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Abstract: 17 
Consideration of scale is essential when examining structural relationships in forests. In this 18 
study, we present a parameterization of the FORMIND individual-based forest model for old 19 
growth Atlantic lowland rainforest in La Selva, Costa Rica. Results show that the simulated 20 
forest reproduces the structural complexity of Costa Rican rainforest within 2.3% of 21 
aboveground biomass values, based on comparisons with CARBONO inventory plot data. The 22 
Costa Rica FORMIND simulation was then used to investigate the relationship between canopy 23 
height and aboveground biomass (AGB), leaf area index (LAI) and gross primary productivity 24 
(GPP) at different spatial scales (20x20m, 60x60m, 100mx100m). The relationship between 25 
aboveground biomass and height is of particular importance toward the calibration of various 26 
remote sensing products including lidar and radar, whereas the LAI and GPP relationships are 27 
understudied in this context. We found that the relationship between all three variables and 28 
height varies considerably: the relationship is stronger at finer scales and weaker at coarser 29 
resolution.  However, in all three comparisons, RMSE also decreased as scales coarsened, with 30 
the largest difference shown between 100m and 10m resolutions in relating AGB to Lorey’s 31 
height (R2 decreased by 0.3; RMSE decreased by 114.5 Mg/ha). This suggests that a trade-off 32 
between accuracy and precision exists, and further highlights the importance of spatial scale in 33 
determining the relatability of forest structure variables.  34 
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Introduction 51 
 52 
The accurate measurement of forest structure variables is essential in understanding forest 53 
function at multiple spatial scales. Forest attributes like aboveground biomass (AGB) are 54 
crucial components of studies in global change and carbon cycling (Chave et al. 2003; Dixon 55 
et al. 1994; Drake et al. 2002; Lefsky et al. 2002; Perry 1994; Saatchi et al. 2011a). Directly 56 
measured variables (e.g. diameter at breast height (DBH), tree height, basal area, leaf area index 57 
and stem counts) are achieved at either the individual tree or the plot level, whereas forest 58 
attribute variables (e.g. aboveground biomass, net primary productivity, etc.) can only be 59 
estimated from these direct measurements by applying equations and in some cases through 60 
time to calculate rates. Forest models aid in understanding these relationships between forest 61 
structure and other forest variables. Since the 1970s, individual-based gap models (IBGM) have 62 
successfully elevated our knowledge of forest dynamics, especially across temperate and boreal 63 
forested landscapes (Botkin et al. 1972; Bugmann 2001; Kohler and Huth 1998; Shugart 1984, 64 
1998, 2003, 2018). The versatility of IBGMs allows for high precision scaling of the 65 
amalgamation of direct-measurement plot data to landscape level calculations of changes in 66 
indirect measures, such as forest productivity and carbon flux.  67 

Particularly in the tropics, where ecosystem complexity is high and the forests 68 
themselves are often hard to reach, there is a general lack of long-term repeated forest inventory 69 
datasets. This has hindered the advancement in the understanding of the dynamic floral and 70 
structural complexities found in these ecosystems. Over recent decades, IBGMs have been used 71 
to fill this knowledge gap in understanding the mechanisms that underlie growth, mortality and 72 
recruitment within tropical forest ecosystems (Fischer et al. 2016; Fischer et al. 2014; Hurtt et 73 
al. 2010; Huth et al. 2005; Kohler and Huth 2007; Kohler et al. 2003). IBGMs have already 74 
been used to understand different aspects of tropical forests in a changing world, including: 75 
succession, structural dynamics, species competition and many other mechanisms that underlie 76 
long-term dynamics (Botkin et al. 1972; Bugmann 2001; Fischer et al. 2016; Pretzsch 2009; 77 
Shugart 1998, 2003, Armstrong et al 2018). 78 
  The well-documented rainforest of La Selva, Costa Rica provides a unique opportunity 79 
to examine how productivity, aboveground biomass and carbon flux varies through time and 80 
space. Costa Rican rainforests are among 25 global biodiversity hotspots that comprise 44% of 81 
the world’s plant species within 1.4% of the land area (Myers et al. 2000). La Selva is a notable 82 
exception to the lack of long-term datasets that have hampered research efforts elsewhere. The 83 
core of the research station property was purchased by the Organization for Tropical Studies 84 
(OTS) in 1968 and surrounding parcels were purchased into the early 1990s to form the current 85 
1,536ha protected area. There exist much knowledge about the history of human intervention 86 
and inhabitance for this region up to 3000 Y.B.P., as confirmed by carbon dating buried 87 
charcoal (McDade et al., 1994). The successional state of the forests within the research area is 88 
therefore relatively well-known.  89 

Launched in 1996 by D.A. Clark, D.B. Clark and S.F. Oberbauer, the CARBONO 90 
Project has carried out annual forest measurements in 18 x 0.5ha plots located across the 91 
biological station, including relatively fertile flat sites on old alluvial soils, infertile flat sites on 92 
ridge tops, and infertile steep slopes (Clark and Clark 2000). Additionally, studies scaling 93 
structural dynamics and productivity to the landscape level, utilizing techniques combining 94 
long term plot data, remote sensing and forest modeling have contributed to an in-depth 95 
knowledge of La Selva’s rainforest (Drake et al. 2002, Dubayah 2010; Hurtt 2004; Tang 2012). 96 
Drake et al. (2002) validated the use of a large-scale footprint lidar (LVIS) to capture forest 97 
structure variables across multiple landcover types, including pasture, secondary and primary 98 
tropical forests. LVIS metrics were able to predict field derived quadratic mean stem diameter, 99 
basal area and AGB. Similarly, Dubayah et al. (2010) and Tang et al. (2012) used LVIS to 100 
detect changes in canopy structure over La Selva between 1998 and 2005 by relating observed 101 



changes in canopy height, other height metrics and biomass to field derived changes (Dubayah), 102 
and vertical transects of leaf area index (Tang). Hurtt et al. (2004) used airborne lidar 103 
observations to initialize the Ecosystem Demography Model. Their results produced 1ha-104 
resolution biomass maps that showed increased model prediction accuracy when initialized 105 
with LVIS, and compared findings to known forest types within La Selva.  106 

Utilizing a higher resolution modeling framework (e.g. IBGMs) provides the potential 107 
for directly connecting with high resolution remotely sensed datasets at a user-defined scale. 108 
With the advances of supercomputer capabilities during the last decade, IGBMs are poised to 109 
not only be initialized with high resolution remote sensing datasets as with Hurtt et al.’s study, 110 
but to produce maps that broaden the spatial and temporal scale from existing satellite imagery, 111 
with unprecedented accuracy. However, when using satellite imagery, field-based studies and 112 
IGBMs to answer scientific questions, it is important to consider the spatial scale at which each 113 
operates, as well as how each measures structure variables. It is not yet fully understood how 114 
strongly forest structure correlates with other desired forest variables (e.g., AGB) and how 115 
strong the influence of the spatial scale is on this relationship. On a finer scale (e.g. 20m) the 116 
forest structure can be better described, but the estimation of forest variables like aboveground 117 
biomass becomes very uncertain (e.g., due to edge effects and uncertainties in allometries). On 118 
coarser scales (e.g. 100m) these estimate become more reliable, but the fine-scale details of 119 
forest structure cannot taken into account. The choice of a suitable spatial scale is an important 120 
question, especially in remote sensing. Therefore, our study addressed the following research 121 
question: 122 

 123 
How does the crucial relationship between canopy height metrics and forest stand biomass 124 
(AGB), leaf area index (LAI) and gross primary productivity (GPP) change at different spatial 125 
resolutions? 126 
 127 

This question should be answered by linking extensive field data with a forest model. 128 
Given the substantial knowledge base, La Selva’s rainforest is ideal for examining the use of 129 
individual-based gap models and the veracity of remote sensing derived structure variables. The 130 
model FORMIND was applied in the study to reproduce the patterns found in old growth 131 
tropical forest at La Selva Biological Station. Specifically, we compared distributions in the 132 
number of trees, basal area, aboveground biomass and the stem size distribution of the modeled 133 
forest to that of the La Selva forest inventory dataset. To ensure that our analysis was not biased 134 
by how we defined canopy height, we made comparisons based on four standard height 135 
definitions, including: the mean tree height (Mean), lidar derived maximum height (RH100), 136 
canopy height (Canopy) as defined by Kohler and Huth (2010) and mean height weighted by 137 
basal area (Lorey’s Height). In this manuscript, we present our three forest variables (AGB, 138 
LAI and GPP) compared to Lorey’s Height. The same comparisons to RH100, Canopy height 139 
and Mean tree height can be found in the supplementary Appendices.  140 
 141 
Methods 142 
 143 
Field site Description  144 
 La Selva Biological Station is located in the Atlantic lowlands of northeastern Costa 145 
Rica (10o26’N. 83o59’W, elevation range 37-150m). The 1,600ha site is located at the 146 
northwestern edge of 100,000ha of continuous forest that is comprised of a national park, 147 
national forests and private reserves (Clark et al. 2013). Classified as a tropical wet forest, the 148 
average daytime temperatures range from 24.7 to 27.1oC. La Selva receives 3824mm of rainfall 149 
annually, with slightly lower rainfall occurring from January to April (McDade et al 1994). 150 



One of the most extensively studied rainforest sites in the tropics, La Selva has 18-0.5ha 151 
forest inventory plots measured annually since 1997 (Figure 1). The plots are located within 152 
Old La Selva, which is bounded to the west 153 
by the Sarapiquí Annex and to the south by 154 
Braulio Carrillo National Park. These plots 155 
follow the ANPP (Aboveground NPP) 156 
measurement methodology, developed 157 
based on Clark and Clark (2001), and 158 
Huston and Wolverton (2009). The repeat 159 
plots sample old growth forest on the three 160 
different site conditions that dominate La 161 
Selva, with 6 plots on each (younger oxisol 162 
terrace, older oxisol plateau, older oxisol 163 
slope). Following the CARBONO 164 
description, all 18 plots were combined to 165 
one dataset representing La Selva old 166 
growth rainforest. For more on plot 167 
location and sampling design, see Clark 168 
and Clark 2000 or the CARBONO website 169 
(http://www.ots.ac.cr/carbonoproject). For an in-depth explanation of ANPP methodology, see 170 
Clark et al. (2013). 171 
 172 
FORMIND Model Description 173 
For this study, we used the forest gap model FORMIND (Fischer et al., 2016). It is an 174 
individual- and process-based model designed especially for tropical forests considering the 175 
complex age- and size structure. With this model it is possible to investigate different forest 176 
attributes (e.g. biomass, leaf area, productivity) on user-defined spatial and temporal scales. 177 
The main processes in the model are the establishment of young trees, tree mortality, tree 178 
growth, and competition for light and space. As with the classic individual-based gap models, 179 
seeding, mortality and treefall are stochastic processes that through time lead to a mixed age, 180 
mixed species forest that reaches a stable equilibrium.  181 

The biomass growth of each tree is determined on the basis of a carbon balance, which 182 
includes photosynthesis and respiration. Aboveground biomass Btree [Mg] of a tree is calculated 183 
in relation to its stem diameter D [m] and height Htree [m] by: 184 

 185 
    𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋

4
⋅ 𝐷𝐷2 ⋅ 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑓𝑓 ⋅ 𝜌𝜌/𝜎𝜎   (1) 186 

 187 
whereby the calculation simply represents the volume of the tree stem (according to its 188 
geometry) multiplied by three factors, which describe the biomass content more concisely 189 
(Fischer et al. 2016). The form factor f [-] accounts for deviations of the stem from a cylindrical 190 
shape. The parameter ρ [Mg/m3] is the wood density and the parameter σ [-] represents the 191 
fraction of total aboveground biomass attributed to the stem. Tree height Htree [m] of a tree 192 
relates to its stem diameter D [m] by: 193 
 194 

𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℎ0 ⋅ 𝐷𝐷ℎ1                 (2)195 
  196 

where h0 and h1 are species-specific parameters. The sum of the biomass of all trees within a 197 
certain area gives the biomass of a forest stand. 198 

In FORMIND, tree growth is determined by a closed biomass balance, which is 199 
calculated for each tree, depending on its photosynthesis and respiration (Fischer et al. 2016): 200 

 201 

Figure 1 The map indicates the study location, old growth 
forest in La Selva Biological Station, Costa Rica. 

http://www.ots.ac.cr/carbonoproject)


Δ𝐵𝐵 = �1 − 𝑟𝑟𝑔𝑔� ⋅ (𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑅𝑅𝑚𝑚)               (3) 202 
where rg is a factor for growth respiration and Rm, the maintenance respiration. The 203 
photosynthesis Ptree of each tree is calculated depending on the shading and its geometry 204 
(Fischer et al. 2016) as: 205 
 206 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

⋅ ln 𝛼𝛼⋅𝑘𝑘⋅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖+𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚⋅(1−𝑚𝑚)
𝛼𝛼⋅𝑘𝑘⋅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖⋅𝑡𝑡−𝑘𝑘⋅𝐿𝐿𝐿𝐿𝐿𝐿+𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚⋅(1−𝑚𝑚)

   (4) 207 
 208 
where α is the quantum efficiency, also known as the initial slope of the light response curve, 209 
and pmax is the maximum leaf gross photosynthetic rate. The light extinction coefficient is k, m 210 
represents the transmission coefficient, and Iind denotes the available incoming irradiance on 211 
top of the tree. The sum of Ptree for all trees gives GPP of the forest stand.  212 
 Finally, the LAI [m2/m2] can be calculated per tree as the one-sided leaf area per unit 213 
of crown projection area (i.e. the individual’s leaf area index). This individual tree LAI relates 214 
functionally to its stem diameter D [cm] by:  215 
 216 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙0 ⋅ 𝐷𝐷𝑙𝑙1    (5) 217 
 218 
where l0 and l1 are type-specific parameters (Fischer et al 2016).  219 

The simulated forest area is divided into 20x20m patches according to the typical size 220 
of tree fall gaps. However, because these traits are calculated on an individual-tree basis, the 221 
20m patches can be downscaled or upscaled according to the desired study area. Tree species 222 
with similar traits were grouped into plant functional types (PFT) according to physiological 223 
attributes such as maximum attainable height and light requirements (Fischer et al., 2018). A 224 
detailed description of the model can be found in Fischer et al. (2016). For this study, we 225 
parameterized FORMIND for the La Selva old growth forest, amalgamating plot data collected 226 
across the three dominant site conditions mentioned in the previous section. It is important to 227 
note that not all FORMIND model parameters could be derived from the available CARBONO 228 
dataset and from the literature. Where La Selva-specific data was not available, general 229 
parameters for rainforests for this region (Barro Colorado Island for example) were used (see 230 
Appendix B). A general FORMIND model description and the species grouping for La Selva 231 
can be found in Appendix A. A full listing of model parameters, both calculated from 232 
CARBONO and found in literature, as well as calibration metrics can be found in Appendix B. 233 
 234 
Model Parameterization and Species Grouping 235 

The forest inventory 18-plot dataset representing the old growth forest in La Selva, 236 
measured from 1997 through 2012 was downloaded from the CARBONO website. This dataset 237 
included species (where known) and DBH for each individual tree within the plot, measured 238 
annually. Maximum tree height per species was estimated from separate CARBONO data that 239 
included tree heights per some focal species (but was not included in the inventory plot dataset; 240 
Clark and Clark (1992, 2001), Dubayah et al. (2010), and King and Clark (2011). We calculated 241 
FORMIND parameters from maximum diameter growth increments per species and maximum 242 
DBH from years 1997 to 2005 and 2005 to 2012. Based on maximum DBH and diameter growth 243 
increment as calculated from the CARBONO dataset, the 190 species were grouped into six 244 
plant functional types (PFTs). A listing of this grouping can be found in Appendix A (see: Table 245 
A-3). For each of the six PFTs, we then calculated (based on CARBONO dataset) the following 246 
variables: stem counts, aboveground biomass, average diameter growth increment and 247 
mortality. A list of species group parameters can be found in Table 1 below.  248 
 249 



Table 1 A listing of size and light requirement parameters used to group species into plant functional types (PFTs) 250 
in the Costa Rican FORMIND Model.  251 

Size Class Light Class PFT max DBH 
(mm) 

max DBH 
growth 
(mm/yr) 

max 
Height (m) 

Field-
estimated 
Biomass  
(Mg/ha) 

Canopy 
Emergent  

Shade Tolerant (ST) 1 >290 <5 48 49.32 

Shade Intermediate (INT) 2 >290 5-12 45 125.03 

Shade Intolerant (SI) 3 >290 >12 30 9.13 

Sub-Canopy  ST 4 180-290 <5 20 14.375 

INT 5 180-291 5-12 15 1.17 

Understory ST 6 <180 <5 10 4.1 

 252 
Model Calibration 253 

When the model parameters were calculated, and entered into the FORMIND parameter 254 
file, simulations were run to calibrate some unknown parameter values (see above section). We 255 
performed a manual calibration to optimize a subsequent auto-calibration. The manual 256 
calibration was accomplished by running the model 250 times, systematically changing a few 257 
unknown parameters in small increments to achieve the best simulation of the study site forest 258 
(see: Lehmann and Huth 2015). Seed production and establishment of seedlings were high 259 
priority calibration variables, as there was little information in the literature and we relied on 260 
general values for the tropics. In addition, mortality and light response curves were also 261 
optimized.  262 
 When the manual calibration for each of these variables determined ideal ranges for 263 
each PFT, remaining unknown parameters were numerically calibrated (e.g., global number of 264 
seeds) with a calibration process by comparing the aboveground biomass, species composition, 265 
and tree density of a simulated mature forest with field data from the study region following 266 
Lehmann and Huth (2015). The parameterization was then verified by comparison of stem 267 
numbers per diameter size classes, aboveground biomass, basal area and other structural 268 
variables (see Figure 3 in Results). 269 
 270 

 271 
Figure 2 This conceptual diagram represents the resolution scale differences at which we conducted our analysis 272 
of four definitions of height (RH100,  Canopy, Lorey’s and Mean) with aboveground biomass (AGB), leaf area 273 
index (LAI) and gross primary production (GPP). 274 
 275 
 276 
 277 
 278 



Simulation Settings 279 
 280 
We analyzed forest succession over 1,000 years, starting with bare ground conditions, in order 281 
to ensure that the simulation encompassed the full life history of the rainforest. To assess the 282 
full structural variability in the forest model, we simulated forest stands with a size of 16 283 
hectares. First, for a comparison of the model output with field data, we calculated the mean of 284 
simulated forest attributes over the last 300-1,000 years, based on the assumption that the forest 285 
is in the equilibrium state for this entire period. In particular, we included aboveground biomass, 286 
basal area, and stem numbers for trees with a DBH greater than 10cm. Second, we analyzed the 287 
relationship between Lorey’s height and AGB, LAI and GPP at four different resolutions (10m, 288 
20m, 50m, 100m). All simulated forest stands between simulation years 300 to 1000 were 289 
aggregated into one large dataset. The dataset was then divided into 10m plots, 20m plots, 50m 290 
plots and 100m plots in order to collect the height variables, and the AGB, LAI and GPP at 291 
each of the resolutions for comparison. The AGB, LAI and GPP were recorded per varied plot 292 
size (e.g. 10m, 20m, 50m and 100m) and then scaled to a per hectare measurement. In order to 293 
avoid biasing our comparisons with uneven numbers of data points between each of the 294 
resolutions, 8,000 random plot data points were collected for each of the variables at each 295 
resolution. Similar methodologies have been undertaken by Mascaro et al (2012) and Knapp et 296 
al (2018). 297 

For the forest height calculation, we investigated four different common height 298 
definitions, including mean tree height (Mean), maximum height as also derived by lidar 299 
(RH100), canopy height (Canopy) and Lorey’s height. The mean tree height is the average of 300 
all tree heights (with DBH>10cm) within the plot size (10m to 100m). The maximum height is 301 
the height of the tallest tree within the plot. Canopy height is the mean of all tree heights within 302 
the canopy, as defined by Kohler and Huth (2010). Lorey’s height is the basal-area-weighted 303 
average tree height of trees in the plot (Lorey 1878). 304 
 305 
Results 306 
 307 
Forest Model vs. Field data 308 
 309 
 To test the parameterization for La Selva rainforest, we compared simulated basal area, 310 
aboveground biomass and stem numbers to forest inventory data, scaled to one hectare. Forest 311 
height was also compared to Kellner et al’s (2009) findings (see Appendix B). Comparisons 312 
were made on the level of PFT. We found that when the forest reaches equilibrium after year 313 
200, large intermediate trees (PFT 2) are dominant, followed by large shade tolerant trees (PFT 314 
1). Shade intolerant (PFT 3), sub-canopy shade tolerant (PFT 4), sub-canopy intermediate (PFT 315 
5), and understory shade tolerant (PFT 6) trees together make up only about 5% of the total 316 
forest aboveground biomass. 317 
 There is an initial large increase of biomass with the colonization by pioneer shade 318 
intolerant trees (PFT 3, cf. Fig. 3c). Shade intermediate trees (PFT 2) quickly compete with 319 
shade intolerant trees, followed by shade tolerant canopy (PFT 1), shade tolerant sub canopy 320 
trees (PFT 4), and intermediate sub canopy trees (PFT 5). As the shade tolerant (PFT 1) canopy, 321 
shade tolerant sub canopy (PFT 4) and intermediate sub-canopy (PFT 5) trees colonize the 322 
understory (ca. year 40), shade intolerant trees reach maturity and quickly decline in numbers 323 
and biomass.  324 

By year 200 of the simulated forest life history, the forest reaches a stable equilibrium 325 
(Fig. 3a, 3c). Intermediate canopy and emergent trees make up the dominant proportion of 326 
biomass (61.6%), followed by shade tolerant canopy and emergent trees (24.3%). Shade 327 
tolerant sub canopy trees (PFT4) account for about 7.0% of the total aboveground biomass. The 328 
remaining plant functional type groups (PFT 3, PFT 5 and PFT 6) are responsible for only a 329 



small percentage of the aboveground biomass (8.4%). In comparing field data to the simulation, 330 
aboveground biomass for the simulated forest was ca. 200 Megagrams of organic try matter per 331 
ha (MgODM/ha), which was 2.3% lower than observed in the field data (204.61 Mg/ha) (Fig. 332 
3d). The model slightly underestimates aboveground biomass for PFT 1, and overestimates for 333 
PFT 4 (+/- 1% for each). 334 
 The total basal area of the forest was slightly underestimated by FORMIND, with values 335 
of 20.5 m2/ha compared to 21.5 m2/ha measured in the actual forest (Fig. 3b). Also 336 
underestimated was basal area of PFT2, which had the largest biomass of all the PFTs, and 337 
accounted for most of the total difference (11.3 m2/ha simulated, compared with 12.3 m2/ha 338 
field measured). The simulated basal area for PFT4, was the only overestimation by the model; 339 
it accounted for 14.1% of the total simulated basal area, as compared to 12.3% of the total La 340 
Selva measured basal area. Basal area of PFTs 1 and 3 were exactly the same when comparing 341 
simulated and measured values, while PFTs 5 and 6 were underestimated by the model with 342 
differences of 0.33 m2/ha and 0.16 m2/ha, respectively. A detailed evaluation of stem number 343 
distributions can be found in Appendix B. 344 

 345 
Forest Height vs. Aboveground Biomass 346 
 347 
 In the forest structure analysis comparing four measures of height to aboveground 348 
biomass averaged at four different plot resolutions, we found that the relationship was weaker 349 
at larger scales, but the strength of the relationship also depends on the height definition. The 350 
comparison of maximum height (RH100) and canopy height to AGB at 10mx10m plot 351 
resolution both had the overall strongest relationship (see Appendix C). With each of the height 352 
definitions used in our study, the relationship with AGB was best described using a power-law 353 
function. For the relationship between biomass and height on the 10m scale, the R2 values for 354 

 

Figure 3 Left column from top to bottom: Time series showing basal area in m2/ha (a) and aboveground biomass 
in Mg/ha (c) from a bare ground state at year 0 to 300 years. After 300 years, the forest is in a stable equilibrium 
and appear similar to years 200-300. The dots at the far right of the figures show the variables as calculated from 
the field data set, with colors corresponding to PFT number and color groups to light requirements (i.e. greens are 
shade tolerant, blues shade intermediate, red shade intolerant and total in black). Right column from top to bottom: 
1:1 comparison between field data calculations (x-axis) and simulation values for late-successional phase of the 
simulated forest for basal area in m2/ha (b) and aboveground biomass in Mg/ha (d). 



mean height, RH100, canopy height and Lorey’s height was found to be 0.6, 0.91, 0.91 and 355 
0.83, respectively. Detailed results for the RH100, canopy height and mean height correlations 356 
with AGB are found in Appendix C.  357 

When Lorey’s height is compared to AGB at 20 x 20m resolution (Figure 4b), the 358 
predictive capability of the AGB-height relationship decreases to an R2 of 0.70. This decreasing  359 
trend continues at coarser resolutions: R2 decreases at the 50m resolution to 0.59, and 0.54 at 360 
100m resolution (Fig. 4c, 4d). Conversely, the RMSE of the Lorey’s height-AGB relationship 361 
improves drastically as the resolution coarsens, from 135.3 Mg/ha at 10m resolution, to 15.9 362 
Mg/ha at 100m resolution. This inverse relationship between R2 and RMSE is explained by the 363 
behavior of the plots in Figure 4 (a-d). At the 10m resolution (Fig. 4a), the points spread 364 
throughout the entire height range of the equation that is produced by the best fit line. However, 365 
the distances of the points to the best fit line (RMSE) is overall much larger than the distances 366 
of the points to the 100m resolution best fit line  (Fig. 4d), which does not extend over the full 367 
range of Lorey’s height. 368 

 369 
Forest Height vs. Leaf Area Index (LAI) 370 
 371 
We compared how LAI varies among the four measures of canopy height at different plot scales 372 
(Fig. 5). Lorey’s height related best to LAI at the 10m resolution (R2: 0.75), with decreasing R2 373 
values as the plot size increased to 100m (0.27). As with AGB, the R2 values decrease with 374 
increasing resolution coarseness, however, with LAI, the strength of the relationship decreases 375 
more rapidly; indeed, at 20m plot resolution the R2 value is 0.52 and the relationship between 376 
LAI and Lorey’s height at 50m and 100m resolutions cannot be considered meaningful (0.35 377 
and 0.27, respectively). 378 

Figure 4 At left: The four plots display the relationship between Lorey’s height (m) and aboveground biomass 
(Mgodm/ha) at plot scales of (a) 10x10m (100m2 = 0.01ha) in blue, (b) 20x20m (400m2 = 0.04ha) in red, (c) 

50x50m (2500m2 = 0.25ha) in green, and (d) 100x100m (10000m2 = 1.0ha) in black. Note: For the purposes of 
visual comparison, the scale of figures (a) through (d) was kept consistent. Nonetheless, the datasets in figures 
(a) and (b) are not truncated. Above, (e): The figure compares the Root Mean Squared error at each plot 
resolution is (green) and the R2 value at each plot resolution; both were calculated from the best-fit lines for 
each dataset shown on the left. 



 When Lorey’s height is compared to LAI, the RMSE also decreases with coarsening 379 
resolution, from 0.8 to 0.1. LAI is commonly defined as the maximum projected leaf area per 380 
unit ground surface. This inherently includes all leaf material from the top of the canopy 381 
downward through the vertical leaf profile, so it necessitates a height measure that is reflective 382 
of the top height of the plot canopy, which is a possible source of error with respect to fit of the 383 
relationship. Mixed heterogeneous forests like that of La Selva have a large variation in LAI 384 
values when measured at fine scales; variation that would be averaged out at large plot scales. 385 
An in-depth comparison of each of the different height measurements to LAI at each plot 386 
resolution is found in Appendix D. 387 

 388 
Forest Height vs Gross Primary Productivity (GPP) 389 
 390 
 The relationship between simulated height and gross primary productivity (GPP) is also 391 
best described using a power law function, as shown in Figure 6. Ryan et al (1994) measured 392 
GPP in La Selva to be around 50 Mg/ha/year, which is in the same order as our simulated GPP 393 
values (40 Mg/ha/year). The correlation of Lorey’s height to GPP was most clear at the highest 394 
resolution with R2 values of 0.78 at 10m resolution and 0.61 at 20m resolution. At the 50m 395 

 

Figure 5. Plots showing the relationship of Lorey’s height to Leaf Area Index (LAI) for the simulated forest at 
the 10m (a) and 100m (b) scales, including best fit lines in black. RMSE and R2 at all four resolutions are shown 
in red and green in plot (c). Note: For the purposes of visual comparison, the scale of figure (a) was kept 
consistent with that of (b). However, the dataset in figure (a) is not truncated. 

 

Figure 6 Plots showing the relationship of Lorey’s height to yearly Gross Primary Production (GPP) in tonnes 
biomass per hectare and year for the simulated forest at the 10m (a) and 100m (b) scales, including best fit lines 
in black. RMSE and R2 at all four resolutions are shown in red and green in plot (c). Note: For the purposes of 
visual comparison, the scale of figure (a) was kept consistent with that of (b). However, the dataset in figure (a) 
is not truncated. 

 



resolution however, the correlation was weaker and had an R2 of 0.5, and was most weak when 396 
measured at the 100m resolution (R2 = 0.43).  As with the ABG and LAI comparisons, the 397 
RMSE of the Lorey’s height to GPP relationship decrease with increasing plot size. At the 10m 398 
plot resolution, RMSE is 20.05 Mg/ha but decreases by almost half for each successive plot 399 
size, from 12.07 Mg/ha at 20m plot resolution, to 5.17 Mg/ha at 50m plot resolution and 2.63 400 
Mg/ha at 100m plot resolution. The comparisons of each of the different height measurements 401 
to GPP at each plot resolution is found in Appendix E. 402 
 403 
 404 
Error 405 
The root mean-squared error (RMSE) was calculated for each correlation, at all scales and for 406 
each height definition. As shown in Appendix F, in all correlations RMSE was highest at 10m 407 
resolution and decreased as the resolution coarsened to 100m. When the RMSE and R2 values 408 
were plotted for each resolution, the high RMSE values declined sharply between 10m and 20m 409 
resolution, whereas the R2 values decreased less sharply (see Appendix C, D, E and F figures). 410 
These differences in values between resolutions and the directionality of their trends suggest 411 
that though the data at the smallest resolutions is the noisiest, their R2 high value indicates the 412 
ranges of points fit best the power equation.  413 
 414 
Discussion 415 
 416 
Overall, our study shows that the strength of the height to AGB, LAI and GPP relationships are 417 
the best at the smaller spatial scales, however this comes with an increase in error. At coarser 418 
scales the error becomes smaller, but the relationship between the forest variables become less 419 
precise (Figure 1a). Using FORMIND model simulations helped to quantify this trade-off 420 
between accuracy and precision across the plot resolutions. Toward informing the initial 421 
research question of “How does the crucial relationship between canopy height metrics and 422 
forest stand biomass (AGB), leaf area index (LAI) and gross primary productivity (GPP) 423 
change at different spatial resolutions?”, relating height variables to this study’s focal 424 
productivity variables is best at the scale of a very small plot. Given that the average width of 425 
the crown of a canopy emergent tree in La Selva rainforests typically exceeds 10m in diameter 426 
(King and Clark 2011, Obrien et al 1995) and the 10m plots size revealed the largest RMSE 427 
across each of the compared variables, a plot size of 20m affords the most reliable and robust 428 
comparison. 429 

Data from La Selva forest inventory plots was used to successfully create a 430 
parameterization of the FORMIND model. This parameterization is the first for this specific 431 
type of fine-scaled individual- and process-based gap model for La Selva biological station that 432 
includes fine-scale structural realism.  The dataset used to parameterize FORMIND for La Selva 433 
is exceptional compared to many tropical rainforest datasets in terms of longevity and 434 
replication. Only a handful of other tropical rainforest sites (e.g. Barro Colorado Island, Panama 435 
and Paracou, French Guiana) within this region have a similar study area inventoried and are 436 
repeated over decades. Given the robustness of the inventory data, in situ measurement error is 437 
not likely the source of any significant model parameterization uncertainty. It is more likely 438 
that the main source of uncertainty with respect to the discrepancies found between the 439 
simulated forest and the inventory dataset is due to uncertainties in grouping the La Selva 440 
species into plant functional types, and due to prominence of palms and other growth forms in 441 
general that are not simulated by FORMIND.  442 

Similarly, using the maximum diameter growth increment could result in a few 443 
placement errors. For example, a rarely occurring shade tolerant tree species that is released 444 
from canopy suppression might have a large maximum diameter growth increment for a short 445 
period of time that more closely resembles a shade intolerant pioneer species and would result 446 



in an uncharacteristically high maximum diameter growth increment for that particular species 447 
over the timespan that was used to calculate it. Either of these scenarios could have resulted in 448 
a few of the less common tree species being placed into incorrect PFTs. Ideally, the modeled 449 
forest should be compared to a validation dataset in order to more thoroughly investigate the 450 
causes of uncertainty. 451 

As presented in Fischer et al. 2016, and also in Rodig et al 2018, the FORMIND model 452 
has been shown to be a useful tool in studies that aim to understand relationships between 453 
numerous forest structure variables and other measurable ecosystem functions, including forest 454 
biomass and forest productivity. We used the Costa Rican FORMIND model to investigate how 455 
four definitions of tree height vary with AGB, LAI and GPP at plot resolutions.  As was shown 456 
by the simulation results, height is relatable to AGB, LAI and GPP using a power law.  In Costa 457 
Rican rainforest, a taller forest has higher aboveground biomass, more leaves and thus a higher 458 
LAI, and is overall more productive then smaller stands.  459 

Though the relationship varied with resolution, the simulated LAI was comparable to 460 
values found by Clark et al (2008) in their study directly measuring LAI across numerous plant 461 
functional groups in La Selva Biological Station. Their study found a total LAI of 6 for old 462 
growth forest, however the total included lianas, palms, herbaceous climbers, herbs, ferns and 463 
epiphytes. As FORMIND includes only trees greater than 10cm DBH, it compares well to the 464 
mean LAI for trees only, which was measured to be 3.29 by Clark et al (2008), and 3.30-4.79 465 
(median) by Loedscher et al (2003). One study, by Tang et al in 2012, which created vertical 466 
LAI profiles from canopy waveform lidar (LVIS) and a radiative transfer model (GORT), found 467 
slightly higher forest LAI values. When subtracting out the non-tree forest constituents, the LAI 468 
in this study is consistent within a reasonable range of all three existing studies.  469 

The values for GPP as calculated by the model output are also congruent with the 470 
literature. Loescher et al (2003) calculated Gross Ecosystem Productivity (GEP) values between 471 
28.4 and 30.6 from tower measurements taken in 1998 and 1999, respectively. Luyssaert et al 472 
2007 reported a GPP value of 35.5 ±1.60 tCha-1yr-1 for tropical humid evergreen forest in a 473 
study comparing GPP across forest types. 474 

This study highlights the capability of individual based modeling as the appropriate 475 
model platform to investigate forest structure and scale directly. Our study did not attempt to 476 
define the ‘best’ height definition to use because different height definitions are widely accepted 477 
among forest ecologists and across the different remote sensing platforms (see Appendices). 478 
Instead, we sought to understand how fine-scale characterization of height is more accurate than 479 
at coarser scales. While fine scale measurements tend to add some noise, overall they provided 480 
a clearer picture of height, with less error. In addition, canopy height, RH100 and then Lorey’s 481 
height tended to relate best to aboveground biomass, leaf area index and gross primary 482 
productivity, respectively. 483 

Advances in remote sensing data processing have facilitated calibration of variables of 484 
interest with forest inventory plot datasets for scaling to landscape-level estimations of 485 
aboveground biomass and carbon flux (Baccini et al. 2012; Saatchi et al. 2011a; Morel et al. 486 
2011). Additionally, many of the recent change maps of AGB and carbon flux rely on 487 
classification and calibration of remotely sensed datasets with measured or leveraged fine-scale 488 
forest structure ground truth data points (Asner et al. 2009; Hansen et al. 2013; Hansen et al. 489 
2016; Hudak et al. 2012). Remote sensing approaches are among the solutions for a large-scale 490 
systematic vegetation monitoring, though they are often limited by sensor footprint. In these 491 
applications typically in situ field inventory measurements are used to calibrate the remote 492 
sensing dataset, but due to the lack of data temporal coverage and long-term monitoring plots, 493 
constitute only a snapshot of the forest and are constrained to imagery collected during the same 494 
time period or risk introduction of additional uncertainty.  495 

With the advancement of super-computing and cloud-based processors, scaling of high-496 
resolution datasets across landscapes has never been easier. It is therefore crucial to gain 497 



knowledge of how to minimize error and uncertainty when applying high resolution datasets 498 
across landscapes. Particularly in the tropics, where aboveground biomass is based largely on 499 
broad allometric relationships calculated from stem diameters and wood density (Chave et al. 500 
2014; Chave et al. 2005; Chave et al. 2004), error estimates are often higher than in temperate 501 
forests, for which allometric equations are more robust (Malhi et al. 1999; Ketterings et al. 502 
2001; Chave et al. 2004). This study also highlights the importance of realizing and accounting 503 
for the differences of measuring forest structure using top-down versus bottom-up approaches. 504 
In Meyer et al.’s 2013 study using repeated LiDAR (LVIS and DRL) to detect tropical forest 505 
biomass dynamics across the same La Selva study site, they found a reduction of error and 506 
uncertainty (RMSE) as resolution coarsened.  507 

Tree height is an important forest structure variable that can be both directly measured 508 
in situ and obtained remotely as canopy height, using various methods with lidar and radar 509 
interferometry (Popescu 2007; Hyde et al. 2007; Lefsky et al. 2005; Zheng et al, 2004; Dubayah 510 
et al. 1997). Either directly measured from the ground up during forest inventories, or calculated 511 
through allometric equations, tree height has become widely used as a predictor of aboveground 512 
biomass, as well as other indirectly measured forest variables. This study also highlights the 513 
importance of realizing and accounting for the differences of measuring forest structure using 514 
top-down versus bottom-up approaches.  515 

Canopy height, in addition to other vertical canopy variables relating top of the canopy 516 
to the ground, have been used to characterize vertical structure across numerous forest types 517 
from the top down (Drake et al. 2002; Dubayah et al. 1997, 2000; Blair et al. 1999; Lefsky et 518 
al. 1999; Weishampel et al. 1996). As noted by Kohler and Huth (2010), the height of the 519 
canopy in forests is a key variable which can be obtained using air- or space-borne remote 520 
sensing techniques such as radar interferometry or lidar. The wide variety of sensors has greatly 521 
increased resolution over the past decades. For example, most lidar footprints range in diameter, 522 
including LVIS (25m), UAVSAR (6m in 100kmx20km transects), GEDI (20m) and ICESAT 523 
(60m) aboard GLAS. However, recently some sensors have even higher resolution (e.g. G-524 
LiHT with its <1m resolution; Cook et al. 2013). Various studies set in tropical ecosystems 525 
have successfully used remote sensing to characterize forest structure variables (e.g.  Dubayah 526 
et al., 2010, Potter et al., 2009; Frolking et al., 2009, Garrigues et al., 2008) and by application 527 
of plot data to infer regional estimates of AGB forest characterization (e.g. Malhi et al., 2006; 528 
Saatchi et al., 2007). 529 

According to Drake et al. (2002), because many remote sensing studies estimate forest 530 
biomass using empirical correlations of energy and different wavelengths, the approach (and 531 
sensors) are sensitive to biomass changes in relatively young forests, but tend to saturate and 532 
become less predictable in older growth and heterogeneous forests. In Meyer et al.’s 2013 study 533 
using repeated lidar (LVIS and DRL) to detect tropical forest biomass dynamics across the same 534 
La Selva study site, they found a reduction of error and uncertainty (RMSE) as resolution 535 
coarsened from 10m x 10m plots to 100m x 100m plots. This difference in findings can be 536 
accounted for in two fundamental ways. First, Meyer et al used a pixel based approach with a 537 
1m fixed resolution CHM, which was averaged to the target pixel size from 0.4ha to 10ha. Our 538 
study uses height values based on individual trees within a plot, whereby the plot heights were 539 
obtained according to which trees grew in a given plot during a given year, with the size of the 540 
plot varying from 0.01ha to 1ha. Essentially, the resolution of our CHM was variable and 541 
congruous to plot resolution. Second, our study is more theoretical. We used a sampling 542 
approach to construct our analyses so that an equal number of points was plotted regardless of 543 
the resolution. This was done to ensure that our analysis was not subjected to sample bias in 544 
comparing plots with an unequal number of points between resolutions influencing the fit of 545 
the relationship (R2) or the error (RMSE).     546 

 547 
Conclusion 548 



 549 
Individual-based models like FORMIND can be used to further the capabilities of 550 

remote sensing through modeling applications aimed at drawing empirical relationships at 551 
scales that are too fine to be measured with sensors, but that could be scaled up to be applied in 552 
remote sensing studies. The results of our study can shed light on why forest height cannot 553 
accurately predict aboveground biomass at coarser scales when measuring from the ground up: 554 
we show that regardless of how height is defined, the empirical relationship breaks down when 555 
trees are scaled to 60-meter and 100-meter plots. Because lidar and radar interferometry are 556 
well suited to determine forest height from the top down, there exists a natural synergism with 557 
individual-based models like FORMIND. However, because of the difference in methodology 558 
with which high resolution models and remote sensing methods obtain height metrics, it is 559 
important to consider and resolve resolution where possible. When the height is based on per 560 
tree values, the accuracy of prediction of AGB, LAI and GPP is higher, but there is a trade off 561 
with precision. With respect to high resolution modeling, the aim should therefore be to first 562 
define the intended error margins, then scale the resolution of the study accordingly. 563 
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