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Abstract—NASA’s future vision for interplanetary networking
includes a lunar network, Cube Satellite (CubeSat) constellations,
and deep space robotic missions, comprising what could be
viewed as a network of networks. Delay-tolerant networking
(DTN) architecture and protocols provide a standard network
layer among these varying scenarios and mitigate many chal-
lenges of the space environment, such as long delays, unplanned
service interruptions, and asymmetric links. The Cognitive Space
Gateway (CSG) is a routing method in a DTN architecture that
uses spiking neural networks as the learning element to optimize
routing decisions in a complex environment.

This work aims to further develop cognitive networking
technologies in several critical areas, including DTN, the CSG
algorithm, SmallSat swarm topologies, and cloud services. The
CSG algorithm is tested in a realistic scenario in which the
emulated network topology is based on a SmallSat swarm. The
emulation environment will be built upon a commercial cloud
service, such as Amazon Web Services (AWS) Elastic Compute
Cloud. This work investigates the ability of such a platform to
enable a flexible, lower maintenance approach to creating a multi-
hop network outside of a physical laboratory. The cloud platform
will provide a secure environment allowing for collaboration
among government and academic entities.

Index Terms—Cognitive Networking, CubeSat Swarms, Rout-
ing, Network Modeling, Cloud Computing

I. INTRODUCTION

This paper outlines current efforts to apply the Cognitive

Space Gateway (CSG) [1] to future NASA Cube Satellite

(CubeSat) and/or SmallSat missions. The CSG is a routing

algorithm developed for intermittently connected or delay-

tolerant networks (DTN) that uses a spiking neural network

to make optimal routing decisions in a multi-hop network.

It is envisioned that technologies such as the CSG will

enable efficient operation of increasingly complex networking

scenarios.

The introduction outlines several candidate NASA missions

that may serve as potential demonstrations and infusion paths

for the CSG. Section II highlights the technologies related

to the CSG and the proposed test environment, as well

as how they will enable cognitive networking for NASA’s

future missions. Section III, Network Modeling, discusses

the development of a realistic test scenario for the CSG.

Details of the CSG itself are also considered. Section IV, Test

Environment, discusses developing a cloud-based simulation

environment and the testing approach to further developing

the CSG capabilities. Finally, Section V, Future Work, covers

the next steps that will be needed to extend the CSG to

opportunistic networks.

Potential Infusion Paths

The Cognitive Communications Project at NASA Glenn Re-

search Center (GRC) has identified several upcoming missions

that could benefit from cognitive networking technologies

such as the CSG. These missions have been analyzed to pro-

vide insight into the technology gaps, design considerations,

and network conditions that cognitive networking technology

attempts to address. These missions include LunaNet [2],

HelioSwarm [3], and TechEdSat [4], although there are many

other relevant use cases within both the government and

commercial sectors. These three missions are discussed briefly

to give context to the networking scenario developed in this

work.

LunaNet: The NASA Space Communications and Navi-

gation (SCaN) program has been developing the LunaNet

architecture, outlining the network infrastructure that will

support future missions to the lunar surface [2]. Each LunaNet

node will support three standard services: networking services,

position, navigation, and timing (PNT) services, and science

utilization services. The network services will enable an end-

to-end path through surface assets, orbiters, relays, and earth

ground stations, transparent to the user. Network operations

must be scalable, support interoperability, and perform reliably

in a highly mobile, intermittently connected environment.

HelioSwarm: HelioSwarm is a proposed mission consisting

of a swarm of nine co-orbiting small satellites (SmallSats)

which will study the process of plasma turbulence and is

under consideration for NASA’s Heliophysics Medium-class

Explorer program [3]. Eight “spoke” nodes will transmit

science data to one hub, which will forward the data to Earth.

Data rates from the individual nodes to the hub will vary with

the distance from the hub. Ground stations may communicate

with the hub, but will not be able to communicate with the

spokes. The hub must be capable of storing the collected data
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from each node until it has a contact opportunity with the

Deep Space Network (DSN).

Technology Educational Satellite (TechEdSat): The TechEd-

Sat program uses a series of multiple CubeSats to evaluate

and demonstrate new technologies [4]. These missions are a

continuous series of CubeSat demonstrations that are based

on a common platform for rapid development. They have

demonstrated various technologies, including controlled de-

orbit and re-entry, wireless sensors, and ISM-band communi-

cations links. This rapid prototyping mission concept could be

used to test and demonstrate space networking protocols such

as the Bundle Protocol [5], Licklider Transmission Protocol

[6], and cognitive networking building blocks such as neighbor

discovery and link selection. Figure 1 shows an example

concept for a potential TechEdsat mission that could be used

to demonstrate these foundational technologies.

Fig. 1. TechEdSat Networking Mission Concept

II. COGNITIVE NETWORKING ENABLING TECHNOLOGIES

Ivancic et al. define a cognitive network as “having a cogni-

tive process that can perceive current network conditions, and

then plan, decide and act on those conditions” [7]. Building

upon this work and the concepts developed in [8], this section

briefly highlights a few of the technologies that may enable

the development of cognitive networking within NASA Space

Communication and Navigation (SCaN) program.

SmallSat Missions: SmallSat missions will allow for a low-

cost way to demonstrate cognitive technologies. An interesting

mission concept enabled by SmallSats is that a of distributed

system where each satellite performs a portion of a task,

and the location of each satellite is used to expand the area

covered by a science mission. Crosslinks are needed to enable

this distributed sensing environment as well as to perform

message relaying between nodes. Related to this is the concept

of ad hoc networks where the network topology is changing

dynamically as the nodes’ distances vary from one another [9].

These distributed missions may benefit from developing multi-

agent cognitive systems, such as Multi-Agent Reinforcement

Learning (MARL) [10] to enable cooperation between nodes

and complex system elements.

Delay Tolerant Networking: DTN can serve as the basis

of a cognitive network architecture for space environments

as well as other types of mobile, intermittently connected

environments. DTN addresses the need for a standard net-

work layer among dissimilar protocol stacks that may exist

throughout a single end-to-end path (“user” nodes such as

science payloads, relay nodes, gateway nodes, and others).

Intermittent connectivity is addressed by using a store-and-

forward technique. Protocols such as the Bundle Protocol [5]

address the issue of asymmetric link rates by eliminating or

reducing the use of acknowledgment-based reliability. Instead,

custody transfer requests are embedded within the bundle

header. Routing in DTNs is often accomplished at the bundle

layer.

Commercial Services: The integration of commercial ser-

vices into NASA’s SCaN program will increase flexibility in

the number of communication options science missions will

have access to [8]. NASA has plans to pursue commercial-

ization of near Earth Direct-To-Earth (DTE) communications

and identify implementation steps to enable commercial DTE

services by 2023 [11]. Several commercial ground station

services already exist, including Amazon Web Services (AWS)

Ground Station, Kongsberg Satellite Services, Atlas Space

Operations, and Infostellar.

Artificial Intelligence and Machine Learning: The advances

in Artificial Intelligence (AI) and Machine Learning (ML) can

facilitate the management of increasingly complex networks.

As SCaN evolves from NASA-managed services to incorpo-

rate commercial services and develops new network architec-

tures such as LunaNet, networking capabilities must address

scalability, reconfigurability, and system-level autonomy. AI

and ML can be applied to performance optimization, such as

maximized throughput, minimized energy consumption, and

monetary cost, as well as fault detection and recovery.

III. NETWORK MODELING

To test the effectiveness of the CSG routing algorithm in

a swarm environment, we examined several SmallSat and

CubeSat swarm missions including: Starling [9], HelioSwarm

[3], and Starlink [12]. We considered realistic scenarios based

on the number of nodes, network topology, contact schedules,

data rates, data volume, and node storage and processing

capabilities. Ultimately, an example LEO constellation roughly

based on the Starlink mission was used as a guide to develop

the network model. We used approximate orbits and reason-

able radio parameters to establish the connections to be used in

the test. The simulation was then used to provide input data

(contact start time, stop time, and average distance between

nodes) for the network emulation environment.



Network Configuration

SpaceX Starlink is an example of a commercial mega-

constellation, with the initial LEO constellations planned to

consist of 4425 satellites by 2024 [13]. The satellites operate in

the Ku (12-18 GHz) and Ka (26.5-40 GHz) bands and intend

to provide broadband communication services to worldwide

customers [12]. Orbits of spacecraft in the example network

are generated from a subset of satellites that comprise the

Starlink constellation. This example network consists of sixty-

one satellites with fifty-four forming the main belt and seven

in crossing orbits. In this scenario, we allow any satellite to

connect to the six ground stations we selected across the

United States and consider RF inter-satellite links between

satellites in the constellation. This network model is designed

to test how the CSG scales with the size. For the initial work

in this paper, we selected a subset of 12 nodes from the model

to create the test environment for the CSG algorithm.

Figure 2 shows the larger sample network of sixty-one

satellites and six ground stations within the Satellite Orbit

Analysis Program (SOAP) [14] that is used to determine the

satellite orbits and line-of-sight between network assets.

Fig. 2. Satellite Orbit Analysis Program Visualization[14]

Cognitive Space Gateway

The Cognitive Space Gateway (CSG) [15, 1] will be used

to make optimized routing decisions for multi-hop network

scenarios such as the multi-satellite missions outlined in the

previous section. The CSG uses reward shaping to determine

suitable rewards for reinforcement learning and a spiking

neural network as the outbound link decision-making element

for data bundles. Prior work demonstrated that CSG achieves

improved performance when compared to techniques such as

Contact Graph Routing (CGR) [16].

Such advantage is achieved through the iterative learning of

the best decisions through rewards that include the expected

network-wide conditions (e.g., congestion). Additionally, the

Cognitive Network Controller, the basis of the CSG, has been

demonstrated on the SCaN Testbed on-board the International

Space Station (ISS), earning it a higher technology readiness

level (TRL) than many proposed cognitive networking tech-

nologies [1]. For these reasons, this paper seeks to continue

developing and testing the CSG to prepare it for additional

flight missions.

IV. TEST ENVIRONMENT

The CSG will be tested with a cloud-based network of

containers using AWS. The benefit of this approach is that

multiple users from both NASA and academia will be able to

access the test environment remotely. In addition, the approach

is a meager cost in comparison to purchasing and configuring

local servers, and the system will be very flexible in terms

of cloning additional container-based nodes for extensive

emulations such as the Starlink inspired scenario. A custom

network simulator was developed in conjunction with the CSG

for integration into the system. This network simulation en-

vironment will allow for algorithm and software development

independent of a hardware testbed. Once the algorithms are

determined to perform satisfactorily, they can be integrated

into the software components of a realistic, software-defined

radio testbed. This approach will allow algorithm development

to be completed in parallel and independently from lower-level

protocol development.

Cloud Computing

Figure 3 shows a simple network simulation developed

using AWS Elastic Compute Cloud (EC2). Each node is an

EC2 instance that is part of a Virtual Private Cloud (VPC) de-

veloped for the Cognitive Communications Project. Each node

is based on an Ubuntu 18.04 Amazon Machine Image (AMI).

These container instances represent a SmallSat or ground

station within the simulation. The CSG software will be

installed within the Linux environment and a custom network

simulator controls the network interfaces of the containers,

according to the network models developed in the previous

section.

The initial test setup is simple to allow for the initial

configuration of the EC2 instances, network settings, and CSG

software. Once the initial nodes have been configured, repli-

cating nodes for increasingly complex network configurations

should be a simple task. Instance parameters such as memory,

processors, and storage options are being evaluated to deter-

mine the best performance of the system while minimizing

cost.

Test Network

The test network consists of 12 EC2 t2.micro (1 CPU, 1

GB RAM) instances that were connected according to the

selected network model (see Fig. 4). The t2.micro instances

are limited to one or two network interfaces, so IPIP tunnels

were established to recreate the required topology where

nodes can have 8 or 11 bi-directional network ports. With

IPIP, separated (virtual) interfaces were created to handle the

packet transmissions over each link. This approach allows the



Fig. 3. Cognitive Networking Emulation Environment in EC2

emulation of the link features as required by the network

model through the application of packet buffering and filtering

on a per-interface basis.

Because of the large number of nodes of the test network,

many communication paths may not require more than one

link. To evaluate the effectiveness of the routing adaptation,

two arbitrary and disconnected nodes (i.e., requiring at least

2 hops) were selected as the source and sink for a test bundle

flow. For reference performance, the path offering the earliest

time of arrival (ETA) was also calculated from the contact

graph, which is the method used by the Contact Graph Routing

(CGR) protocol. The algorithm finds the shortest contact

path by considering the waiting time for contacts. The input

includes the link rates and propagation delays associated with

each contact so that the shortest ETA can be found. However,

the impact of dynamic characteristics of the links, such as the

network-wide buffer occupancies and random packet losses

are not included in the computation, as they are generally

unknown, which may impact the optimality of the results.

V. PERFORMANCE MEASUREMENTS

The network is assumed to be connected for the entire

duration of the test traffic using nodes 1020 and 1061 as the

source and sink. This is a reasonable assumption given the

large path redundancy that exists between any two nodes and

the fact that only four of the 57 network links are affected by

link disruptions according to the network model. The flow

consists of 1,000 bundles of 100 kB each and the fastest

route considering the earliest time of arrival (ETA) but without

taking into account any possible network congestion is 2 hops

long (e.g., via node 1067). The propagation delay of the links

is given as calculated by the satellite orbit simulation and it

is assumed that all links provide negligible packet loss rates,

except for link 1067–1061 that is assumed to be affected by

large signal loss yielding a packet loss ratio of 0.02. This

consideration was purposely introduced to make the routing

problem non-trivial. The affected link sits on the shortest ETA

path. Each single-hop transmission was handled by a custom

1012 1020 1043

1019 1030 1058

1021 1060 1067

1028 1027 1061

Fig. 4. Test network topology.

implementation of the Licklider Transmission Protocol (LTP)

configured to manage 100% red-part blocks with up to four

concurrent sessions and a maximum segment payload size

of 1,300 bytes. Because LTP achieves bundle transmission

reliability by implementing selected segment retransmissions,

the single-hop bundle delivery time tends to increase when

packet losses occur on the link 1067–1061.

Time-series Observation

Fig. 5 (a) shows the time series of the bundle delay to the

sink (i.e., the response time) that was observed for each bundle

in a sample run. In this test, the bundles were sent at the rate

of 10 bundle/s. The segment retransmissions that are required

to reliably deliver bundles over link 1067–1061 contribute

to increasing the end-to-end bundle latency as shown in the

figure given that the buffer occupancy along the shortest ETA

path builds up quickly with the incoming packets. The CSG

method uses path latency estimations calculated from single-

hop performance metrics that allow modifying the synapse

weights of the SNN and achieve continual learning. This

feature is demonstrated by the lower bundle latency that is

achieved with the CSG approach compared to the shortest

ETA attempt. Because the CSG uses exploration, which is

a necessary mechanism for learning, a certain percentage of

the bundles may experience larger delays than the rest. The

delay peaks that can be observed with the CSG occur as a

result of the use of the high-packet loss link or due to the

intra-flow network congestion. In the latter case, the delay is



caused by the wait time for other bundles that already occupy

the buffers waiting to be transmitted. It can be observed that

the peaks tend to decrease over time, which is an indication

of the learning effectiveness of the system to achieve low end-

to-end bundle latency.
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Fig. 5. Time series of (a) the bundle delivery latency and (b) path length of
bundles of a sample test flow. In the former case, results obtained both with
the CSG and the shortest ETA are shown. For (b), only the path length with
CSG is shown and the instances using the affected link have been highlighted
using green diamond-shaped markers.

It is worth noting that multiple 2-hop paths are possible

between the source and sink with the selected topology, but

only one of them was affected by the larger packet loss ratio in

the experiments. No attempts were made to balance the traffic

among the 2-hop paths in the reference case, whereas a load-

balancing effect over paths of any size results as a side-effect

of the CSG. For the same experiment, Fig. 5 (b) depicts the

path length taken by each consecutive bundle. With CSG, the

path affected by the higher loss was used about 5% of the time

and those instances have been highlighted in the figure using

green diamond-shaped markers. The low usage count for this

path suggests that the CSG learned to avoid that route.

Average Trends

To obtain the average trends, multiple and identical episodes

of the flow transmission were registered. The average response

times of the bundles using the traffic sending rate as the

experimental factor are shown in Fig. 6. With light traffic, the

CSG performs slightly worse than the shortest ETA because

of the overhead brought by the path exploration. However,

as the traffic load increases, the reference method becomes

severely penalized while the CSG is capable of achieving

bundle response times that are appreciably lower.
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Fig. 6. Average bundle response time as a function of the flow sending rate.

While the bundle response time has been the unique routing

objective used to decide the paths in this study, it is interesting

to observe the end-to-end throughput that results from that

assumption. As can be observed in Fig. 7, the results are

correlated with the bundle response time results. With low-

traffic rates, both methods achieve similar performance, but

once network congestion becomes a major factor for higher

sending rates, the CSG achieves better throughput than the

reference method.

It is worth observing how the CSG moves its route selection

preferences to longer paths after a workload level increase

despite such paths accumulate larger propagation delays. Fig.

8 contrasts the distribution of the path length selection using

4 and 12 bundle/s workloads. The path length grows about

7% from 3.0011 with light traffic to 3.2130 with heavy traffic.

These values provide further indication of the route adaptation

capabilities with the CSG learning in real-time how to use

longer but less congested paths as needed.

VI. FUTURE WORK

In conclusion of this paper, there are several areas that

have been identified for future work. The first area is to

further evolve the CSG Python source into flight-like software

suitable for potential SmallSat missions. We will investigate

existing DTN implementations and software frameworks to

determine the next step towards integrating the CSG algorithm.

Additionally, several areas will be investigated to develop

cognitive networking technologies further.

More complex network scenarios can be developed for

the emulation environment. An increasingly dynamic network

topology and/or a larger number of nodes will necessitate a

more opportunistic style of routing. The CSG will require

additional development to achieve opportunistic routing ca-

pabilities. These improvements will increase the number of
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Fig. 8. Observed selection of path lengths across all collected samples with
sending rates of (a) 4 bundle/s and (b) 12 bundle/s.

missions the CSG can be applied to and increase the flexibility,

robustness, and reconfigurability of the system.

Additional work is also needed to enable neighbor node dis-

covery, which will be essential for opportunistic style contacts.

Several approaches to discovery exist, including Link Layer

Discovery Protocol (LLDP) and DTN IP Neighbor Discovery

[17] [18].
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