National Aeronautics and Space Administration

Applications and Benefits of

GNSS for Lunar Exploration

Ben Ashman, Lauren Schlenker, Joel Parker, Frank Bauer, Anne Long, Luke Winternitz, Kyle Craft, Munther Hassouneh SpaceOps, 3-5 May 2021

Beyond the SSV: MMS

- Four spacecraft form a tetrahedron near apogee for magnetospheric science measurements (space weather)
- Highest-ever use of GPS
 Apogee raising beyond 29 RE (50% lunar distance) completed in February 2019
- GPS enables onboard (autonomous) navigation and potentially autonomous station-keeping
- Continued outstanding GPS performance
 - Root variance: Radial < 70m, lateral <20m

- Nearing the tracking threshold of Navigator receiver/antenna system
- Higher gained antenna and/or more sensitive GNSS receivers can extend signal availability >30 R_E
- MMS data enables design of missions that can reliably use GNSS systems out to lunar distances

Lunar Exploration

- The Moon is again a top space exploration priority
- Current lunar exploration efforts more diverse and collaborative
 - >80 national space agencies
 - numerous private companies and partnerships
- International Space Exploration Coordination Group (ISECG) currently comprised of 26 organizations
 - 2018 Global Exploration Roadmap (GER) identified 14 planned Moon missions
 - Released Lunar Supplement Aug 2020
 - 100-m performance target for precision landing

Pete Conrad examines Surveyor III spacecraft during Apollo 12 [1]

The Role of GNSS

Critical technology gaps identified by the GER:

- AR&D Proximity Operations, Target Relative Navigation
- Beyond-LEO crew autonomy

GNSS on lunar missions would:

- enable autonomous navigation
- reduce tracking and operations costs
- provide a backup/redundant navigation for human safety
- provide timing source for hosted payloads
- reduce risk for commercial development

Recent advances in high-altitude GNSS can benefit and enable future lunar missions

Lunar Exploration: Roles for GNSS

Lunar Surface Operations, Robotic Prospecting,& Human Exploration

Earth, Astrophysics, & Solar Science Observations

Human-tended Lunar Vicinity Vehicles (Gateway)

Satellite Servicing

Robotic Lunar Orbiters, Resource & Science Sentinels

Lunar Exploration Infrastructure

NASA Lunar Exploration Plans

Artemis

 Series of SLS launches carrying the Orion crew capsule that will return humans to the surface of the Moon

Gateway

 Orbiter in cislunar space that will serve as a platform for science and technology payloads as well as a crew staging point for lunar surface or deep space missions Commercial Lander Payload Services (CLPS)

 Robotic precursor landers designed for tech. demonstration and science that will pave the way for crewed missions

DISTANT RETROGRADE ORBIT

Perform half or one and a half

revolutions in the orbit period

38,000 nmi from the surface of the Moon.

Return Trajectory Correction

(RTC) burns as necessary to

aim for Earth's atmosphere.

CORE STAGE MAIN ENGINE CUT OFF With separation.

Maneuver lasts for

approximately 20 minutes.

Retrograde Orbit (DRO).

Source [2]

Artemis I

Orbit Determination Toolbox (ODTBX) simulation of GPS signal availability over Artemis I trajectory

- Signal available/visible if received C/N0 exceeds
 receiver acquisition/tracking threshold
- GPS constellation modeled using per-vehicle Antenna Characterization Experiment side lobe patterns and per-block public main lobe data, calibrated with MMS and GOES-16 flight data
- Four antennas around Orion capsule nose, receiver and antenna properties calibrated with EFT-1 flight data

Signal availability is only part of the story, but it's clear **antenna placement and pointing are critical for feasibility** of GNSS at the Moon

Baseline case in **red** models planned configuration for Artemis I. Alternate configurations illustrate potential availability with changes to hardware and/or pointing.

Gateway

- Considered performance on Gateway of MMS-like navigation system with Earth-pointed high-gain antenna (~14 dBi) and Goddard Enhanced Onboard Navigation System (GEONS) flight filter software
- Calibrated with flight data from MMS Phase 2B
 - GPS constellation modeled with per-vehicle GPS ACE patterns, IGS yaw model, solar noise model
- L2 southern Near Rectilinear Halo Orbit (NRHO), 6.5 day period
- Cases for both crewed and uncrewed perturb. models:
 - GPS only with Rubidium Atomic Frequency Standard (RAFS)
 - DSN only without atomic clock
 - GPS + DSN

Ground tracking assumptions

- Three contacts per orbit (uncrewed) or continuous (crewed)
- Data Cutoff (DCO) 24 hrs before orbit maintenance maneuvers

Ground tracking sim. parameters

Noise/Bias Type	Value	
Measurement Rate	10 s	
Range Noise	1.0 m (1-sigma)	
Range Bias	2.5 m (1-sigma)	
Doppler Noise	0.33 mm/s (1-sigma)	

Gateway

- Position and velocity goals: 10 km and 10 cm/s, respectively
- 70 Monte Carlo cases
- Evaluated max OD error at the Data Cutoff (DCO) and at the final two perilunes and apolunes
- Observations:
 - Under our assumptions, analysis shows GPS can provide greatly improved performance vs. DSN, on-board, in real-time, without reliance on ground-based assets.

Crewed: Max steady-state errors

	Case	DCO	Apolune	Perilune	All
Position [m]	DSN	1469.7	1326.4	319.8	2353.6
	GPS	60.4	84.5	73.0	118.7
	DSN+GPS	57.7	81.7	107.0	117.4

DSN only

GPS only

Lunar GNSS Receiver Experiment: Mission Overview

Mission

- Joint NASA/Italian Space Agency payload
- NASA HEOMD payload for CLPS "19D" flight
- "Do No Harm" class payload
- Transit + surface observation campaign
- Expected surface duration: one lunar day (~12 Earth days)
- Implements NASA's role under SPD-7

Objectives

- 1. Receive GNSS signals at the Moon. Return data and characterize the lunar GNSS signal environment.
- 2. Demonstrate navigation and time estimation using GNSS data collected at the Moon.
- 3. Utilize collected data to support development of GNSS receivers specific to lunar use.

Measurements

- GPS+Galileo, L1/L5 (E1/E5)
- Onboard products: multi-GNSS point solutions, filter solutions
- Observables: pseudorange, carrier phase, RF samples

Utilization

- Data + lessons learned for operational lunar receiver development
- Potential collaborative science: heliophysics, lunar geodesy
- Lunar human and robotic real-time onboard PNT

Conclusions

- Robust high-altitude PNT relies on a diversity of navigation sources, each with strengths and weaknesses
- GNSS offers a proven source of oneway range, Doppler and time transfer unique among available navigation measurements
- For many mission classes, GNSS is capable of providing 100-meter-class absolute navigation, centimeter-class relative navigation, and timesynchronization on the order of 1 microsecond or better

Benjamin W. Ashman, Ph.D. Navigation and Mission Design Branch NASA Goddard Space Flight Center benjamin.w.ashman@nasa.gov

Image Sources

[1] https://www.flickr.com/photos/nasacommons/9460246670/in/album-72157634967531957/
[2] https://www.nasa.gov/sites/default/files/thumbnails/image/artemis_i_map_20210315_1.jpg
[3] https://www.nasa.gov/mission_pages/LRO/multimedia/moonimg_07.html