kg	
Oxygen	0.84	
Food Solids	0.62	
Water in Food	1.15	
Food Prep Water	0.79	
Drink	1.62	
Hand/Face Wash Water 1.82		
Shower Water	5.45	
Clothes Wash Water	12.50	
Dish Wash Water	5.45	
Flush Water	0.50	
TOTAL	30.74	

5.02 - 30.74 kg per person-day

11.3 Metric Tons Per Person-Year

DAILY OUTPUTS - NOMINAL

	kg
Carbon Dioxide	1.00
Respiration and	2.28
Perspiration Water	
Urine	1.50
Feces Water	0.09
Sweat Solids	0.02
Urine Solids	0.06
Feces Solids	0.03
Hygiene Water	6.68
Clothes Wash Water	11.90
Clothes Wash	0.60
Latent Water	
Other Latent Water	0.65
Dish Wash Water	5.43
Flush Water	0.50
TOTAL	30.74

Atmosphere Management

Air Revitalization

Functions

- O₂ Generation
- CO₂ Removal
- Contaminant
 Control
- Particulate Control

Current = $47\% O_2$ Recovery from CO_2 Goal = >75%

CO₂ Capture and Sequestration

Temperature Swing Adsorption Compression

CO₂ Cold Deposition (CDep)

Liquid Amines/CapiSorb

CO₂-Based Biomanufacturing

Objective: Use rapid physico-chemical methods to convert CO_2 to an organic media that is used by heterotrophic microbes to produce mission-relevant products in space.

Biomass-Based Manufacturing

DOE - Top Value Added Chemicals from Biomass (2004)

Space Biomanufacturing Systems

Biomanufacturing Approaches

- Long duration missions/settlements require extensive loop closure, *in situ* resource utilization and *in situ* manufacturing
- Terrestrial "biorefineries" use low-efficiency biomass processes not viable in space

CO₂-Based Manufacturing Project

Funded by STMD Game Changing Division

NASA CO₂ Conversion Centennial Challenge

GOAL: Abiotic production of sugars from CO₂ to support to feed heterotrophic microbial biomanufacturing operations

PHASE 1: CONCEPT

Goal: Provide a preliminary design schematic and description of the physicochemical conversion system the competitor(s) could construct to demonstrate the production of selected carbon-based molecular compounds.

Duration: 8 Months

Participation: Submissions from 20 teams were evaluated for a Prize

Awards: \$250,000 Prize Purse Five teams were awarded \$50,000 each

COMPLETE

PHASE 2: DEMONSTRATION

Goal: Demonstrate a physicochemical system that is able to produce one or more of the targeted compounds.

Competitors will: Build a system; submit video evidence of their successful process; host the Challenge judges for an on-site evaluation and submit a sample for analysis.

Duration: 12 months

Awards: \$750,000 Prize Purse 1st Place - \$400,000 2nd Place - \$250,000 3rd Place - \$100,000

NASA CO₂ Conversion Centennial Challenge

PHASE 1 AWARDS

5 Winning Teams each received \$50,000

Dioxide Materials	Boca Raton, Florida
Lotus Separations	Princeton, New Jersey
Peidong Yang Group	Berkeley, California
RenewCO ₂ LLC	Jersey City, New Jersey
The Air Company	Brooklyn, New York

- Technology overview- Description of Physiochemical Overview and its Chemistry
- Assumptions- Operations/Tactics Critical to Overcoming Implementation Challenges
- **Design Schematic-** Can operate continuously for 7 hours, produce product sufficient for analysis
- Physical Properties- Physical characteristics of system
- Data Analysis- Supporting calculations/preliminary laboratory analysis data
- Project Plan- Milestones for building the technology

Challenge Target Compounds

Product Constituent	Weight
	Factor
D-Glucose	100
Other 6-carbon Sugars (hexoses)	80
5-carbon sugars (pentoses)	50
4-carbon sugars (tetroses)	10
3-carbon sugars (trioses)	5
Glycerol	5

Water Treatment

Wastewater to Drinking Water

ISS Water Recovery Subsystem

Functions

- Disinfection
- Organic Removal
- Inorganic Removal
- Maximize Recovery
- •Current = 90% water recovery •Goal = 98% Water recovery

Closed-Loop Water Treatment

ARC Water Recovery Systems

- Forward Osmosis Secondary Treatment (AWP)
 - Removal of ammonia, salts and solids from the effluent of the TTU/JSC/KSC bioreactor system.
- ARC Sustainability Base Grey Water Recycling System
 - Long duration membrane testing in operational environment.
 - Operating since 2014 treating gray water from NASA office building.
 - Transferred to Army as forward operating base water recycling system.
- Bio-membrane "living" water purification membrane.
 - Membrane capable of self repair and self cleaning.
 - Based on the integration biomaterials and living organisms.
 - Extends membrane life indefinitely, fully regenerable.
- Emergency Water Recycling System
 - Water recycling bag that requires no power or control to produce engineered food/water solution designed to keep crew alive.
 - Modified to produce baby formula for developing world applications.
 - Three flight experiments completed through NASA/ESA collaborations.
- Spectral Mass Gauging
 - Measuring tank water volumes with external sensing
- Silver-based Disinfection
 - Developing alternatives to iodine-based systems

Waste Management

Background Art: Courtesy of Boeing

"Waste" Conversion and Reuse

<u>Functions</u>

- Volume Reduction
- Odor Control
- Sanitization
- Recover H₂O, O₂,
 CO₂, Fuel, Nutrients,
 Building Materials

ARC Heat Melt Compactor System

Water Recovery System

Condenser

Thermoelectric cooler

Water Separator

State State

Food Production

Natural Form Foods and Condiments

International Space Station Food Container

Food and Nutrition

Food Stores Goals

- > 5 year Shelf life
- Cold storage
- Acceptability
- Nutritional stability
- <u>Closed Agriculture</u> <u>Goals</u>
- Maximize Yield
- Low Water
- Efficient Lighting
- Use recovered nutrients

BioNutrients: Overall Project Concept

5-Year ISS Storage-Reactivation Demonstration – NG-11 (04/17/19)

Develop and Demonstrate an ondemand nutrient production system for long duration missions.

Deliverables:

- Flight tested nutrient production system that can be evolved for future surface missions, and serve as basis for producing other mission-relevant compounds.
- Potential space-adapted microbial hosts for future genetic engineering.
- Identify on-orbit safety and operational needs for future implementation.

BioNutrients Flight Production Pack for on-orbit testing

BioNutrients Production Pack w/ media and yeast

Engineering yeast to produce nutrients on-demand

Developing microbes adapted for use in space

Also developing yogurtbased production systems

BioNutrients Flight Ops

Crew member David Saint-Jacques hydrating BioNutrients-1 production pack aboard ISS -First BioNutrients crew operations (June 2019).

Production packs in SABL incubator.

BioNutrients production packs removed from incubator after initial growth phase for second agitation.

3 On-orbit operations performed:2 years completed.

Space Technology Research Institute

CUBES

The Center for the Utilization of **Biological Engineering for Space**

University of California – Berkeley; Dr. Adam Akin, PI

Vision:

- Support biomanufacturing for deep space exploration;
- Create an integrated, multi-function, multiorganism biomanufacturing system for a Mars mission; and
- Demonstrate continuous and semiautonomous ٠ biomanufacture of materials, pharmaceuticals, and food in Mars-like conditions.

5 years - up to \$3M/year budget

https://cubes.space

Bio-Manufacturing for Deep Space Exploration – CUBES Activities

Use of Local Resources to Support Biomanufacturing

- Conversion of carbon dioxide, water, and other needed local resources to support rapid plant and microbial growth systems
- Develop nanowire/bacteria hybrids for solar-driven CO₂ fixation to organic substrates for microbial growth
- Develop novel hybrid N₂ fixation methods for nitrogen capture/supply

Biomanufacturing of Mission Products

- Optimize media/microbial engineering to produce bioplastics
- Advanced additive manufacturing techniques for mission products
- Increase yield, volume efficiency, and photosynthetic efficiency
- Pharmaceutical synthesis in plants and cyanobacteria
- Microbiome engineering for enhanced plant growth/performance

Systems Analysis, Integration and Demonstration

- Determine resource availability to guide technology development efforts
- Develop performance requirements, architecture and process models
- Integrate components for a scaled biomanufacturing demonstrationand assist in fabrication/testing

Nanowire/Bacteria Hybrid Reactor for acetate feedstock production

In-Space Bioplastic synthesis and product manufacturing

Far-red wavelength benefits

Systems Engineering

Systems Engineering

- Optimizing system closure
- Mass, power, and volume reduction
- System reliability
- Food systems for long duration missions
- Meeting planetary protection regulations
- Scaling processes for long-term concepts

Thank You

john.a.hogan@nasa.gov