
    

April 2021 

NASA/TM−20210014622 

NESC-RP-18-01309 

  

Improvements to the Flight Analysis and 

Simulation Tool (FAST) and  

Initial Development of the Genesis Flight 

Mechanics Simulation for Ascent, Aerocapture, 

Entry, Descent, and Landing (A2EDL) 

Trajectory Design 

Daniel G. Murri/NESC 

Langley Research Center, Hampton, Virginia 

Daniel A. Matz and David A. Hoffman 

Johnson Space Center, Houston, Texas 

Jon S. Berndt abd Susan C. Brown 

Jacobs Technology, Inc., Houston, Texas 

Lorraine E. Prokop 

Johnson Space Center, Houston, Texas 

 



 

 

NASA STI Program Report Series 

Since its founding, NASA has been dedicated to the 

advancement of aeronautics and space science. The 

NASA scientific and technical information (STI) 

program plays a key part in helping NASA maintain 

this important role. 

 

The NASA STI program operates under the auspices 

of the Agency Chief Information Officer. It collects, 

organizes, provides for archiving, and disseminates 

NASA’s STI. The NASA STI program provides access 

to the NTRS Registered and its public interface, the 

NASA Technical Reports Server, thus providing one 

of the largest collections of aeronautical and space 

science STI in the world. Results are published in both 

non-NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

 

• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase of 

research that present the results of NASA 

Programs and include extensive data or theoretical 

analysis. Includes compilations of significant 

scientific and technical data and information 

deemed to be of continuing reference value. 

NASA counterpart of peer-reviewed formal 

professional papers but has less stringent 

limitations on manuscript length and extent of 

graphic presentations. 

 

• TECHNICAL MEMORANDUM.  

Scientific and technical findings that are 

preliminary or of specialized interest,  

e.g., quick release reports, working  

papers, and bibliographies that contain minimal 

annotation. Does not contain extensive analysis. 

 

• CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 

contractors and grantees. 

• CONFERENCE PUBLICATION.  

Collected papers from scientific and technical 

conferences, symposia, seminars, or other 

meetings sponsored or  

co-sponsored by NASA. 

 

• SPECIAL PUBLICATION. Scientific, 

technical, or historical information from NASA 

programs, projects, and missions, often 

concerned with subjects having substantial 

public interest. 

 

• TECHNICAL TRANSLATION.  

English-language translations of foreign 

scientific and technical material pertinent to  

NASA’s mission. 

 

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and feeds, 

providing information desk and personal search 

support, and enabling data exchange services. 

 

For more information about the NASA STI program, 

see the following: 

 

• Access the NASA STI program home page at 

http://www.sti.nasa.gov 

 

 

• Help desk contact information: 

 

https://www.sti.nasa.gov/sti-contact-form/ 

and select the “General” help request type. 

 

 

 

 

https://www.sti.nasa.gov/sti-contact-form/


 

National Aeronautics and  

Space Administration 

 

Langley Research Center   

Hampton, Virginia 23681-2199  

    

April 2021 

NASA/TM−20210014622 

NESC-RP-18-01309 

  

Improvements to the Flight Analysis and 

Simulation Tool (FAST) and  

Initial Development of the Genesis Flight 

Mechanics Simulation for Ascent, Aerocapture, 

Entry, Descent, and Landing (A2EDL) 

Trajectory Design 

Daniel G. Murri/NESC 

Langley Research Center, Hampton, Virginia 

Daniel A. Matz and David A. Hoffman 

Johnson Space Center, Houston, Texas 

Jon S. Berndt abd Susan C. Brown 

Jacobs Technology, Inc., Houston, Texas 

Lorraine E. Prokop 

Johnson Space Center, Houston, Texas 

 



 

Available from: 

 

NASA STI Program / Mail Stop 148 

NASA Langley Research Center 

Hampton, VA  23681-2199 

Fax: 757-864-6500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not 

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the 

National Aeronautics and Space Administration. 



NESC Document #: NESC-RP-18-01309 Page #:  1 of 32 

NASA Engineering and Safety Center 

Technical Assessment Report 

Improvements to the Flight Analysis and Simulation Tool (FAST) 

and Initial Development of the Genesis Flight Mechanics Simulation 

for Ascent, Aerocapture, Entry, Descent, and Landing (A2EDL) 

Trajectory Design

April 8, 2021 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  2 of 32 

Report Approval and Revision History  

NOTE:  This document was approved at the April 8, 2021, NRB.  This document was submitted 

to the NESC Director on April 12, 2021, for configuration control. 

 

Approved: Original Signature on File  4/12/21  

 NESC Director Date 

 

Version Description of Revision 
Office of Primary 

Responsibility 
Effective Date 

1.0 Initial Release Daniel G. Murri, 

NASA Technical 

Fellow for Flight 

Mechanics, LaRC 

4/8/21 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  3 of 32 

Table of Contents 
Technical Assessment Report 

1.0 Notification and Authorization ..................................................................................................... 5 

2.0 Signature Page ................................................................................................................................ 6 

3.0 Team List ........................................................................................................................................ 7 

4.0 Executive Summary ....................................................................................................................... 8 

5.0 Assessment Plan ........................................................................................................................... 10 

6.0 Flight Mechanics and Trajectory Design Tool Enhancements ................................................ 11 
6.1 Legacy JSC Flight Mechanics Simulations ...................................................................... 11 
6.2 Description of FAST ......................................................................................................... 11 
6.3 Updates to FAST .............................................................................................................. 12 
6.3.1 Comparison to the NESC Verification Cases ................................................................... 13 
6.4 Motivation for the Development of Genesis ..................................................................... 14 
6.5 Description of Julia ........................................................................................................... 15 
6.6 Development of Genesis ................................................................................................... 16 
6.6.1 Comparison to the NESC Verification Cases ................................................................... 17 
6.6.2 Optimization ..................................................................................................................... 20 
6.6.3 Powered Flight Capability ................................................................................................ 20 
6.6.4 Flight Simulation Comparisons ........................................................................................ 21 
6.6.5 Copernicus Plug-in ........................................................................................................... 22 
6.6.6 Alternative User Interfaces ............................................................................................... 23 
6.7 FAST and Genesis Design Comparison ........................................................................... 24 
6.7.1 Executable versus Library................................................................................................. 25 
6.7.2 Executive .......................................................................................................................... 25 
6.7.3 Flow of Information .......................................................................................................... 25 
6.7.4 Repository ......................................................................................................................... 26 
6.7.5 Run Time .......................................................................................................................... 26 
6.7.6 Lines of Code .................................................................................................................... 27 
6.7.7 Development Effort .......................................................................................................... 28 

7.0 Summary ....................................................................................................................................... 28 

8.0 Findings and Observations.......................................................................................................... 28 
8.1 Findings ............................................................................................................................ 28 
8.2 Observations ..................................................................................................................... 28 

9.0 Alternative Viewpoint(s) ............................................................................................................. 29 

10.0 Other Deliverables ....................................................................................................................... 29 

11.0 Lessons Learned ........................................................................................................................... 29 

12.0 Recommendations for NASA Standards and Specifications .................................................... 29 

13.0 Definition of Terms ...................................................................................................................... 30 

14.0 Acronyms and Nomenclature List .............................................................................................. 30 

15.0 References ..................................................................................................................................... 31 

 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  4 of 32 

List of Figures 
Figure 6.6-1.  Screenshot of Genesis Documentation ............................................................................. 17 

Figure 6.6-2.  Time Histories of Altitude and Boost Reference to Body Pitch Angle show that 

Optimized Genesis Case Matches SORT Case Well ........................................................ 20 

Figure 6.6-3.  Test Case of Hovering Spacecraft shows that State in Genesis is Properly Referenced  

to a Structural Point .......................................................................................................... 21 

Figure 6.6-4.  Comparison of Open-Loop Aerocapture Case in Genesis and FAST............................... 22 

Figure 6.6-5.  Example of Copernicus calling Genesis to compute a Segment of Overall Trajectory .... 23 

Figure 6.6-6.  Example Pluto Notebook for running Genesis from Genesis Tutorial ............................. 24 

Figure 6.7-1.  Comparison of FAST and Genesis, with both Tools configured to use RK4  

Integrators ......................................................................................................................... 26 

Figure 6.7-2.  Comparison of Genesis Trajectories generated with RK4 and DP5 Integrators ............... 27 

 

List of Tables 
Table 6.3-1.  Atmospheric Verification Cases ....................................................................................... 13 

Table 6.3-2.  Maximum Absolute Difference Over Time between JSBSim and FAST Verification  

Case Results ...................................................................................................................... 14 

Table 6.6-1.  Maximum Absolute Difference Over Time between JSBSim and Genesis  

Verification Case Results .................................................................................................. 19 

Table 6.7-1.  FAST Lines of Code ......................................................................................................... 27 

 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  5 of 32 

Technical Assessment Report 

1.0 Notification and Authorization  

The NASA Engineering and Safety Center (NESC) was requested to provide significant 

enhancements to the Flight Analysis and Simulation Tool (FAST), a generic, variable-degree-of-

freedom (DOF), multi-body ascent, aerocapture, entry, descent, and landing (A2EDL) flight 

simulation code and a key Agency analysis tool. The primary stakeholders for this assessment 

are the Commercial Crew Program (CCP), the Orion Multi-Purpose Crew Vehicle (MPCV) 

Program, the Orion Capsule Parachute Assembly System (CPAS) project, the Human Landing 

System Program, and future missions to the Moon and Mars. 

NESC Lead Daniel Murri, NASA Technical Fellow for Flight Mechanics 

Technical Co-Lead Daniel Matz, Aerospace Engineer 

Technical Co-Lead Frank Monahan, Johnson Space Center (JSC) Flight 

Mechanics and Trajectory Design Branch Chief 

Approval to Proceed March 15, 2018 

Assessment Plan May 3, 2018 

Final Report April 8, 2021 

 

 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  6 of 32 

2.0 Signature Page 

Submitted by: 

Team Signature Page on File – 4/21/21 

 

Mr. Daniel G. Murri Date 

Significant Contributors: 

  

Mr. Daniel A. Matz Date Mr. David A. Hoffman  Date 

  

Mr. Jon S. Berndt Date Ms. Susan C. Brown Date 

 

Ms. Lorraine E. Prokop Date 

 

 

 

 

 

 

 

 

 

 

Signatories declare the findings, observations, and NESC recommendations compiled in the 

report are factually based from data extracted from program/project documents, contractor 

reports, and open literature, and/or generated from independently conducted tests, analyses, and 

inspections. 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  7 of 32 

3.0 Team List 

Name Discipline/Function Organization 

Core Team 

Dan Murri NESC Lead LaRC 

Daniel Matz Technical Co-lead JSC 

Frank Monahan Technical Co-lead JSC 

David Hoffman Technical Support JSC 

Jon Berndt Development Support 

JSC Engineering, Technology, 

and Science (JETS) 

David Grismore Development Support JETS 

Susan Brown Development Support JETS 

Consultants 

Michael Aguilar 

Former NASA Technical Fellow for 

Software LaRC (retired) 

John Carson 

Interface to Flight Software/Hardware  

in the Loop JSC 

Neil Dennehy 

NASA Technical Fellow for 

Guidance, Navigation, and Control 

(GN&C) GSFC 

Joe Guinn Interface to JPL Analysis Tools JPL 

Steve Hughes Interface to GSFC Analysis Tools GSFC 

Mark Ivanov Descent Guidance JPL 

Breanna Johnson Interface to Modular Robotic Vehicle JSC 

Chris Madsen 

Interface to CPAS and Orion Flight 

Dynamics JSC 

Gavin Mendeck Interface to CCP Flight Dynamics JSC 

Jeremy Rea Interface to Orion Entry JSC 

Business Management 

Linda Moore Program Analyst LaRC/MTSO 

Assessment Support 

Linda Burgess Planning and Control Analyst LaRC/AMA 

Jonay Campbell Technical Editor LaRC/KBR 

Melinda Meredith Project Coordinator LaRC/AMA 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  8 of 32 

4.0 Executive Summary 

NASA’s Flight Analysis and Simulation Tool (FAST) is a generic, multi-vehicle, variable-

degree-of-freedom (DOF) flight mechanics simulation. A key Agency objective is to obtain 

desired flight characteristics for vehicles used in accomplishing Agency missions and to ensure 

performance requirements are met. FAST is capable of simulating ascent, aerocapture, entry, 

descent, and landing (A2EDL) trajectories and provides the functionality of several legacy 

simulation tools. It is built using the Trick Simulation Environment, a framework for building 

simulations that generates the executive and provides various utilities like input processing and 

data recording, and it leverages the Johnson Space Center (JSC) Engineering Orbital Dynamics 

(JEOD) library, a collection of commonly used dynamics and environment models. FAST is 

used by the Orion Multi-Purpose Crew Vehicle (MPCV) Capsule Parachute Assembly System 

(CPAS) project, the Orion MPCV aerosciences team, the Commercial Crew Program (CCP) 

parachute team, and for other projects and academic collaborations within the JSC Flight 

Mechanics and Trajectory Design Branch. 

The near-term goals of this assessment were to address a backlog of needed FAST upgrades, 

including updating to the latest versions of Trick and JEOD and migrating to a new computing 

cluster, expanding the FAST user documentation, and certifying the CPAS project version of 

FAST as a NASA Procedural Requirement (NPR) 7120.2C Class C software. This assessment 

was also intended to contribute toward JSC’s long-term goal to fully consolidate and replace 

several legacy flight mechanics simulations, chiefly by developing an optimization capability. 

This report details the upgrades to FAST that were completed, describes a change to the 

assessment’s scope that allowed its goals to be exceeded with a new and innovative approach, 

and discusses the results of the modified approach. The rescoped assessment resulted in the 

initial development of Genesis, a flight mechanics simulation and trajectory design tool, which 

overcomes the limitations of FAST. 

The assessment was rescoped when it became evident that the architecture of FAST, specifically 

its use of Trick and JEOD, precluded completion of the assessment’s goals. In particular, the 

goal of creating a generic optimization capability could not be met without substantial changes to 

Trick. The assessment was redirected to create a successor to FAST. The rescope provided the 

opportunity to take advantage of the programming language Julia, a new language designed for 

technical computing that combines the ease of use of scripting languages with the performance 

of compiled languages. 

During the first year of the assessment prior to the rescope, the near-term goals were addressed, 

including upgrading FAST to the latest versions of Trick and JEOD, transitioning FAST and its 

users to the JSC Flight Sciences Laboratory (FSL) computing cluster, implementing several new 

guidance algorithms, certifying FAST as NPR 7120.2C Class C software to support the CPAS 

project’s requirements verification, improving the onboarding of new users by expanding the 

FAST user guide and creating several new example cases, and validating FAST against the 

NASA Engineering and Safety Center (NESC)-published simulation verification cases  

[refs. 1–3]. With these tasks completed, FAST was prepared to meet the needs of the CPAS 

project and the CCP parachute team. 

After the rescope, the assessment focused on the creation of Genesis, a multi-vehicle, variable-

DOF flight mechanics simulation and trajectory design tool written in Julia. The architecture of 

Genesis makes it more flexible, capable, and performant than FAST and allows a straightforward 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  9 of 32 

implementation of trajectory optimization. Some existing FAST models were reused by creating 

Julia wrappers that call the original C, C++, or Fortran code. For others, the formulation of the 

FAST model was reused, but a Julia implementation was made. Onboarding of new users was 

simplified, as Julia is an easy-to-learn, high-level programming language. Extensive 

documentation, tutorials, unit tests, and example cases were created with Julia’s built-in tools. 

Genesis was verified against existing FAST and SORT (Simulation for the Optimization of 

Rocket Trajectories) cases and NESC-published simulation verification cases. As a result of this 

initial development effort, Genesis is ready to support upcoming programs and projects with 

A2EDL flight mechanics and trajectory design products. The ongoing development of Genesis 

will expand its capabilities and complete the consolidation of legacy flight mechanics 

simulations. 

In summary, the upgrades to FAST and the subsequent initial development of Genesis produced 

significant improvements to key areas of flight mechanics simulation and mission trajectory 

design and analysis. FAST is prepared to successfully meet the needs of the CPAS project and 

the CCP parachute team. The assessment was redirected when the NESC team determined that 

FAST was not suitable for A2EDL trajectory design. Genesis improves upon FAST by being 

more amenable to trajectory optimization and modern high-performance computing (HPC) 

environments. It leverages Julia to improve ease of use and run-time performance. Genesis can 

be incorporated into Copernicus, an exo-atmospheric and interplanetary trajectory design and 

optimization tool, for end-to-end mission planning. Genesis is more capable, faster, and easier to 

maintain than FAST. 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  10 of 32 

5.0 Assessment Plan 

The NESC was requested to provide critical enhancements to FAST to ensure its capabilities in 

providing flight performance analysis, algorithm development, and flight software contributions 

for NASA programs and projects. The technical activities and objectives of this NESC 

assessment were to: 

1. Mature the models, algorithms, and analysis techniques required to support the Human 

Exploration and Operations Mission Directorate (HEOMD) for CCP, the HEOMD and 

Science Mission Directorate for lunar, Mars, and other planetary exploration, and the Space 

Technology Mission Directorate (STMD) for technology and flight test activities. 

a. Upgrade to the latest version of Trick and JEOD and transition to JSC’s FSL computing 

cluster. 

b. Improve 3- and 6-DOF powered ascent capabilities for the Moon and Mars. 

c. Create a generic optimization capability. 

d. Incorporate new vehicle, environment, and aerodynamic models for CCP and the Moon 

and Mars. 

e. Implement heritage and new flight guidance algorithms, control systems, and navigation 

models. 

2. Certify FAST as NPR 7120.2C Class C software to support the CPAS project requirements 

verification. 

a. Expand unit testing. 

b. Improve model documentation. 

c. Clean up existing code as necessary. 

3. Improve onboarding of new users. 

a. Create a detailed user’s guide. 

b. Develop a suite of example cases based on historical vehicles. 

4. Compare FAST to other simulations. 

a. Compare to published verification cases [refs. 1–3]. 

b. Compare to Program to Optimize Simulated Trajectories II (POST2) cases. 

After the first year of the assessment, the high-priority, near-term work on FAST was complete, 

and FAST was ready to meet the needs of its current customers, as described in Section 6.3. 

However, some of the upgrades, onboarding of new developers, and implementation of features 

(e.g., optimization) were hampered by difficulties working with the Trick framework and the 

JEOD library. These issues, discussed in Section 6.4, revealed that the assessment’s original plan 

for the long-term development of FAST was not feasible. 

As a result, the remainder of the assessment was rescoped to pursue the following technical 

activities and objectives: 

1. Migrate environment models, vehicle models, and guidance algorithms from FAST to Julia. 

2. Create a prototype flight mechanics simulation and trajectory design tool in Julia. 

a. Demonstrate a basic 3-DOF capability. 

b. Demonstrate optimization and other features missing from FAST. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  11 of 32 

3. Expand the prototype. 

a. Add high-fidelity lunar orientation. 

b. Add high-fidelity gravity. 

c. Add 6-DOF dynamics. 

d. Improve onboarding of new users. 

e. Create a detailed user’s guide. 

f. Develop a suite of example cases. 

4. Compare the new flight mechanics simulation and trajectory design tool to other simulations. 

a. Compare to published verification cases [refs. 1–3]. 

6.0 Flight Mechanics and Trajectory Design Tool Enhancements 

6.1 Legacy JSC Flight Mechanics Simulations  

The JSC flight mechanics simulations and trajectory design tools are typically used for a broad 

range of studies. These studies include developing Design Reference Mission (DRM) trajectories 

for conceptual vehicle designs, evaluating or prototyping guidance algorithms, designing and 

reconstructing test flights, evaluating vehicle performance, and designing trajectories for each 

mission. 

Historically, JSC flight mechanics personnel have relied on legacy tools from the Space Shuttle 

Program era or earlier because they were small and simple enough to be modified by users as 

needed. This allowed a single engineer to quickly respond to requests without requiring support 

from a separate team of developers. However, these tools were designed for other purposes, 

which limits their utility. New engineers have difficulty understanding their implementation, and 

maintaining the tools was becoming increasingly difficult. The case for a better option was 

compelling and led to the original development of FAST in 2011. 

6.2 Description of FAST 

The original goal of FAST was to consolidate and replace several legacy programs: 

1. Simulation for the Optimization of Rocket Trajectories (SORT), a 3-DOF flight mechanics 

simulation and trajectory optimization tool. 

2. Decelerator System Simulation (DSS), a 6-DOF, multi-body flight mechanics simulation 

used primarily for its parachute modeling capabilities. 

3. General Electric Missile and Satellite Simulation (GEMASS), a 6-DOF atmospheric flight 

simulation used primarily for aerodynamic stability analysis of entry vehicles. 

To meet this objective, FAST needed to generate trajectories for both powered and atmospheric 

flight. It needed a configurable number of degrees of freedom and needed to provide 

optimization and Monte Carlo capabilities. 

FAST was built on top of the Trick Simulation Environment and the JSC Engineering Orbital 

Dynamics (JEOD) library. Trick is a framework for building simulations that generates the 

executive and provides various utilities like input processing and data recording. JEOD is a 

collection of commonly used dynamics and environment models. The decision to use Trick and 

JEOD was based on two perceived benefits. First, because JEOD provided all the models 

necessary for simulating 6-DOF vehicles in orbit, it was hoped that the only additional 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  12 of 32 

development required would be the creation of models for atmospheric flight. Second, since 

programs at JSC generally use Trick and JEOD for their requirements verification simulations, it 

was thought that using these tools in FAST would provide a natural pathway for sharing project-

specific code. 

After several years of development, FAST had become a capable and flexible tool: a generic, 

multi-body, variable-DOF, flight mechanics simulation for atmospheric flight largely 

implemented in C++. 

FAST continues to support a wide variety of NASA programs and projects. The CPAS project 

used FAST for preflight analysis, drop test design, drop test reconstruction, and verification of 

several requirements by analysis. The MPCV aerosciences team uses FAST to perform 

aerodynamic reconstruction of drop tests and flight tests. The CCP parachute team analysis team 

uses FAST to perform post-test reconstructions of partner drop tests and Monte Carlo 

assessments to assess the performance of the partner parachute systems. The Pterodactyl project 

at Ames Research Center used FAST for stability analysis, performance analysis, and guidance, 

navigation, and control (GN&C) development. The Mid Lift/Drag (L/D) Rigid Vehicle project 

used FAST for entry and aerocapture performance analysis and GN&C development. JSC has 

used FAST as a testbed for new guidance algorithms developed through academic 

collaborations. 

6.3 Updates to FAST 

By 2018, it became apparent that FAST’s small, part-time development team needed additional 

support because the completion of long-term tool consolidation goals was being deferred in favor 

of the near-term needs of current vehicle development programs, specifically the CPAS project. 

The CPAS project’s decision to use FAST for their analysis brought in new users, which led to a 

need to enhance the FAST documentation. When the CPAS project realized that one of its 

requirements for high-altitude parachute operations could not be verified by test and would need 

to be verified by analysis, it became necessary to certify FAST as NPR 7120.2C Class C 

software. In addition, the steady stream of Trick and JEOD updates, combined with the decision 

to consolidate computing resources in a centralized HPC facility, required many FAST 

modifications. 

The maintenance needs of FAST constrained the time available to work toward the original long-

term goal of incorporating the capabilities of legacy tools into FAST. Modelling atmospheric 

flight with FAST was relatively straightforward, but the same could not be said about powered 

flight. During powered-flight ascent, a vehicle’s mass and inertia tensor change considerably. 

The dynamics models provided by JEOD assumed constant mass properties and needed to be 

modified. It became clear that there was no path forward for a small development team and a 

more focused effort was required. 

Based on these needs, the NESC team was assembled to provide a more focused effort to update 

FAST. In the first year of the assessment, the team accomplished the near-term work that was 

proposed, including: 

• Upgraded FAST to the latest versions of Trick and JEOD. 

• Migrated users to the FSL. 

• Migrated version control from Mercurial to Git for commonality with other JSC projects. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  13 of 32 

• Migrated issue tracking to GitLab for commonality with other JSC projects. 

• Configured continuous integration (CI) to automatically run tests and deploy documentation. 

• Compared FAST against verification cases published by the NESC. 

• Integrated new guidance algorithms. 

• Created new example cases, including lunar descent and ascent. 

• Expanded the FAST user guide. 

• Certified the CPAS project’s version of FAST as NPR 7120.2C Class C software. 

6.3.1 Comparison to the NESC Verification Cases 

In 2015, the NESC led an effort to develop a suite of 6-DOF simulation verification cases  

[refs. 1, 2]. The final report [ref. 3] contains, for each case, a family of solutions that were 

generated by seven different flight simulations. To verify the FAST equations of motion and 

illustrate FAST usage, the first ten atmospheric verification cases, summarized in Table 6.3-1, 

were implemented in FAST. 

Table 6.3-1. Atmospheric Verification Cases 

Number Description Verifies 

1 Dropped sphere with no drag Gravitation, translational equations of 

motion 

2 Tumbling brick with no damping, no 

drag 

Rotational equations of motion 

3 Tumbling brick with dynamic damping, 

no drag 

Inertial coupling 

4 Dropped sphere with constant drag 

coefficient, no wind, nonrotating planet 

Gravitation, integration 

5 Dropped sphere with constant drag 

coefficient, no wind, rotating planet 

Earth rotation 

6 Dropped sphere with constant drag 

coefficient, no wind, zonal-harmonic 

gravity 

Ellipsoidal Earth 

7 Dropped sphere with constant drag 

coefficient, steady wind 

Wind effects 

8 Dropped sphere with constant drag 

coefficient, variable wind with shear 

Two-dimensional wind 

9 Sphere launched eastward along 

equator 

Translational equations of motion 

10 Sphere launched northward along prime 

meridian 

Coriolis 

The results from FAST were compared with the results generated by JSBSim [ref. 4], a flight 

simulation used in the original NESC study. For each case, the time histories of position, 

velocity, attitude, and angular velocity of the spacecraft were compared. The results are 

summarized in Table 6.3-2. Note that for Case 4 there is a known issue in FAST that prevents the 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  14 of 32 

nonrotating planet from being properly configured in FAST, which results in an incorrect 

position vector time history. 

Table 6.3-2. Maximum Absolute Difference Over Time between JSBSim and FAST Verification 
Case Results 

  Position Relative Velocity North East Down (NED) to Body 

Euler Angles 

Case Altitude X Y Y Z Roll Pitch Yaw 

 [ft] [ft] [ft] [ft/s] [ft/s] [°] [°] [°] 

1 0.2 0.17 0.08 0.005 0.014 2.10E-07 1.67E-09 1.33E-07 

2 0.2 0.17 0.08 0.005 0.014 0.01 0.005 0.002 

3 0.2 0.17 0.08 0.005 0.014 0.12 0.25 0.055 

4 0.75   6.00E-09 0.08 1.25E-09 8.00E-08 1.00E-09 

5 0.75 0.75 3.00E-03 2.25E-04 0.08 1.50E-08 7.00E-08 9.00E-09 

6 0.92 0.9 7.60E-02 4.50E-03 0.09 2.00E-07 1.65E-09 1.10E-09 

7 0.92 0.9 1.10E-01 7.00E-03 0.09 3.00E-07 8.00E-08 1.10E-09 

8 0.92 0.9 1.80E-01 1.20E-02 0.09 5.00E-07 8.00E-08 1.10E-09 

9 0.49 0.52 8.70E-01 4.50E-02 0.018 1.10E-09 2.40E-06 8.00E-08 

10 0.56 0.52 7.40E-02 5.00E-03 0.018 1.30E-07 4.20E-04 8.00E-08 

6.4 Motivation for the Development of Genesis 

Following development of the updates described in Section 6.3, FAST was in a better position to 

meet the needs of its current customers, including the CPAS project and the CCP parachute 

analysis team. However, the NESC team discovered that further development of FAST faced a 

number of interconnected challenges. 

First, the implementation of several desired features was hindered by the fundamental 

architecture and inherent assumptions of Trick and JEOD, which were developed primarily for 

real-time flight simulators and project-specific verification simulations. The team originally 

chose to leverage the Trick framework and JEOD library with the expectation that this would 

reduce the effort required to develop FAST. However, changes to JEOD to incorporate the 

models necessary for atmospheric flight and to improve its mass properties model so that it 

behaved appropriately during powered flight required a significant effort. The team determined 

that even more substantial changes to Trick would be necessary to integrate an optimizer into 

FAST. As the level of effort required to modify Trick and JEOD grew, the case for using them 

was reduced. 

Second, FAST is difficult to maintain. New versions of Trick and JEOD continue to be released, 

making it difficult for the FAST development team to keep up with the changes. In addition, 

Trick and JEOD updates are not always compatible with previous modifications. While FAST is 

primarily used in a Linux environment, support for macOS was desired. However, FAST support 

for macOS proved to be unreliable. In addition to the maintenance burden, these constant updates 

and the sensitivity to the versions of library dependencies made it difficult to revisit old analyses. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  15 of 32 

Third, it is difficult to onboard new engineers who use and develop FAST. Flight mechanics and 

trajectory design at JSC is best served by engineers who are able to both modify the source code 

(e.g., add a new aero model or a new guidance) and perform the associated analysis. However, 

engineers with a flight mechanics background and C++ experience are rare, so new engineers 

often need to learn C++ as they learn FAST. Trick and JEOD have complex data structures with 

complex interdependencies, and the more FAST requires modifications to those libraries, the 

more new engineers have to learn about their complexities. 

These challenges prompted the NESC team to pursue a different approach rather than make 

further upgrades to FAST. While the assessment’s near-term goals were achieved and FAST was 

prepared to meet the needs of its current customers, the ability to efficiently pursue the long-term 

goals was hindered by these limitations. 

The NESC team decided to create a FAST successor, called Genesis. This allowed the team to 

design a new architecture that enables the desired features. It also freed the team to select a 

language more appropriate for technical computing and more approachable to engineers without 

a formal computer science background. Lastly, it allowed the team to apply lessons learned from 

the development and use of FAST, Copernicus (an exo-atmospheric and interplanetary trajectory 

design and optimization tool) [ref. 5], and Damocles (a wrapper around Copernicus for 

performing large scans in parallel) [ref. 6] to better take advantage of modern HPC 

environments. 

6.5 Description of Julia 

Julia is a programming language designed for scientific computing [refs. 7 and 8]. It was 

developed at the Massachusetts Institute of Technology by a group of former MATLAB users.  

It fills a niche between statically compiled and interpreted scripting languages. Its just-in-time 

compiler considers execution context when generating code, allowing it to automatically apply  

a variety of optimizations. The run-time performance of Julia approaches that of C or Fortran.  

At the same time, Julia is a high-level language with a simple syntax, similar to MATLAB and 

Python. It has a powerful type system that can be extended with user-defined types. Julia comes 

with built-in support for vector and matrix operations and other utilities useful for scientific 

computing. Users proficient with MATLAB and Python can quickly become productive with 

Julia. 

Like most modern languages, Julia is open source. Because it was a distributed, open-source 

project, it comes with built-in support for the tooling that a modern software development team 

needs: unit-testing facilities, documentation tools, a package manager with reproducible package 

environments, and support for a variety of operating systems and central processing unit (CPU) 

architectures. And even though it is relatively new, it has a rich system of third-party libraries for 

numerical computation. Julia also provides a variety of parallel computing tools, including multi-

threading, multi-processing, and graphics processing unit (GPU) computing.  

In scientific computing, it is especially important to be able to leverage existing codes. Julia 

provides a built-in capability to call C and Fortran code. Packages exist to allow Julia to call 

code written in Python, MATLAB, Java, R, and other languages. 

Julia’s features allowed the team to focus on the domain logic rather than low-level computing 

details. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  16 of 32 

6.6 Development of Genesis 

Genesis is the successor to FAST and is implemented in Julia. It is a generic, multi-body, 

variable-DOF flight mechanics simulation and trajectory design tool for A2EDL trajectories. 

Genesis does not rely on Trick and JEOD, and its architecture was designed to better fit NASA’s 

needs, including optimization. Appropriate equations of motion were derived and implemented 

to provide full support for powered flight and movable mass control systems. Genesis will be 

NPR 7120.2C Class D software. 

Some FAST models were reused by creating Julia wrappers around C, C++, or Fortran code.  

For other models, it was deemed easier to translate the existing model into Julia. Each model  

is hosted in its own GitLab repository and has a suite of standalone unit tests, which are 

automatically run by GitLab’s continuous integration system whenever the code is changed.  

The models available in Genesis include: 

• Fixed-step and adaptive-step explicit Runge-Kutta integrators 

• Gravity 

• Point mass 

• Spherical harmonic 

• Planet orientation 

• Generic 

• High-fidelity lunar orientation 

• Atmosphere 

• Earth and Mars Global Reference Atmospheric Models (GRAM) 

• United States Committee on Extension to the Standard Atmosphere (COESA) –  

U.S. Standard Atmosphere 1976 

• Aerodynamics 

• Generic models for symmetric and non-symmetric vehicles 

• Mars Science Laboratory aerodynamics interface 

• Apollo Command Module aerodynamics 

• Guidance algorithms 

• Fully Numeric Predictor-corrector Entry Guidance (FNPEG), including bank control  

and alpha/beta control versions 

• Fully Numeric Predictor-corrector Aerocapture Guidance (FNPAG), including bank 

control and alpha/beta control versions 

• Dual Quaternion Powered Descent Guidance (DQPDG) 

• Space Shuttle Ascent Powered Explicit Guidance (PEG) 

• Apollo powered descent 

• Tunable Apollo powered descent 

• Fractional polynomial powered descent 

• Quadratic powered descent 

• E-guidance powered descent 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  17 of 32 

• Minimum acceleration powered descent 

• Gravity turn descent 

The NESC team created an online user guide for Genesis (see Figure 6.6-1), including tutorials 

and reference material. The online documentation is searchable and provides links to Genesis’ 

application programming interface documentation and GitLab-hosted source code. 

 
Figure 6.6-1. Screenshot of Genesis Documentation 

6.6.1 Comparison to the NESC Verification Cases 

As was done with FAST, the first ten NESC atmospheric check cases were run with Genesis, and 

the time history responses were compared with the results from JSBSim. The full comparison 

included: 

• Position, resolved in the planet-centered inertial frame 

• Position, resolved in the planet-centered, planet-fixed frame 

• Inertial velocity, resolved in the planet-centered inertial frame 

• Planet-relative velocity, resolved in the local north-east-down frame 

• Altitude 

• Latitude 

• Longitude 

• Gravitational acceleration 

• Euler angles from the local north-east-down frame to the body frame 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  18 of 32 

• Angular velocity of the body frame 

• Local atmospheric density 

• Local atmospheric pressure 

• Local atmospheric temperature 

• Aerodynamic force, resolved in the body frame 

• Aerodynamic moment, resolved in the body frame 

The comparison was excellent for all variables and all cases. A summary of the maximum 

absolute errors seen for several variables is shown in Table 6.6-1. The check cases were 

integrated into the GitLab CI system for use as regression test cases. The exercise additionally 

proved useful in that it showed where improvement could be made in the implementation of one 

of Genesis’ integrators. 

 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  19 of 32 

Table 6.6-1. Maximum Absolute Difference Over Time between JSBSim and Genesis Verification Case Results 
  

Position Inertial Velocity NED to Body Euler Angles 

Case Altitude X Y Y Z Roll Pitch Yaw 

 [m] [m] [m] [m/s] [m/s] [rad] [rad] [rad] 

1 2.50E-05 2.50E-05 9.00E-08 9.37E-06 0.00E+00 4.30E-11 2.30E-16 1.40E-19 

2 2.50E-05 2.50E-05 9.00E-08 9.37E-06 0.00E+00 1.70E-04 9.00E-05 4.20E-05 

3 2.50E-05 2.50E-05 9.00E-08 9.37E-06 0.00E+00 9.00E-04 1.50E-03 3.80E-04 

4 3.20E-03 3.30E-03 1.70E-11 6.00E-13 2.40E-10 6.70E-06 4.70E-06 1.10E-05 

5 3.20E-03 3.30E-03 7.00E-06 9.37E-06 6.00E-17 6.70E-06 4.70E-06 1.10E-05 

6 3.20E-03 3.30E-03 7.00E-06 9.37E-06 1.80E-15 4.30E-11 2.30E-16 1.40E-19 

7 3.20E-03 3.30E-03 1.15E-04 1.00E-05 1.80E-15 2.60E-11 2.30E-16 1.40E-19 

8 3.20E-03 3.30E-03 8.30E-04 1.00E-04 1.90E-15 8.80E-11 2.30E-16 1.40E-19 

9 1.00E-01 1.00E-01 1.00E-01 5.00E-03 2.90E-14 2.75E-16 2.00E-08 1.75E-15 

10 1.28E-01 2.00E-04 1.20E-01 1.06E-05 2.70E-03 4.50E-09 7.00E-06 1.20E-18 

 

 



 

 
NESC Document #: NESC-RP-19-01309 Page #:  20 of 32 

6.6.2 Optimization 

The architecture of Genesis was designed to enable trajectory optimization. To verify this 

capability, a Genesis case was created to match a SORT case that flies a guided lunar ascent and 

uses an optimizer to select the single-axis rotation and PEG targets to maximize the final mass 

while being subject to several constraints on the final state. Genesis was used in conjunction with 

the Sparse Nonlinear Optimizer (SNOPT), although other optimizers could be used. The 

resulting optimized Genesis trajectory is very similar to the SORT case. Figure 6.6-2 shows the 

time histories of the altitude and boost reference to body pitch angle and the differences between 

the two cases over time. The full comparison included altitude, latitude, longitude, mass, and 

boost reference to body yaw, pitch, and roll angles. The final mass of the Genesis case was 

within 0.1 kg of the final mass in SORT. 

 
Figure 6.6-2. Time Histories of Altitude and Boost Reference to Body Pitch Angle show that 

Optimized Genesis Case Matches SORT Case Well 

6.6.3 Powered Flight Capability 

The equations of motion for Genesis were developed without assuming constant mass properties. 

A test case was developed to verify the implementation of the equations of motion. The case 

consists of a spacecraft that produces a time-varying thrust equal to its current weight, so that it 

hovers. The spacecraft is composed of two point masses, oriented in a vertical configuration. The 

upper point mass is the dry mass, and the lower point mass is the propellant mass. As the 

propellant mass is consumed, the center of mass migrates toward the location of the upper point 

mass. A common simplification in flight simulations with fixed mass properties is to reference 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  21 of 32 

the integrated state to the center of mass. If this simplification were done here, then the altitude 

of the center of mass would remain constant but the locations of the point masses (and any other 

structural points) would slowly decrease. When mass properties can change, the correct approach 

is to use a reference point that is fixed with respect to the structure of the spacecraft. Applying 

this approach, the altitude of the two point masses (or any other structural points) will remain 

constant, while the altitude of the center of mass slowly increases. The results for the Genesis 

case are shown in Figure 6.6-3. 

 
Figure 6.6-3. Test Case of Hovering Spacecraft shows that State in Genesis is Properly  

Referenced to a Structural Point 

6.6.4 Flight Simulation Comparisons 

In addition to the NESC check cases and the comparison to an optimized SORT case discussed 

above, the NESC team compared Genesis with outputs obtained using other flight mechanics 

simulations for several recent JSC tasks: 

• An open-loop aerocapture case at Earth in FAST. 

• A Mars entry guidance case using FNPEG in FAST. 

• Several lunar powered descent cases using a simple MATLAB trajectory development tool. 

In all cases, the time history output from Genesis matched the results of the legacy flight 

mechanics simulations well. As an example, several outputs of the comparison between Genesis 

and FAST for an open-loop aerocapture case are shown in Figure 6.6-4. The full comparison 

considered the time histories of radius, altitude, planet-relative velocity magnitude, dynamic 

pressure, altitude of apoapsis, and specific energy. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  22 of 32 

 
Figure 6.6-4. Comparison of Open-Loop Aerocapture Case in Genesis and FAST 

6.6.5 Copernicus Plug-in 

Copernicus is widely used by NASA, industry, and academia to study, design, and execute 

spacecraft missions. A plug-in was developed so that Copernicus is able to call Julia code. This 

allows Copernicus to, among other things, call Genesis. Copernicus can pass optimization 

variables to Genesis, and Genesis can return a time history to Copernicus, so that a segment of 

the overall trajectory is provided by Genesis. By modeling the exo-atmospheric segments of a 

trajectory in Copernicus and calling Genesis for atmospheric, powered descent, or powered 

ascent segments, Copernicus is able to perform end-to-end mission optimization. 

An example lunar descent case was developed in which Copernicus propagates to the powered 

descent initiation (PDI) point and then calls Genesis to simulate the trajectory to the ground. 

Copernicus can adjust the PDI point where the Genesis segment begins in order to perform an 

end-to-end trajectory optimization. Figure 6.6-5 shows a screenshot of Copernicus, where the red 

trajectory segment is provided by Genesis. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  23 of 32 

 
Figure 6.6-5. Example of Copernicus calling Genesis to compute a Segment of Overall Trajectory 

(red trajectory segment provided by Genesis) 

6.6.6 Alternative User Interfaces 

While many users choose to call Genesis from a Julia script, other user interfaces (e.g., Jupyter 

[ref. 9] and Pluto [ref. 10] notebooks) can be leveraged. Figure 6.6-6 shows an example Genesis 

analysis within a Pluto notebook. With these tools, the user is able to mix expository text, code, 

and code outputs to create an interactive document. The user may create sliders, text input boxes, 

and other widgets to create a custom graphical user interface. Whenever code is changed or a 

widget is adjusted, the dependent computations are repeated so that the notebook is in a 

consistent state. This type of environment provides a useful way for users to explore the behavior 

and sensitivities of a trajectory. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  24 of 32 

 
Figure 6.6-6. Example Pluto Notebook for running Genesis from Genesis Tutorial 

6.7 FAST and Genesis Design Comparison 

Certain patterns and practices are common in NASA’s legacy flight simulations. Sometimes 

these patterns are beneficial. For example, SORT has an event-driven design that is useful for 

defining trajectories. However, the patterns sometimes become outdated (e.g., common blocks 

that are found in many legacy tools). The architecture of FAST was dictated by Trick; however, 

with Genesis the NESC team had the opportunity to reevaluate the inherited patterns and 

practices and choose which ones to preserve. This section compares the design of Genesis with 

FAST and other legacy flight simulations. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  25 of 32 

6.7.1 Executable versus Library 

FAST and other JSC legacy flight simulations are designed as executables. To run a flight 

simulation, the user runs the executable and specifies an input deck to load. The program writes 

one or more files containing the results of the simulation. Running a simulation requires 

spawning an operating system process, and inputs and outputs are communicated through the file 

system. 

However, what happens when a user wants to run a Monte Carlo analysis or a parametric scan? 

Users often create a custom script that automates the process of manipulating the input deck, 

spawning the executable, and loading the outputs. In essence, the user is trying to move toward 

an architecture where running a simulation is a function call. 

Genesis is designed as a library. The user writes a Julia script that imports Genesis, configures 

the case, and then calls a function provided by Genesis to run the simulation. The results of the 

simulation are returned from the function. This is done in memory, and by default Genesis does 

not interact with the file system. 

This design has a number of benefits. First, as discussed, it tends to be more useful for users 

because running a parametric sweep is as simple as writing a loop. Second, it composes with 

other Julia packages (e.g., optimizers). Third, it has better performance in modern HPC 

environments, where file system performance can become a bottleneck. 

6.7.2 Executive 

The Trick framework allows the simulation developer to specify functions to be called and fixed 

rates at which to call them. From this information, Trick generates the simulation executive. By 

using Trick, FAST was forced to use this style of executive, which limited its capabilities. 

In contrast, Genesis is architected more like an ordinary differential equation solver. While it can 

call functions at fixed rates, that application is the exception rather than the rule. By having a 

more flexible executive, Genesis is able to support adaptive-time-step integrators, forward and 

backwards integration, and events that converge on state-based triggers. 

6.7.3 Flow of Information 

FAST and other JSC legacy flight simulations use an imperative programming paradigm. 

Computations are viewed as a series of steps (i.e., the executive calls model A before model B 

because model B is known to depend on some value computed by model A). This is simple to 

understand but has several disadvantages. First, the dependency between the two models is not 

reflected locally in the models but lives at a higher level. If the developer mistakenly calls model 

B before model A, then model B would use stale values. If model B needs the value from model 

A infrequently, then model A would perform unnecessary computations. Second, this design 

often relies extensively on mutable data structures (i.e., model A is represented by some 

structure, and when model A runs, it replaces some fields in its structure with new values). It is 

difficult to implement multi-threading with this design. 

With Genesis, the NESC team has shifted toward a functional programming paradigm, which 

emphasizes the use of immutable data and pure functions. In Genesis, if model B relies on 

information computed by model A, then the code for model B will call a function provided by 

model A. The dependency is reflected locally in model B. The value will not be stale because it 

is computed on demand. If model B needs the value infrequently, then it only calls the function 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  26 of 32 

when needed. When possible, the function is pure, such that model A is not mutated. This 

approach is easier for the programmer to understand, is more amenable to multi-threading, and is 

more performant. 

6.7.4 Repository 

The source code for FAST is stored in a single repository. If another project wants to use a 

particular model from FAST, then they must make a separate copy of the model. However, this 

limits collaboration, as neither project will see future improvements made by the other team 

unless the two versions are synchronized. 

In contrast, Genesis promotes collaboration. It is built from a suite of independent Julia 

packages, with each implementing a particular model. Each package is tracked in its own 

repository. Another project can reuse one or more of the Julia packages, and multiple users can 

collaborate on future development of that package. Whereas manually orchestrating dozens of 

repositories would be difficult, the Julia package manager automatically resolves dependencies 

to install the appropriate packages. 

6.7.5 Run Time 

To compare the performance of Genesis and FAST, the NESC team configured both tools for a 

3-DOF, open-loop aerocapture trajectory at Earth. For the first comparison, Genesis was 

configured as similarly to FAST as possible. Both tools used a Runge-Kutta 4 (RK4) integrator, 

which uses a fixed time step. Both were configured to log time history data at a fixed rate. 

The execution time as a function of the fixed time step is shown in Figure 6.7-1. As the time step 

is increased, each tool takes less time to execute. This relationship is expected to be linear. The 

dashed lines in Figure 6.7-1 show the linear trend for both tools. Genesis follows the linear trend. 

However, FAST has a different trend, indicating that there is overhead that becomes a larger 

portion of the total execution time as the time step is increased. For small time steps, Genesis is 

about 10 times faster than FAST, but that difference grows to 1000 times faster for larger time 

steps. 

 
Figure 6.7-1. Comparison of FAST and Genesis, with both Tools configured to use RK4 Integrators 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  27 of 32 

However, Genesis is not restricted to the use of fixed-time-step integrators. Figure 6.7-2 

compares Genesis using RK4 and Genesis using the Dormand-Prince 5 (DP5) integrator, which 

is an adaptive-time-step integrator. The DP5 integrator can often outperform RK4. This depends 

on the particular trajectory, but Genesis provides the flexibility to use adaptive-time-step 

integrators when desired. 

 
Figure 6.7-2. Comparison of Genesis Trajectories generated with RK4 and DP5 Integrators 

6.7.6 Lines of Code 

The NESC team used the tokei utility [ref. 11] to count the lines of code in FAST and Genesis. 

The results for FAST, totaling nearly half a million lines, are shown in Table 6.7-1. The total 

lines of code for the various packages that make up Genesis is 11,000. While this kind of 

comparison is crude, the results are striking. Genesis is more capable than FAST but requires 

only one line of code for every 50 in FAST. This is partly the result of using Julia, which has 

built-in support for linear algebra that allows mathematical models to be implemented 

compactly, often in a manner nearly identical to the way they are written by hand. 

Furthermore, since FAST’s model code is implemented in C++ and its input deck uses Python, a 

new developer must become proficient in both languages. With Genesis, a developer need only 

become competent in Julia. 

Table 6.7-1. FAST Lines of Code (shown in thousands) 

 C++ C Python Total 

Trick 90 16 11 117 

JEOD 249  78 327 

FAST 22  7 29 

Total 361 16 96 473 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  28 of 32 

6.7.7 Development Effort 

While detailed time tracking was not performed, a rough estimate of the development effort can 

be made. The development of Genesis began in June of 2019, and the milestones discussed 

above were achieved by the end of calendar year 2020. Contributors to the development of 

Genesis include half-time support from two civil servants and full-time support from two 

contractors. The contractors did not have prior experience with Julia, so the first 6 months of 

development also included learning the language. A rough estimate of the overall development 

effort is three developers over a 1-year period. 

7.0 Summary 

The first goal of this assessment was to address near-term updates for FAST in support of the 

CPAS project and CCP. This was achieved in the first year of this assessment, and FAST 

continues to be used by the CPAS project and the CCP parachute team, primarily for parachute 

system reconstruction and analysis. The second goal of the assessment was to consolidate several 

of JSC’s legacy flight simulations tools into FAST by developing several missing features, in 

particular, optimization. The NESC team discovered that these features were difficult to 

implement in FAST because of limitations imposed by Trick and JEOD. To overcome these 

limitations, Genesis was developed in the Julia language as a successor to FAST. The 

architecture of Genesis was designed to be more amenable to optimization and modern HPC 

environments. Comparisons between FAST and Genesis show that Genesis is between 10 and 

1000 times faster than FAST, with 50 times fewer lines of code. Development of Genesis is 

ongoing, but it is planned that Genesis will be available from the NASA Software page [ref. 12]. 

8.0 Findings and Observations 

8.1 Findings 

The following findings were identified: 

F-1. Genesis provides upgraded flight mechanics simulation capabilities for ascent, 

aerocapture, entry, descent, and landing (A2EDL) trajectories. It has fewer lines of code 

and a faster execution speed, and it is easier to maintain than FAST. 

F-2. A Genesis plug-in for Copernicus enables end-to-end mission planning. 

F-3. Genesis produces outputs consistent with the NESC verification cases and several 

example analyses in legacy flight mechanics simulations. 

8.2 Observations 

The following observations were identified: 

O-1. Trick and JEOD were developed for real-time flight simulators, which include human-in-

the-loop simulators for flight procedure development and hardware-in-the-loop 

simulators for flight software validation. 

O-2. Using tools that are not designed for a particular task imposes costs on productivity and 

flexibility. 

O-3. Engineers increasingly develop software, but they lack formal training on software 

development practices (e.g., version control, unit testing, continuous integration). 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  29 of 32 

O-4. Julia proved to have several benefits for aerospace analysis tasks, as it is designed for 

scientific computation and provides competitive run-time performance. 

O-5. Functional programming, with its emphasis on immutable data and pure functions, makes 

dependencies between models clearer. 

O-6. In modern HPC environments, software can be limited by the performance of the file 

system. 

O-7. The NESC verification cases are a valuable resource for flight mechanics simulation and 

trajectory design software development. 

9.0 Alternative Viewpoint(s) 

There were no alternative viewpoints identified during the course of this assessment by the 

NESC team or the NRB quorum. 

10.0 Other Deliverables 

Additional deliverables for this assessment were: 

• FAST 

• Source code, under version control on the FSL GitLab instance at  

https://gitlab-fsl.jsc.nasa.gov/FAST/FAST 

• User guide, hosted on the FSL web server at  

https://web-fsl.jsc.nasa.gov/userpages/fast/fast/latest/user_manual/ 

• NPR 7120.2C Class C documentation, kept under configuration control by the CPAS 

project [refs. 13–18] 

• Genesis 

• Source code, under version control on the FSL GitLab instance at  

https://gitlab-fsl.jsc.nasa.gov/Genesis/Genesis.jl 

• User guide, hosted on the FSL web server at  

https://web-fsl.jsc.nasa.gov/userpages/dmatz/Genesis.jl/latest/docs/ 

11.0 Lessons Learned 

No lessons learned were identified as a result of this assessment. 

12.0 Recommendations for NASA Standards and Specifications 

No recommendations for NASA standards and specifications were identified as a result of this 

assessment. 

  



 

 
NESC Document #: NESC-RP-18-01309 Page #:  30 of 32 

13.0 Definition of Terms  

Finding A relevant factual conclusion and/or issue that is within the assessment 

scope and that the team has rigorously based on data from their 

independent analyses, tests, inspections, and/or reviews of technical 

documentation. 

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience 

that may benefit other current or future NASA programs and projects. The 

experience may be positive, as in a successful test or mission, or negative, 

as in a mishap or failure. 

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the 

assessment scope, but could generate a separate issue or concern if not 

addressed. Alternatively, an observation can be a positive 

acknowledgement of a Center/Program/Project/Organization’s operational 

structure, tools, and/or support provided. 

Problem The subject of the independent technical assessment. 

Supporting Narrative A paragraph, or section, in an NESC final report that provides the detailed 

explanation of a succinctly worded finding or observation. For example, 

the logical deduction that led to a finding or observation; descriptions of 

assumptions, exceptions, clarifications, and boundary conditions. 

14.0 Acronyms and Nomenclature List 

A2EDL Ascent, Aerocapture, Entry, Descent, and Landing 

CCP  Commercial Crew Program 

CI  Continuous Integration 

COESA Committee on Extension to the Standard Atmosphere 

CPAS  Capsule Parachute Assembly System 

CPU  Central Processing Unit 

DOF  Degree of Freedom 

DP5  Dormand-Prince 5 (adaptive-time-step integrator) 

DQPDG Dual Quaternion Powered Descent Guidance 

DRM  Design Reference Mission 

DSS  Decelerator System Simulation 

FAST  Flight Analysis and Simulation Tool 

FNPAG Fully Numeric Predictor-corrector Aerocapture Guidance 

FNPEG Fully Numeric Predictor-corrector Entry Guidance 

FSL  Flight Sciences Laboratory 

GEMASS General Electric Missile and Satellite Simulation 

GN&C  Guidance, Navigation, and Control  

GPU  Graphics Processing Unit 

GRAM Global Reference Atmospheric Model 

HEOMD Human Exploration and Operations Mission Directorate 

HPC  High-Performance Computing 

JEOD  JSC Engineering Orbital Dynamics 

JSC  Johnson Space Center 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  31 of 32 

L/D  Lift/Drag, Lift to Drag Ratio 

MPCV  Multi-Purpose Crew Vehicle 

NED  North East Down 

NESC  NASA Engineering and Safety Center 

NPR  NASA Procedural Requirement 

PDI  Powered Descent Initiation 

PEG  Powered Explicit Guidance 

POST2  Program to Optimize Simulated Trajectories II 

RK4  Runge-Kutta 4 (fixed-time-step integrator) 

SNOPT Sparse Nonlinear Optimizer 

SORT  Simulation for the Optimization of Rocket Trajectories 

STMD  Space Technology Mission Directorate 

15.0 References 

1. Jackson, E. B., et al., “Development of Verification Check-Cases for Six Degree-of-Freedom 

Flight Vehicle Simulations,” AIAA Modeling and Simulation Technologies Conference, 

Boston, MA, AIAA 2013-5071, 2013. 

2. Jackson, E. B., “Further Development of Verification Check-Cases for Six Degree-of-

Freedom Flight Vehicle Simulations,” AIAA 2015-1810, AIAA Modeling and Simulation 

Technologies Conference, Kissimmee, FL, January 5-9, 2015. 

3. Murri, D. G., Jackson, E. B., and Shelton, R. O., “Check-Cases for Verification of 6-Degree-

of-Freedom Flight Vehicle Simulations: Vols I & II,” NASA TM-2015-218675, January 

2015.  

4. “JSBSim: An Open Source, Platform-independent, Flight Dynamics and Control Software 

Library in C++,” URL: http://jsbsim.sourceforge.net, last accessed April 1, 2021. 

5. Williams, J., Kamath, A. H., Eckman, R. A., Condon, G. L., Mathur, R., and Davis, D. C., 

“Copernicus 5.0: Latest Advances in JSC’s Spacecraft Trajectory Optimization and Design 

System,” AAS/AIAA Astrodynamics Specialist Conference, AAS 19-719, August 2019. 

6. Batcha, A., Williams, J., Dawn, T., Gutkowski, J., Widner, M., Smallwood, S., Killeen, B., 

Williams, E., and Harpold, R., “Artemis 1 Trajectory Design and Optimization,” AAS  

20-649, 2020 AAS/AIAA Astrodynamics Specialist Conference, August 9–13, 2020. 

7. “The Julia Programming Language,” URL: https://julialang.org, last accessed April 2, 2021. 

8. Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., “Julia: A Fresh Approach to 

Numerical Computing,” SIAM Review, Vol. 59, 2017, pp 65–98.  

DOI: 10.1137/141000671. pdf 

9. “Jupyter,” URL: https://jupyter.org, last updated February 8, 2021, last accessed April 1, 

2021. 

10. “Pluto.jl,” URL: https://github.com/fonsp/Pluto.jl, last accessed April 1, 2021. 

11. “tokei,” URL: https://github.com/XAMPPRocky/tokei, last accessed March 1, 2021. 

12. “NASA Software,” URL: https://software.nasa.gov, NASA Technology Transfer Program. 

13. “NASA Software Engineering Requirements,” NPR 7120.2C, August 2, 2019. 



 

 
NESC Document #: NESC-RP-18-01309 Page #:  32 of 32 

14. “Software Requirements & Verification Document: Plan and Report for the Capsule 

Parachute Assembly System (CPAS),” JSC 67343, July 2019. 

15. “Capsule Parachute Assembly System (CPAS) Analysis Software Development Plan,” JSC 

67213, July 2019. 

16. “Capsule Parachute Assembly System (CPAS) Analysis Software User Manual,” JSC 67357, 

September 2019. 

17. “Capsule Parachute Assembly System (CPAS) Analysis Software JPR 7150.2 Compliance 

Matrix,” JSC 67385, September 2019. 

18. “CPAS Analysis Software Development Standards,” JSC 67389, September 2019. 



REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY) 2.  REPORT TYPE 3.  DATES COVERED (From - To)

4.  TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER  

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

6.  AUTHOR(S)

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S)

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12.  DISTRIBUTION/AVAILABILITY STATEMENT

13.  SUPPLEMENTARY NOTES

14.  ABSTRACT

15.  SUBJECT TERMS

16.  SECURITY CLASSIFICATION OF:
a.  REPORT b. ABSTRACT c. THIS PAGE

17.  LIMITATION OF 
       ABSTRACT

18.  NUMBER
       OF  
       PAGES 

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER (Include area code)

04/27/2021 Technical Memorandum

Improvements to the Flight Analysis and Simulation Tool (FAST) and Initial 
Development of the Genesis Flight Mechanics Simulation for Ascent, 
Aerocapture, Entry, Descent, and Landing (A2EDL) Trajectory Design

Murri, Daniel G.; Matz, Daniel A.; Hoffman, David A.; Berndt, Jon S.;  
Brown, Susan C.; Prokop, Lorraine E.

NASA Langley Research Center 
Hampton, VA 23681-2199 NESC-RP-18-01309

National Aeronautics and Space Administration 
Washington, DC 20546-0001

869021.01.23.01.01

NASA

NASA/TM-20210014622

Unclassified - Unlimited 
Subject Category Space Transportation and Safety 
Availability: NASA STI Program (757) 864-9658

The NASA Engineering and Safety Center (NESC) was requested to provide significant enhancements to the Flight 
Analysis and Simulation Tool (FAST), a generic, variable-degree-of-freedom, multi-body ascent, aerocapture, entry, 
descent, and landing (A2EDL) flight simulation code and a key Agency analysis tool. This report details the upgrades to 
FAST that were completed, describes a change to the assessment’s scope that allowed its goals to be exceeded with a 
new and innovative approach, and discusses the results of the modified approach.

NASA Engineering and Safety Center; Flight Analysis and Simulation Tool; Simulation; Flight Mechanics

U U U UU 37

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802


