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1. Abstract
The Cheat River, primarily located in northeast West Virginia, experiences major 
flooding events that negatively impact nearby communities. Poor water quality due
to acid mine drainage and excess sediment loads during flood events threaten the 
health of communities and numerous animal species who depend on the Cheat as a
primary water source. Communities in the Cheat River watershed are confronted 
with floods that can destroy housing, key infrastructure, and crops, and also 
further pollute the river. A warming climate is predicted to increase precipitation 
and storm severity in the region, which could increase flood frequency in the 
watershed. The team partnered with the Friends of the Cheat (FOC), an 
organization that has historically focused on mitigating acid mine drainage in the 
river and has recently begun to focus on proactive flood mitigation. Utilizing 
Landsat 5 Thematic Mapper (TM), Landsat 8 Operational Land Imager (OLI), and 
Shuttle Radar Topography Mission (SRTM) data, the team conducted a climatology
time series analysis, monitored changes in land use and land cover change, and 
created flood risk and vulnerability maps to improve FOC’s flood mitigation efforts.
To calculate the change in precipitation and temperature, the team used the 
equations of the linear trend lines based on annual averages of Preston and 
Tucker counties and averaged the results. These results indicated that 
temperature has increased by about 1.5°C and precipitation has increased by 4.2 
inches between 1970 and 2020, while monthly river discharge has become more 
variable. At the same time, there were no detectable trends in land cover at the 
county level. Communities near Parsons, Masontown, Reedsville, and Eglon are 
among the most vulnerable to flood events based on the flood vulnerability 
analysis. 

Key Terms
flood resilience, flood mitigation, remote sensing, Landsat, time series analysis, 
SRTM, climate, fuzzy logic

2. Introduction

2.1 Background Information
Flooding is one of the most costly and deadly natural disasters worldwide (Doocy 
et al., 2013; Johnson, 2020). In addition to devastating infrastructural damage, 
flooding leads to human displacement, crop failure, increases in disease 
transmission, and worsened water quality (Doocy et al., 2013). While areas most at
risk for flood events have been mapped across the United States by organizations 
such as the Federal Emergency Management Agency (FEMA), recent studies have 
demonstrated that 100 and 500-year floods are increasing in frequency (Allen et 
al., 2020) and that many households impacted by extreme flooding do not fall 
within any designated FEMA floodplain (Pralle, 2019), putting unprepared 
communities at greater risk. In many parts of the United States, the increasing 
frequency and severity of flooding can be linked to changing climatic conditions 
(Allen et al., 2020). Warmer air and water temperatures lead to increased 
evaporation, which subsequently drives more extreme and variable precipitation 
patterns. In many regions, including large parts of the Eastern United States, these
changing climatic conditions contribute to longer periods of drought punctuated by
severe precipitation events, which increases the risk of flash-flooding (Trenberth, 
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2011). Changes to land use and land cover can also exacerbate flood risk. 
Impervious surfaces, such as asphalt and concrete, tend to reduce infiltration, 
increase runoff, and exacerbate flood-risk (Muche et al., 2019). Even converting 
forests to agricultural land or grassland can intensify flood risk (Muche et al., 
2019). 

Many of the costs associated with flood damage could be reduced by mitigation 
efforts that protect communities and increase flood resilience. While it is important
to understand flood resilience in both urban and rural contexts, rural regions may 
be more severely impacted by smaller transportation networks and less access to 
essential services (Allen et al., 2020). Because flood response and evacuation can 
be limited by impacted transportation networks, understanding which regions will 
be left without road access during a flood event is crucial for mitigating flood 
impact (Allen et al., 2020). Furthermore, social connectedness is linked to higher 
flood resilience (Boon, 2014). This emphasizes the need for appropriate and 
effective ways to communicate flood risk and mitigation strategies within affected 
communities. 

The Cheat River flows through Northeast West Virginia into Pennsylvania and has 
experienced numerous environmental challenges in recent decades, including 
frequent flooding. The river flows through Preston and Tucker Counties (Figure 1),
which are largely forested, mountainous regions in the Appalachian Mountain 
range. Due to the steep topography in much of the counties, many towns were 
constructed within the floodplain of the Cheat River, which puts them at-risk for 
extreme flood events. The region has experienced several large floods in recent 
history that have not only posed significant economic challenges for residents but 
also damaged the community’s relationship with the river (Warnick, B., personal 
communication). To better understand flood vulnerability and create opportunities 
for flood mitigation in this region, this project studied changes in local climate, 
land cover, and flood vulnerability in Preston and Tucker Counties from 1950 to 
2020. 
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Figure 1. Study area map depicting Preston and Tucker counties in North-East

West Virginia.

2.2 Project Partners & Objectives
Friends of the Cheat (FOC) was founded in 1994 in response to severe river 
contamination due to acid mine drainage (AMD). Since 1994, FOC has been 
involved in a variety of monitoring and restoration projects aimed at reducing the 
ecological and community impacts of AMD and has succeeded in having the Cheat 
River removed from the national list of impaired waterways. In recent years, FOC 
has expanded their work to proactively mitigate flood events in the watershed 
through activities such as riparian reforestation, dam removals, and community 
outreach. While some at FOC have experience utilizing GIS and geospatial data, 
the organization has limited staff and limited time to devote to proactively identify 
areas at risk for future flood events. This project will aid FOC to more effectively 
target their mitigation and restoration activities in an effort to prevent future flood 
damage. 

To address FOC’s concerns, the team’s main objective was to assess and map flood
risk and vulnerability in Preston and Tucker counties. The team defined flood risk 
to include any areas susceptible to flooding. Flood vulnerability focused on 
potential human impacts due to flooding, including road blockages and increased 
water contamination due to flooding near abandoned mines. The team also 
identified long-term trends in precipitation, temperature, and river discharge to 
better understand how future changes in climate may impact flooding in the 
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region. Finally, the team quantified changes in land cover between 1994 and 2021 
to assess how land cover could play a role in either exacerbating or mitigating 
flood risk and vulnerability. 

3. Methodology

3.1 Data Acquisition 
3.1.1 Climatology Time Series 
To analyze climate trends, the team used data published by the National Oceanic 
and Atmospheric Administration (NOAA) under the National Centers for 
Environmental Information (NCEI) department. Within NCEI, the National Climate 
Data Center (NCDC) collects climate data for public access. Exploring the Climate 
at a Glance tool, the team determined that utilizing the “County” location 
specification would be sufficient in representing climate data for the study area. 
The team also decided to focus on monthly datasets so that climate trends over 
many years could be analyzed. The datasets that were collected are included in 
Table 1. The average range associated with the monthly variables and the time 
range selected for the yearly variables were selected to compare climatic trends 
from the 20th Century to the climatic trends of the beginning of the 21st Century. To
analyze Cheat River trends and find possible river variable changes in correlation 
to climate trends, the team used data from the United States Geological Survey 
(USGS), focusing on data collected from the Parsons, West Virginia gauge on the 
Cheat River. The team chose to collect Monthly River Discharge, Yearly Peak 
Streamflow, and Yearly Peak Gage Height data from USGS from 1950 to 2020. 

Table 1
Sources and the variables used from the sources for the climatology time series
Source Years Datasets Use
NCDC 1950-

2020
Maximum Monthly Temperature, Minimum 
Monthly Temperature, Average Monthly 
Temperature, Monthly Precipitation 
Amounts, Yearly Average Temperature, 
Yearly Precipitation Amounts

Atmospheric 
climate 
profile and 
analysis of 
change

USGS 1950-
2020

Monthly River Discharge (cubic feet per 
second), Average Monthly River Discharge 
(cubic feet per second) Yearly Peak 
Streamflow (cubic feet per second), Yearly 
Peak Gage Height (feet)

River climate 
profile and 
analysis of 
change

3.1.2 Landcover Time Series
To analyze changes in land cover that could impact flood risk and vulnerability, the
team acquired Tier 1 Level 1 imagery from Landsat 5 Thematic Mapper (TM) and 
Landsat 8 Operational Land Imager (OLI) between 1990 and 2020 (Table 2). The 
team also obtained land cover maps for 2011 and 2016 from the United States 
Geological Survey’s (USGS) National Land Cover Database (NLCD) from the Multi-
Resolution Land Characteristics Consortium to be used as training data for the 
supervised classifier. Landsat 5 TM, Landsat 8 OLI, and the NLCD land cover data 
all have a spatial resolution of 30m. The team acquired all imagery through Google
Earth Engine (GEE).  

4



Table 2
Satellites and sensors used in the landcover time series analysis

Satellite Years Bands Resolution
Landsat 5 TM 1990-2011 Bands 1 through 5 30m
Landsat 8 OLI 2013-2020 Bands 1 through 7 30m

3.1.3 Flood Risk and Vulnerability 
To analyze the areas in Preston and Tucker counties  that are most  at  risk for
flooding,  the team acquired FEMA flood plain polygons from the West  Virginia
State GIS Data Clearinghouse. From GEE, the team acquired NASA Shuttle Radar
Topography Mission (SRTM) digital elevation data, U.S. Census Block Population
data,  and Landsat  8  OLI.  The team acquired additional  data  used in  the flood
vulnerability maps directly from FOC. The full list of datasets included in the flood
risk and flood vulnerability maps are listed below (Table 3).  

Table 3
Datasets used in the flood risk and flood vulnerability map

Dataset Year
s

Spatial
Resolut
ion or
Scale

Use

NASA Shuttle Radar 
Topography Mission 
(SRTM) Digital Elevation

2000 30m Elevation in flood risk map

Landsat 8 OLI, Bands 1 
through 7

2020 30m Land cover and Normalized 
Difference Water Index (NDWI) in 
flood risk map

Global 30m Height Above 
Nearest Drainage (HAND)

N/A N/A HAND in flood risk map

FEMA Statewide 
Floodplain Polygons

2020 1:24000 100 and 500-year FEMA 
floodplains for flood risk map

TIGER U.S. Census 
Blocks, U.S. Census 
Bureau

2010 Variable Population data used in flood 
vulnerability maps

Abandoned Mines, FOC N/A N/A Mine data used in flood 
vulnerability maps 

Roads, U.S Census Bureau 2011 1:5000 Road network used in flood 
vulnerability maps

3.2 Data Processing

3.2.1 Climatology Time Series
The team organized data into data tables in Microsoft Excel from NCDC and USGS 
to allow for easier analysis. All temperature data was collected in Fahrenheit and 
was only converted to Celsius at the end of statistical analysis to provide a change 
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in temperature in Celsius in comparison to Fahrenheit. Precipitation was collected 
and kept in inches.

3.2.2 Landcover Time Series
All Tier 1 Landsat Imagery is pre-processed to ensure consistency between 
sensors, which eliminated the need for further sensor calibration between Landsat 
5 and Landsat 8. The team processed all data used for the landcover time series in 
GEE. To improve the accuracy of the land cover classifications and reduce changes
in vegetation due to seasonality, the team selected all imagery between June 1st 
and August 31st of each study year. Next, the team cloud masked and combined 
images by taking the median pixel value for each band to obtain a single image for 
each year. The team then remapped the NLCD land cover data to combine all 
forest classes into a single land cover category before training the classifier and 
classifying the imagery. 

3.2.3 Flood Risk and Vulnerability 
The team clipped all data described in section 3.1.3 to the boundary of Preston and
Tucker counties in ArcGIS Pro 2.7. To combine the variables and assess flood risk,
the team converted each of the datasets into a raster with values from 0 to 1 with
the Fuzzy Membership tool in ArcGIS Pro, where low values indicate higher risk
and high  values  indicate  lower  risk.  While  elevation  and height  above nearest
drainage could be directly converted into fuzzy membership rasters, two datasets
required further pre-processing. First, the land cover classification was remapped
to values corresponding to flood risk, with developed areas receiving a value of 0
to  indicate  that  they  are  most  at-risk  for  flooding,  followed  by  barren  soil,
agricultural  land,  grassland,  and  forest.  Then  the  reclassified  raster  could  be
converted into a fuzzy membership raster. 

Next, the team created a raster layer representing the total flood extent. Because
FEMA  floodplain  polygons  have  been  shown  to  underrepresent  the  extent  of
flooding in previous studies (Pralle, 2019), the team combined the FEMA 100 and
500-year floodplains with the flood extent indicated by the NDWI (Equation 1). In
GEE, the team cloud masked all Landsat 8 imagery between 2013 and 2020 and
calculated NDWI. Next, the team combined all images by selecting the maximum
pixel  value at each pixel  location,  which functions to show the maximum flood
extent because higher values in NDWI indicate water while lower values indicate a
lack of water. To extract only the flooded areas, the team set a water threshold of
0.1. After combining the NDWI flood extent with FEMA floodplains in ArcGIS Pro
2.7 (Figure 2), the team used the Fuzzy Membership tool to create a raster where
areas within the flood extent had a value of 0 while non-flooded areas had a value
of 1. To create the combined flood risk map, the team then used the Fuzzy Overlay
tool in ArcGIS Pro on the fuzzy rasters corresponding to elevation, height above
nearest drainage, flood extent, and land cover. 

NDWI  = 
Green - NIR
Green  +  NIR 

                                                                (1)
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Figure 2. This map depicts the flood extent calculated from NDWI and the total 
combined flood extent within the project area.

3.3 Data Analysis
3.3.1 Climatology Time Series
The team analyzed temperature by first calculating monthly averages using NCDC 
maximum and minimum values for each year in the study period. These values 
were then used to calculate a single overall average of monthly temperature for a 
subset of the study period (i.e., January 1970-1999 and January 2000- 2020). Then, 
the team averaged the yearly means to find an overall mean temperature of 
48.98°F in Preston County and 47.37°F in Tucker County from 1950 to 2020. Using
these yearly averages, the standard deviation was also calculated. The standard 
deviation for temperature in Preston County was 1.32°F and for Tucker County the
standard deviation was 1.38°F. Using the means and the standard deviation, the 
team calculated a significant temperature value that is equal to the mean added to 
the standard deviation. For Preston County this temperature was 50.3°F and for 
Tucker County this temperature was 48.7°F. These temperatures provided a 
baseline for significant yearly temperatures. The same statistical analysis was 
applied at the monthly level for both counties to find the significant temperature 
for each month of the year. These significant yearly and monthly temperatures 
were used to count the number of months and years that had temperatures 
significantly above average.

Monthly average precipitation for each year of the study period was available 
through the NCDC dataset.  These monthly precipitation values for each year were
used to calculate an overall average of monthly precipitation for a subset of the 
study period (i.e., January 1970-1999 and January 2000- 2020). For Preston 
County, the precipitation amount was 4.202 inches and Tucker County had a 
precipitation amount of 4.372 inches. Using the same dataset, the standard 
deviation for Preston and Tucker Counties were 0.563 and 0.637 inches, 
respectively. The monthly average precipitation for the year was added to the 
standard deviation to determine a significant precipitation value for each county. 
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Preston County had a significant monthly precipitation value of 4.76 inches, while 
Tucker County had a value of 5.01 inches. These precipitation values were used to 
count the number of years that had a monthly average amount of precipitation that
was significantly above average. The same statistical analysis was applied to both 
counties to find significant precipitation values based on the month of the year. 
Those values were used to count the number of months during the study period 
that had significant above average precipitation amounts. Additionally, the team 
graphed yearly total precipitation for both counties, adding trend lines to show 
change over the study period. This graph was made to allow the team to calculate 
the average amount of additional precipitation that the study area was receiving at
the end of the study period in comparison to the beginning of the study period.

 For river discharge, monthly averages for each year of the study period were 
available through the USGS. There was only one set of discharge data used for the 
entire study area. The Cheat River gauge in Parsons, WV had recorded river 
discharge data for the years 1950 to 2019. The team used these data to calculate 
monthly discharge averages for each year in the study period, and then to find a 
single overall average for each month during the entire study period (i.e., January 
1950-2019). The average monthly discharge the team calculated was 1806.4 cubic 
feet per second. The team then also calculated the standard deviation for monthly 
discharge which was 393.8 cubic feet per second. Adding the standard deviation 
and average together, the team calculated a significant monthly discharge value of 
2200 cubic feet per second.  Anything above this value was considered significant 
for each year. This process was also done for each month of the year to determine 
the number of months that had significant river discharge per year. The other river
variables that were collected were used for the overall analysis of river climate and
were not used for in-depth analysis or official graphing. 

3.3.2 Land Cover Time Series
The team conducted the supervised classifications within GEE utilizing the 2011 
NLCD data as training data for the Landsat 5 classifier and 2016 NLCD data for 
the Landsat 8 classifier. The training dataset consisted of 8,000 random points, 
which were then used to train a random forest classifier with ten decision trees. 
The team validated the classifications for 2011 and 2016 using a set of 5,000 
random points and found that the overall accuracy was 81.1% for 2011 and 79.3% 
for 2016.

3.3.3 Flood Risk and Vulnerability 
To determine flood vulnerability, which the team defined as affecting human-made
structures or human health, the team analyzed underground mine locations, road
networks,  and  population  density  on  the  flood  risk  map.  To  assess  population
vulnerability, the team conducted a weighted overlay with the census block-level
population data with the flood risk map to highlight areas where high population
densities would lead to greater vulnerability to flooding. To assess road and mine
vulnerability, the team calculated the intersection between these layers and the
flood  extent.  These  intersecting  areas  were  then  classified  as  vulnerable  and
utilized in a series of maps. 

4. Results & Discussion
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4.1 Climatology Time Series
The results below show that there is an increase in the number of months and 
years that have significantly above average temperatures (Table 4). The graph of 
yearly mean temperature shows that there is an increasing trend in temperature 
(Figure 3). To calculate the change in temperature, the team used the equations of 
the linear trend lines based on annual averages of both counties and averaged the 
results. Overall, the team calculated that yearly mean temperatures have increased
by 2.75°F (1.5°C) based on the calculated average in the study area. 

Table 4
Number of months and years in the decade that had significantly above average 
temperatures in Preston County and Tucker County

Decade Number of
Significant

Months 
Preston
County

Number of
Significant

Months 
Tucker
County

Number of
Significant

Years
Preston
County

Number of
Significant

Years
Tucker
County

1970s 18 16 0 0
1980s 14 15 0 0
1990s 21 20 4 3
2000s 26 26 2 1
2010s 33 39 6 7

Figure 3. This graph depicts the yearly average temperature time series, including 
a trend line to show change in climatic trends between 1970 and 2020 in Preston 
County and Tucker County, WV.

The results below show that there is an increase in the number of months and 
years that have average monthly precipitation that is significantly above average 
(Table 5). Looking at the graph (Figure 4), there is an increase in the precipitation 
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average during the late spring and summer months. This conclusion can be drawn 
from the difference between the mean for 1970-1999 and the mean for 2000-2020 
during these months. Also, late fall months have average monthly precipitation 
that is trending below the previous average of 1970-1999, while the winter months
are maintaining approximately the same average monthly precipitation. Using the 
yearly total precipitation graph (Figure A1) and the trend line that was added to 
the graph, the team calculated that yearly total precipitation had increased by 4.2 
inches from 1970 to 2020.

Figure 4. These graphs depict the monthly average amount of precipitation time 
series, using two different means (1970-1999 and 2000-2020) to show change in 
climatic trends between 1970 and 2020 in Preston County and Tucker County.

Table 5
Number of months and years in the decade that had significantly above average 
precipitation in Preston County and Tucker County

Decade Number of
Significant

Months 
Preston
County

Number of
Significant

Months 
Tucker County

Number of
Significant

Years
Preston
County

Number of
Significant

Years
Tucker
County

1970s 18 18 0 1
1980s 14 14 0 0
1990s 17 19 1 2
2000s 15 17 1 1
2010s 18 31 3 3

The results concerning river discharge show that the yearly average rate of river 
discharge per decade has increased very slightly (Figure 5). The biggest noticeable
change in river discharge is the widening of the range of yearly discharge per 
decade, with the 2010s showing a much larger, higher-end range than that of the 
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first three decades of the study. Also, the team discovered that the number of 
months with significantly above average discharge is increasing slowly, while the 
number of years with significantly above average discharge are staying close to the
average number of significant years per decade (Table 6).

Figure 5. This graph utilizes box and whisker plots to show river discharge of the 
Cheat River at the Parsons, WV gauge, in decadal increments.

Table 6
Number of months and years in the decade that had significantly above average 
mean monthly river discharge

Decade Number of Significant
Months

Number of Significant
Years

1970s 18 1
1980s 16 2
1990s 19 0
2000s 23 2
2010s 25 2

4.2 Land Cover Time Series
The land cover time series analysis demonstrated that most land cover classes 
have remained consistent across the study period (Figures B1-B2). The time series 
indicates that the majority of both Preston and Tucker County was covered by 
forest between 1990 and 2019 with very little change in developed area or 
cultivated cropland, which emphasizes that flooding in this region should not be 
linked to urban development or agricultural expansion. Instead, the time series 
analysis suggests that flooding in Preston and Tucker counties is likely linked more
closely to geology, topography, and climate related conditions. While there are no 
meaningful changes in land cover across the counties as a whole, there are smaller
areas of change between years that could still impact local flood risk and 
vulnerability at a local scale. For example, many of the towns and developed areas 
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in this region are located near the river, often within the floodplain. While the 
absolute area covered by developed land is small, the concentration of developed 
areas within the floodplain could still contribute to increased flood risk and 
vulnerability. 

 
4.3 Flood Risk and Vulnerability 
 The flood risk map shows that many of the most at-risk areas were low-lying 
regions near the river, due to a combination of the low elevation and height above 
nearest drainage, the prevalence of developed land cover, and the extent of the 
river's historical flood extent (Figure 6). In particular, because the flood extent 
was a binary 0 or 1 raster, it heavily impacted the results of the final flood risk 
map. One notable area of difference between the original FEMA 100 and 500-year 
floodplains and the NDWI flood extent calculated from Landsat 8 imagery was 
found near Masontown, Reedsville, and Arthurdale in North-West Preston County. 
While these areas were not designated as falling within the FEMA floodplains, the 
NDWI calculation suggested that they had been flooded at some point between 
2013 and 2020 (Figure 2). While the team was not able to validate these findings, 
they could have implications for future flood mitigation techniques in the area if 
they are confirmed to be at-risk for flooding as suggested in the team’s flood risk 
map.  

Figure 6. Flood Risk Map demonstrating the areas within Preston and Tucker
counties most susceptible to flooding. 

The vulnerability map based on population suggested that some of the most 
vulnerable census tracts included those near the towns of Kingwood, Parsons, and 
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Albright (Figure C1). Because the population density of most of the study area is 
relatively low, the vulnerability map tended to show most large towns as 
vulnerable. However, many of the larger towns throughout the study region also 
tend to be located in more at-risk areas within or near the river’s floodplain, which 
makes them highly vulnerable. 

In more rural areas, one of the major determining factors of flood resilience is the 
strength of the transportation network (Allen et al. 2020). With this in mind, the 
team analyzed road vulnerability to flooding and found that a large number of the 
roads throughout Preston and Tucker Counties are vulnerable, which could be due 
to the region’s mountainous terrain.  Many roads appear to have been constructed 
in lower elevation areas, which makes them more vulnerable to flooding. In total, 
155.3 miles of roads throughout the study area were classified as vulnerable. Some
of the most vulnerable road networks were found near Parsons, Kingwood, 
Masontown, and Reedsville, which prompted the team to create a series of maps 
highlighting road vulnerability in these areas (Figure D1-D3). 

Due to the concerns about increased flooding leading to worsened water quality 
due to acid mine drainage, the team analyzed mine vulnerability. While there are 
large areas of mining in the study region, only small sections of the mines 
intersected with the flood extent and were considered vulnerable (Figure C3). 
Many of the vulnerable mines are located in the region of North-West Preston 
county with a large area of NDWI flood extent near Masontown, Reedsville, and 
Arthurdale. This analysis highlights areas where flood mitigation strategies could 
be implemented to avoid the potentially devastating impacts of increased acid 
mine drainage due to flooding on river ecosystems and human health. 

4.4 Future Work
A second term of this project could expand on the climatology analysis, to complete
a more accurate climate profile. Future work could also include a more thorough 
validation of the land cover time series analysis utilizing aerial imagery, in addition
to more precise training datasets for each classification year, which would allow 
for a more precise accounting of small-scale land cover changes that could impact 
flood risk. Furthermore, the team’s limited understanding of historical flood extent 
in the region could lead to potential inaccuracies in the flood risk and vulnerability 
maps. Future work on this project could include a more thorough validation of 
NDWI to verify that the areas classified within the flood extent had flooded during 
the study period. Further analysis of variables such as precipitation distribution 
over the study area, soil type, and population density at a smaller scale (rather 
than at the census block level) could be done. Finally, a second term of this project
could validate the flood risk map through the creation of a spatially-explicit 
historical flood database, or utilize the flood risk map to analyze future flooding 
scenarios with or without the use of specific flood mitigation strategies. 

5. Conclusions
Long term climate trends demonstrate that temperature and precipitation are both
increasing, while stream discharge is increasing and becoming more variable. 
These trends are likely to alter flood risk and vulnerability in Preston and Tucker 
counties, which will inform the way the community and partners plan for 
potentially more frequent or more severe flood events. While the climate trends 
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are likely contributing to increased flood risk, the team did not find any substantial
changes in land cover occurring at the county level.  Though specific land cover 
classes still have varying degrees of flood risk and should be incorporated into 
flood planning, our land cover time series indicated that land cover transitions are 
likely not contributing to worsening floods. Lastly, the team’s flood risk and 
vulnerability maps will allow the community to better understand which areas 
could be targeted for future flood mitigation techniques. Transportation networks 
are especially important during flood events, both for evacuation and for flood 
response teams, the team’s analysis of road vulnerability will improve the 
community’s ability to respond to flooding. The team’s flood vulnerability maps 
also highlight the degree of overlap between high population centers and 
vulnerable roads. Because many towns in the study area were constructed within 
or near the river floodplains, they are vulnerable to flooding due to the high 
populations. Also, the fact that many of the major roads are likely to be impacted 
by flooding, reducing evacuation and response time. The information from these 
vulnerability maps will allow FOC and the greater community to better understand 
the connection between the variables contributing to flood risk and vulnerability 
while allowing them to better target specific areas for future mitigation measures. 
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7. Glossary
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time.
SRTM - Shuttle Radar Topography Mission obtains high-resolution digital 
elevation models on a global scale.
NLCD – National Landcover Database provides current and consistent landcover 
data of the entire United States and Puerto Rico.
Flood Risk – The degree to which an area is prone to flooding. 
Flood Vulnerability – The degree to which human health or human structures will
be impacted by flooding in any given area.
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9. Appendices
Appendix A 

Climatology Results

Figure A1. This graph shows the yearly total amount of precipitation in Preston 
and Tucker Counties, as well as linear trend lines for both counties to show 
changes in climatic trends between 1970 and 2020.
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Appendix B
Land Cover Results

Figure B1. Land cover time series for Preston County.

Figure B2. Land cover time series for Tucker County. 
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Appendix C 
Flood Risk and Vulnerability Results

Figure C1. This map depicts flood vulnerability based on population density and 
flood risk at the census block level.
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Figure C2. This map depicts the road vulnerability by overlaying the roads on the 
flood extent layer.

Figure C3. This map depicts mine vulnerability determined by intersecting 
underground mines with the flood extent.
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Appendix D
Road Vulnerability Analysis for Reedsville, Kingwood, and Parsons

Figure D1. Road vulnerability near Reedsville, WV.

Figure D2. Road vulnerability near Kingwood, WV.
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Figure D3. Road vulnerability near Parsons, WV.
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