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Supplementary Table S1. Details of the dataset used in the InSAR processing. Shown 

perpendicular baselines are relative to the master acquisition from April 3rd, 2012.  

No. 
Acquisition 

date 
Temporal 

Baseline (days) 
Perpendicular 

baseline (meters) 
Platform Orbit 

1 29-Dec-2011 -96 1050.4 CSKS2 21944 

2 22-Jan-2012 -72 240.2 CSKS1 25025 

3 30-Jan-2012 -64 374.6 CSKS2 22418 

4 7-Feb-2012 -56 -444.4 CSKS1 25262 

5 15-Feb-2012 -48 484.3 CSKS2 22655 

6 23-Feb-2012 -40 950 CSKS1 25499 

7 10-Mar-2012 -24 -104.4 CSKS1 25736 

8 18-Mar-2012 -16 41.5 CSKS2 23129 

9 26-Mar-2012 -8 61.8 CSKS1 25973 

10 3-Apr-2012 0 0 CSKS2 23366 

11 11-Apr-2012 8 839 CSKS1 26210 

12 19-Apr-2012 16 -450.1 CSKS2 23603 

13 27-Apr-2012 24 -284.6 CSKS1 26447 

14 5-May-2012 32 14.7 CSKS2 23840 

15 13-May-2012 40 -318.2 CSKS1 26684 

16 21-May-2012 48 900.3 CSKS2 24077 

17 29-May-2012 56 237.6 CSKS1 26921 

18 6-Jun-2012 64 213 CSKS2 24314 

19 14-Jun-2012 72 547.5 CSKS1 27158 

20 22-Jun-2012 80 49.1 CSKS2 24551 

21 30-Jun-2012 88 -342.5 CSKS1 27395 

 
 
 
 



 

Supplementary Note 1: FFT definitions and properties 
 
The 2D FFT is an algorithm applied to a discrete signal (image or surface) in the spatial 

domain to decompose it into a linear combination of harmonic functions. An input image can be 

presented in the spatial domain as a function of two indices !(#, %), in which x varies in the 

range 0 to M-1 and y in the range of 0 to N-1. The transformed sequence '((, )), and its inverse, 

are given by[1]: 
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where ( and ) are the spatial frequencies in # and % directions, respectively. The 

frequency spectrum is defined as the magnitude of '((, )): 

|'((, ))| = CD/((, )) + F/((, ))G 	       (SE3) 

and the distribution of the energy at any given position, or its power distribution I((, )), 

can be calculated as: 

I((, )) = 	 |'((, ))|/          (SE4) 

Since !(#, %) is an image and is real, its transform is conjugate symmetric about the origin 

(González et al., 2004): 

'((, )) = '∗(−(,−))                     (SE5) 

 
Supplementary Note 2: Considerations and examples of the 2D FFT 
 
Let us define a hypothetical 3D sinusoid surface representing a velocity map with values in 

the interval [-1, 1] mm/yr, with spatial wavelength λ = 250	m	and orientation P = Q/4 

(Supplementary Fig. S1a). The spatial frequency of this hypothetical surface is T = 1/λ =



0.004	cycles/m, which in the positive quadrant of the spatial frequency coordinate system with 

coordinates ((:,):) (Supplementary Fig. S1b), we can calculate them as T = C(:/ + ):/ and 

P = tan9:():/(:). 

 

Supplementary Figure S1. Considerations and examples of the 2D FFT. (a) 3D 

sinusoid surface representing a velocity map over a 1 km2 area. (b) One quadrant of the 

frequency domain coordinate system defined by the spatial frequency axes ( and ). (c) 

Frequency information distribution after 2D FFT computation before centring and (d) after 

centring. Notice that after centring the small square at the centre represents the zero frequency, 



and axes indicate increasing spatial frequencies as with increasing values from the centre.  (e-h) 

Sinusoids representing hypothetical velocity maps with 1-D spatial wavelength with different 

orientations and (i-l) their corresponding power spectrums.  

 

 The 2D FFT computation of !(#, %) maps in the spatial frequency domain over the 

interval (−(, () and (−), )) (Supplementary Fig. S1c). The term '(0,0), which can be 

calculated from Supplementary Eq. (SE1), is known as the zero frequency and equals M*N times 

the average of all the terms of the input image. It is useful to visualize the power spectrum with 

the zero frequency component at the centre of the transform, so that the lower frequencies are 

closer to the centre and the higher one care displayed further away from the centre, which can be 

done by multiplying !(#, %) by (−1)?4; before computing the 2D FFT, in a process known as 

centering (Supplementary Fig. S1d). The power spectrum (Supplementary Eq. SE4) is the square 

of the frequency spectrum (Supplementary Eq. SE3), and either of them can be used for 

interpreting the frequency information of the input image. In this work, we choose to base our 

analysis on the centred power spectrum and apply a conversion to decibels, which is a logarithm 

multiplied by a factor of 10. However, we keep the zero frequencies for the numerical 

computations during the filtering.  

We provide four examples of sinusoid 2D surfaces with specific wavelengths and 

orientations (Supplementary Fig. S1e-h) and their corresponding centred power spectrum 

(Supplementary Fig. S1i-l). Four main observations arise from inspection of Supplementary Fig. 

S1e-l:  



1. Longer spatial wavelengths have peak values in the power spectrum closer to the centre 

(Supplementary Fig. S1e and i, g and k), whereas shorter spatial wavelengths have peak values in 

the power spectrum farther away from the centre (Supplementary Fig. S1f, j, h and l). 

2. Changes in the orientation of surfaces with the same spatial wavelength are reflected as 

changes in the orientation of the power spectrum peak values (Supplementary Fig. S1i and k). 

3. Supplementary Equations SE4 and SE5 indicate that the power spectrum has conjugate 

symmetry about the origin, which explains the symmetry observed in the power spectra 

(Supplementary Fig. S1i-l). Therefore, the two right quadrants contain the complete power 

spectrum information. 

4. Even though the hypothetical surfaces range from -1 to 1 mm/yr, the power spectrum 

reaches can be very high (colorbar next to Supplementary Fig. S1l); hence, a logarithmic scaling 

can be convenient to compress the information and improve visualization of the power spectrum 

of real signals.  

Supplementary Note 3: Filtering in the frequency domain 
 
A filtered image _((, )), containing a frequencies’ subgroup, can be obtained after 

multiplying the input image’s Fourier transform '((, )) by a filter `((, ))[2]: 

_((, )) = 	`((, ))'((, ))        (SE6) 

An equivalent procedure in the spatial domain can be obtained by convolution in the 

spatial domain of !(#, %) with a spatial filter ℎ(#, %):                           

!(#, %) ∗ ℎ(#, %)
	
⇔ `((, ))'((, ))       (SE7) 

Low pass Butterworth filters provide a way to limit the frequencies while providing a 

transition band[3] and can be designed in 2D [2]: 

`((, )) = 1 (1 + [d((, )) d=⁄ ]/g)⁄       (SE8) 



where h is the filter order, d((, )) is the distance function from the center of the centered 

2D FFT, and d= is the cutoff frequency.  

 

Supplementary Note 4: Interpretation of an empirical semi-variogram 

Interpretation of an empirical semi-variogram is based on the analysis of the curve’s 

characteristics[4]. The empirical semi-variogram of the InSAR-derived velocities (Fig. 4g) shows 

a seemingly increase of semi-variance (i) from distances 0 to ~18 km. Such behavior indicates 

that the likelihood of any two samples to have very similar velocity value decreases as the 

distance between them increases. For distances greater than 18 km, i tends to decrease, which 

indicates that the chance that any two samples separated at distances greater than 18 km have 

very similar velocity value; such behavior is originated by the signal’s bowl-like shape (Fig. 1f). 

For distances shorter than 800 m, i values grow at a different rate than what is observable at km-

long distances (compare Fig. 4g and Fig. 4h).  As per the semi-variance formulation, i values at 

lag distances very close to zero, should be zero (see Supplementary Methods 3). i values 

different than zero at lag distances very close to zero is knows as nugget effect[4], and is 

indicative of insufficient sampling in space of the high-frequency signals or the presence of some 

atypically large values. 

 

Supplementary Methods 1:  Low-frequency threshold determination 

In order to determine the threshold to the spatial frequencies that better represent the 

regional subsidence, we analyse radial profiles of the power spectrum. Because the power 

spectrum is symmetrical by the centre, we only require two of its quadrants. The lowest spatial 

frequencies—largest spatial wavelengths—representing the regional subsidence are located 



closer to the centre of the power spectrum; thus, we generate transects starting from the centre 

and until 0.03 cycles/m, as indicated by the black radii in Supplementary Fig. S2a. We also 

calculate their average and fit a two-term exponential model, as shown in Supplementary Fig. 

S2b. Visual inspection of the transects reveals a decreasing trend of power (y-axis) as spatial 

frequency increases (x-axis). Detailed view of the mean profile and its exponential-decay model 

(Supplementary Fig. S2c) shows a change in the slope of the data, where the power response of 

lower frequencies decreases sharply (ranging from ~380 to ~250 [mm/yr]2), to then change its 

trend to a slower change rate (transitioning from ~250 towards 0 [mm/yr]2). We obtain two best-

fitting lines by performing a piecewise linear approximation on the two-term exponential model 

using the SWAB algorithm[5]. We find the transition point to be 0.0021 [cycles/m]. The main 

implication of this analysis is the identification of spatial frequency transition point, which 

separates the sharply-decaying low spatial frequencies from the gradually-decaying ones. 



 

 

 

 



 

Supplementary Figure S2. Power spectrum analysis. (a) Centred power spectrum after 

computing the FFT of the velocities in the calibration area indicated in Fig. 1f. Results are 

displayed in a logarithmic scale and include the location of power distribution profiles (black 

radii) in a neighbourhood of 0.036 [cycles/m] defined by the black circle. (b) Black curves are 

the profiles of power distributions along the black radii in (a). The curves are shifted vertically 

for clarity. The blue profile presents the mean power spectrum of the six individual profiles and 

the red line represents a best-fit two-term exponential model. (c) Detailed view of the average 

power spectrum and the two-term exponential model presented in (b). Black lines are two best-fit 

linear curves and red dot is the power frequency transition point (0.0021 cycles/m).  

 
 

Supplementary Methods 2:  High-frequency threshold determination 
 

We consider the high frequency threshold as the inverse of the minimum apparent uplifting 

spatial wavelength measured around the Metro line within the calibration area (indicated in Fig. 

1f). To obtain the minimum apparent uplift spatial wavelength over this area, we calculated mean 

velocity profiles across the elevated Metro line 4. We then detrended the profiles to remove the 

influence of the regional subsidence. Finally, we systematically measured the uplift using the 

inflection points closer to the Metro line location. The results of this analysis are presented by 

five representative detrended average profiles (Fig. 7b). We obtain a minimum spatial 

wavelength of 42 m, which equals 0.024 cycles/m in terms of spatial frequency—the high 

frequency threshold of interest in our study. 

 

 



Supplementary Methods 3:  Subsidence signal’s spatial correlation assessment  
 

We calculate an empirical semi-variogram of the original InSAR-derived velocities we 

obtain (Fig. 1f) using the function[6] i(ℎ) = :

/8(j)
∑ [k,l(#m) − k,l(#m + ℎ)]/
8(j)
m<: , where i(ℎ) is 

the semi-variance as a function of distance ℎ, n(ℎ) is the number of data pairs with a separation 

distance h, k,l(#m) and k,l(#m + ℎ) represent the InSAR-derived velocities at locations #m and 

#m + ℎ respectively. 



 
Supplementary Figure S3. Estimated DEM errors over the study area. (a) DEM 

errors in line-of-sight geometry. Extent comparable to Fig. 2a, Fig. 2b. (b) and (c) are detailed 

views comparable to the extent shown in Fig. 2c-f. and Fig. 4a-c, respectively. Pink and purple 



polylines correspond to the geotechnical zones’ outlines used across this paper. Matlab R2015b 

(https://www.mathworks.com/) was used to generate the figure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure S4. Calculated velocity uncertainties over the study area. (a) “One 

sigma” velocity uncertainties projected to the vertical direction. Black star marks the reference 

point of the velocity map and the velocity uncertainties. The area shown is comparable to Fig. 

2a, Fig. 2b. (b) and (c) are detailed views comparable to the extent shown in Fig. 2c-f. and Fig. 

4a-c, respectively. Pink and purple polylines in all panes correspond to the geotechnical zones’ 

outlines used across this paper. Matlab R2015b (https://www.mathworks.com/) was used to 

generate the figure. 

 

 
Supplementary Figure S5. Results of implementing band-pass filtering and other 

methodologies. (a) Original signal from the InSAR velocity map (3 m PS spacing), as shown in 

Fig. 2c. (b) Averaged velocities per PS with a search radius of 30m (c) Best-fitting quadratic 

surface to the original signal (a). Black arrows are placed in (d-f) to indicate the extent of Line 

4’s apparent uplift reported by[7]. (d) Same data as (a) but with a custom color range, as 

implemented by[8]. (e) The intermediate-wavelength signal component obtained in this work, as 



shown in Fig. 2e. (f) The result of subtracting the PS average (b) from the original signal (a), as 

implemented by[7] . The result of subtracting the quadratic best-fitting surface (c) from the 

original signal (a). Calculated spatial gradient from the original signal (a), as implemented by[9]. 

Matlab R2015b (https://www.mathworks.com/) was used to generate the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S6. Comparison of results obtained from implementing band-

pass filtering and other methodologies on datasets of variable spacing. The first six plots 

shown in the first row are comparable to Figs. 2c-f, S5f, and S5h. Columns show the original 

signal with any specified spacing and the results of the computations performed on them: long-, 

intermediate-, and short-wavelength components after band-pass filtering, the difference between 

the local average calculated using a search radius r and the original signal according to[7], the 



gradient calculated from the original signal according to[9], and the gradient calculated from the 

long-wavelength component. The spacing indicated in each row starts from 3 m, as obtained 

from the results described in Methods, and is increased using a regular grid of 15, 60 and 90 m 

spacing and nearest neighbour interpolation method. Matlab R2015b 

(https://www.mathworks.com/) was used to generate the figure. 
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