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Thermoelectric control

4

Controlled with a simple 

shunt voltage limiter

Thermoelectric generator systems
 Solid-state

 Simple control

 ~6% efficient 

1) Northwestern Materials Science and Engineering

Thermoelectric linear current/voltage relationship[1]
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Stirling convertor control
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Stirling Generator Systems
 Higher specific power than GPHS-RTG

 ~20-27% efficient,  3X to 4X improvement!

- Provides more power for exploration

 Mechanical system (Addressed with extended operation at the Stirling research lab (SRL))

 Rectification and dynamic control required

Stirling control stages
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Stirling control – Energy balance

• Thermal energy flowing into engine is roughly constant
– Thermal energy is constant on engine time scale for NASA radioisotope and fission systems  

• Energy must be extracted to limit piston motion

• Stirling alternator inductance limits power flow from alternator*. 

• Energy accumulation in the piston results in overstroke. 

7

*New low-inductance alternator designs are also being explored in LET. 
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• Power factor correction (PFC) negates alternator 
impedance
– Can be implemented using a capacitor
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Stirling control – Power factor correction

Energy balance facilitates stable operation
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• A power controller is required to transfer energy to the 
user. 

• Active control is needed to precisely match the load to 
the operation of the Stirling

9

Stirling control – Load regulation



National Aeronautics and Space Administration

www.nasa.gov

Outline

• Thermoelectrics and Stirling convertors 

• Background in Stirling control

• Historical approach

• Simplified Stirling control 

• High density capacitors

• Application and system optimization 

• Control strategy 

10



National Aeronautics and Space Administration

www.nasa.gov

Dynamic Radioisotope Power Systems (DRPS) 

Goal:

• Extract more electrical energy per unit of plutonium-238 than has been 
achieved using thermoelectric generation technology

• 110-130 watts of electrical power from 1 kg of fuel

Core concepts: 

• Maintain stable Stirling operation during launch

• Incorporate redundancy in design
– Loss of single engine would lead to mission failure

• 17-year mission life

11

Advanced Stirling Radioisotope Generator 
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Active power factor correction
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H-bridge structure for active PFC

• Capacitor-based PFC has challenges
– Existing capacitor technology is large

– There are challenges in validating the 17 year lifespan required for DRPS

• Active PFC circumvents these challenges with active control

Active PFC control structure implemented in FPGA [1]

1) E.S. Holliday, “Controller computing a virtual tuning capacitor for controlling a free-piston Stirling engine driving a linear alternator,” 
United States Patent 7,511,459, Mar. 31, 2009
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ASC Control Unit (ACU)
• Specs: 

– Dual channel (2 Stirlings) 12 Vrms, 7 A, 80 W

– Spacecraft dc bus was 28 Vdc

• Developed by Lockheed Martin

• Hardware is at “engineering model” level

• Not under active development (program ended in 2013)

13

ACU controller unit
*Dugala et al., Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power System Integration Laboratory

ACU power path*
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Dual Converter Controller (DCC)
• Specs: 

– Dual channel (2 Stirlings) 12 Vrms, 7 A, 80 W

– Spacecraft dc bus was 28 Vdc

• Designed by APL with “path to flight” components

• Hardware is at “engineering model” development level 

• Under active revision by team at APL for DRPS

14

2 DCC controllers 
side by sideDCC block diagram*

*Dugala et al., Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power System Integration Laboratory
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Objective – Provide reliable power

16

How can Stirling systems be simplified to reduce development risks? 



National Aeronautics and Space Administration

www.nasa.gov

Analog Stirling control at GRC

• NASA Analog Controller
– Designed by Michael Brace, GRC

– Utilizes PFC capacitor and simple analog ICs for control

– 80 W

• Cap-less NASA Analog Controller 
– Revision with additional analog functionality to eliminate 

capacitors

– 80 W

• Mini-Stirling controller
– Designed by Michael Casciani, GRC

– For low-inductance miniStirling

– 10 W

17
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Motivation for analog control

• Analog circuits remove need for the firmware development and 
validation required for an FPGA

• Analog implementation offers potential for increased radiation 
tolerance

• Analog control limits functionality modifications during 
development. This can be problematic, but also limits “feature 
creep”

Analog control in LTspice
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Focus of this work - Fission Surface Power (FSP)

Goal:

• Efficiently convert reactor-generated thermal energy into electricity

• Maximize specific power density (kW/kg)

Core concepts: 

• Start smoothly after lunar landing and deployment

• Incorporate redundancy at the system level
– 8-12 parallel Stirling engines envisioned in concepts

– Loss of 1-2 engines is acceptable while still meeting mission goals

• 10-year mission life

• Survive in the presence of elevated radiation

19

Fission surface power concept
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Power factor correction (PFC) capacitors
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Type Property ASC-E3 SRSC FISC P2A

Converter Power 80 W 62 W 71 W 1100 W

Convertor Voltage 20 Vrms 24 Vrms 60 Vrms 250 Vrms

Film capacitor
(M83421/2 spec)

Capacitor Count 34 22 16 36

Size* 64.2 in3

(1.1L)
41.5 in3

(0.68L)
30.2 in3

(0.49L)
72 in3

(1.2L)

Component Weight* 1.42 lbs 0.92 lbs 0.67 lbs 1.5 lbs

*Assumes no redundancy

• Limited selection of capacitors suitable for flight applications
– MIL-PRF-83421/2 capacitors selected as best existing solution 

• Available capacitor solutions are bulky and require significant 
packaging design due to high component count
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Polymer-multilayer capacitors

• Game-changing energy storage density
– Roughly 90X capacitance density improvement (unpackaged) over MIL-PRF-

39022/12  devices (packaged)

• Radiation tolerant
– Polypropylene capacitors are susceptible to radiation

• Bias independent permittivity
– Bias-dependent permittivity is a problem for ceramics

• Open failure mode

• DC and AC devices under development

22

Individual Capacitor 
Elements

Aluminum 
Electrodes

Arc Sprayed 
Termination

Segmented Mother Capacitor 
Material

PML Capacitor Process 
Schematic

Unencapsulated NanoLam capacitors
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Project application
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• Stirling controller tailored for the Fission Surface Power 
government reference design

– Optimized for 1 kW, 240 V Stirling

– Compatible with 10-12 Stirling array required for FSP system

• Goal: Simplicity with efficiency
– Analog implementation 

– Technology used should have a clear path to flight

• Controlled operation under all conditions experienced by 

Fission Surface Power system
– Startup, shutdown, throttled operation
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Pareto optimization of Stirling system

• Combined optimization of alternator and controller

• Accounts for both continuous and discrete variables
– Continuous variables 

• Alternator current/voltage, switching frequency

– Discrete variables: 
• Switches, inductor core, capacitor

• Based on linear equivalent circuit models 
– Objective functions for mass and efficiency

25

Example of Pareto optimization



National Aeronautics and Space Administration

www.nasa.gov

Outline

• Thermoelectrics and Stirling convertors 

• Background in Stirling control

• Historical approach

• Simplified Stirling control 

• High density capacitors

• Application and system optimization 

• Control strategy 

26



National Aeronautics and Space Administration

www.nasa.gov

Proposed fission generation system architecture
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• Complexity of high-voltage boost motivates a 2-stage approach
– Stirling controllers operating in parallel followed by voltage boost stage in parallel

• Intermediate bus voltage is not fixed
– Voltage will fluctuate based on current push from Stirling controller and constant 

current draw by voltage boost stage. Minimizes required twice-line-frequency filtering 
capacitance 

Dc-dc stage may not be needed 
for LVDC. Additional evaluation 
required
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Controller front-end topology

• Totem-pole architecture combines rectification and PFC/voltage boost 
functionality. 

• Three-level PWM accomplished with basic logic components 

28

PWM boost inductor voltage

Stirling terminal voltage

Stirling controller front-end
Stirling controller front-end

*Disclosed in NASA NTR “Simplified Stirling Control Using Discontinuous Conduction Mode”, LEW-20262-1
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Boost control

• Efficiency of a well-designed DCM boost can be comparable to continuous 
conduction mode (CCM)*

• Boost converter operated in discontinuous conduction mode (DCM) with 
constant duty ratio acts as a constant impedance adjustable with duty ratio

• Input impedance of the controller matched to rated load impedance of the 
Stirling 

29

*Disclosed in NASA NTR “Simplified Stirling Control Using Discontinuous Conduction Mode”, LEW-20262-1
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Boost converter control 

• Thermal changes in engine operation are slow
– Dynamic adjustment is not required

– Only slow tuning of impedance required

• Opportunity to apply average control
– Previously used for parallel electric inverters

30

Conceptual controller

Functional control diagram



National Aeronautics and Space Administration

www.nasa.gov

Boost converter control strategies

• Preliminary control implemented in analog ICs for easy conversion 
to flight-qualified components

31

Control implementation



National Aeronautics and Space Administration

www.nasa.gov

Boost converter control strategies
• Stirling loading proportional to duty ratio

– Voltage inversely proportional to duty

32

Regulated voltage amplitude

Conceptual controller

Alternator RMS voltage decreases 
with increasing duty ratio. 

Plot of filtered voltage at startup 
with 10% to 90% duty

D = 10%

D = 90%

Control at steady-state with minimal 
dynamic performance requirement
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Questions?
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