	AGU PUBLICATIONS				
1					
2	Geophysical Research Letters				
3	Supporting Information for				
4	Interaction of Saturn's Hexagon with convective storms				
5 6 7	A. Sánchez-Lavega ^{1,*} , E. García-Melendo², R. Hueso¹, T. del Río-Gaztelurrutia¹, A. Simon³, M. H. Wong⁴ K. Ahrens-Velásquez², M. Soria², T. Barry⁵, C. Go⁵, C. Foster ⁷				
8 9 10 11	¹ Departamento Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain.				
12 13	² Universitat Politècnica de Catalunya UPC, Terrasa, Spain				
13 14 15	³ NASA Goddard Space Flight Center/690, Greenbelt, MD, USA				
15 16 17	⁴ University of California, Berkeley, CA, USA				
17 18 19	⁵ Broken Hill Observatory, Broken Hill, Australia				
20 21	⁶ University of San Carlos, Cebu, Philippines				
21 22 23	⁷ Astronomical Society of Southern Africa, Centurion, South Africa				
24	Corresponding author: Agustín Sánchez-Lavega (agustin.sanchez@ehu.eus)				
25					
26					
27					
28 29	Contents of this file				
30	Text S1 to S3				
31	Figures S1 to S5				
32 33	1 adies 51 to52				
34					
35					

36 Text S1.

- 37 Table S1 gives the list of observers and their instrumentation whose images have been used in
- this study. The full list of observers contributing with their images of Saturn in 2019 and 2020
 appear in the databases:
- 40
- 41 ALPO-Japan: <u>http://alpo-j.asahikawa-med.ac.jp/Latest/Jupiter.htm</u>
- 42 PVOL (Planetary Virtual Observatory Laboratory): <u>http://pvol2.ehu.eus/pvol2/search/form</u>
- 43

44 Table S1

- 45 Instruments descriptions: SC stands for Schmidt Cassegrain, DK for Dall-Kirkham Cassegrain,
- 46 RC Ritchey-Chretien, (*) Chilescope (<u>http://www.chilescope.com/</u>)
- 47 48

Observer	Country	Telescope	Filters	Days
Luis Amiama Gómez	Santo Domingo	SC 280 mm	R,G,B	1
Ecleido WS. Azevedo	Brazil	Newton 300mm	R,G,B	5
Christofer M. Baez	Santo Domingo	Newton 203mm	R,G,B	3
Trevor Barry	Australia	Newton 408mm	R,G,B,CH4	281
Joaquin Camarena	Spain	SC 355mm	R,G,B, CH4	2
Andy Casely	Australia	SC 355mm	R,G,B,CH4	10
Ethan Chappel	USA	SC 203mm	R,G,B	2
Jean-Luc Dauvergne	France	DK 250mm	L,R,G,B	4
Darren Ellemor	Singapore	SC 280mm	R,G,B	1
Pericles Enache	Brazil	SC 203mm	R,G,B	1
Clyde Foster	South Africa	SC 355mm	R,G,B, CH4	76
Christopher Go	Philippines	SC 355mm	R,G,B,CH4	56
Satoshi Ito	Japan	Newton 250mm	R,G,B	1
Teruaki Kumamori	Japan	SC 355 mm	L,R,G,B	5
George Lamy	USA	SC 355mm	R,G,B	1
Mark Lonsdale	Australia	SC 280mm	R,G,B	1
Bruce MacDonald	USA	SC 355mm	L,R,G,B	8
Niall MacNeill	Australia	SC 355mm	R,G,B,CH4	28
Walter Martins	Brazil	Newton 203mm	R,G,B	6
		Newton 305mm		
Lucas Magalhaes	Brazil	Newton 317mm	R,G,B	1
Phil Miles	Australia	Newton 508mm	R,G,B, CH4	2
Masaaki Nagase	Japan	SC 235mm	R,G,B	1
Tiziano Olivetti	Thailand	DK 505mm	R,G,B	20
Damian Peach	Chile (*)	RC 1000mm	R,G,B	12
Christophe Pellier	France	SC 305mm	R,G,B	1
Darryl Pfintzer Milika	Australia	SC 355mm	R,G,B	6
Vlamir da Silva	Brazil	SC 203mm	R,G,B	1
Avani Soares	Brazil	SC 355mm	L,R,G,B	12
Maciel B.	Brazil	Newton 317mm	R,G,B	1
Sparrenberger				
Vicenzo della Vecchia	Italy	Cassegrain 300mm	R,G,B	1
Leandro Yasutake	Argentina	Newton 355mm	R,G,B	1
Kenkichi Yunoki	Japan	Newton 260mm	R,G,B	1
Anthony Wesley	Australia	Newton 508mm	R,G,B,CH4	4
Michael Wong	Australia	Newton 305mm	R,G,B, CH4	26

Text S2.

Description of the analysis of ground-based and HST images. The images submitted by the observers to the databases were normally, reprocessed for contrast enhancement, navigated for limb determination and measured. We used the WinJUPOS software (Hahn & Jacquesson http://www.grischa-hahn.homepage.t-online.de/) to navigate the images transforming the original pixel coordinates of a point on Saturn's disk to longitude and latitude positions over the planet. This software was also employed to produce polar stereographic maps. For the determination of the longitudes on the planet disk we use System III (period = 9 hr 55 min 29.711 s) (Archinal et al. 2018).

- **Text S3.**

We provide here details of the numerical dynamical SW model we have used. The polar storm was simulated using the Shallow Water model (SW) where the weather layer is modeled as a thin sheet of homogeneous fluid. SW models are a simplification of the real atmosphere, but still they preserve a good deal of the large scale dynamics on a rotating sphere or ellipsoid, while allowing a fast computation by explicitly integration of the prognostic variables. Our SW is a parallelized code able to run on supercomputers. Model resolution was 0.02 degrees per control volume and the time step was set to 1 second, which ensured that the CFL condition was not violated. The storm was modeled as a continuous mass injection throughout the whole simulation time. Simulations were run for a Rossby radius of deformation $L_{R} = (gD)^{1/2} / f \sim 300 \, km$, where $g \cong 10 \, m \, s^{-1}$, $D = 1000 \, m$ is the depth of the model, and $f \simeq 3.2 \times 10^{-4} s^{-1}$ is the Coriolis parameter. Saturn's zonal winds were continuously forced as

- 73 described in García-Melendo and Sánchez-Lavega (2017).

77 Table S2. Shallow Water model simulations: parameter space ranges

Parameter	Value or range of values	
Horizontal resolution	$\Delta x = \Delta y = 0.05 \text{ deg pix}^{-1}$	
Time step	1 second	
Layer depth	1000 m	
Simulation domain (long, lat)	Long [0º, 180º]; Lat [63º, 83º]	
Storm major and minor semiaxes dimensions	1º × 1º	
Latitude range	73.0 to 77.0 in 0.5 deg steps	
Continuous mass flow injection Q range	1×10 ⁸ to 1×10 ¹² m ³ s ⁻¹	
Number of simulations	50	

- 83

Figure S1. Color composite images of the North Polar Region of Saturn in 2019. The hexagon wave is easy to identify and the lower dark belt locates at latitude 60°N. The arrows mark the spots at the hexagon southern edge and in close latitudes. The circles enclose long-lived spots tracked along the year as shown in Figure S3. Dates and observers: (a) 8 April 10:23UT, D. Peach; (b) 20 April 21:03 UT, T. Olivetti; (c) 25 April 19:49 UT, N. MacNeill; (d) 27 April 18:09 UT, N. MacNeill; (e) 24 May 18:14, N. MacNeill; (f) 15 September 12:13 UT, N. MacNeill.

Figure S2. Color composite images of the North Polar Region of Saturn in 2020. The hexagon wave is easy to identify in (a-h) due to the combination of filters used. The lower dark belt locates at latitude 60°N. The arrows mark the spots at the hexagon southern edge (latitudes 75°N-76°N) and in close latitudes. The circles enclose long-lived spots tracked along the year as shown in Figure S4. Dates and observers: (a) 9 May 20:20 UT, C. Go;(b) 11 May 30:34 UT, C. Go; (c) 12 May 20:00 UT, C. Go; (d) 15 May 20:48 UT, T. Olivetti; (e) 16 May 21:48 UT, T. Olivetti; (f) 27 May 18:39 UT, C. Go; (g) 8 June 18:35 UT, C. Go; (h) 6 July 15:01 UT, T. Barry; (i) 9 July 17:26 UT, C. Go; (j) 17 July 15:33 UT, C. Go; (k) 20 July 14:41 UT, C. Go; (l) 31 July 13:41 UT, N. MacNeill.

105

106 107

Figure S3. Long-term drift in System III longitudes during 2020 of various large white (W) and dark (D) spots and smaller dark spots (d) observed at red wavelengths (~ 650 – 900 nm) on the double jet between latitudes ~ 60°N and 67°N. The W and D spots form a system of cyclones and anticyclones as described in del Rio-Gaztelurrutia et al. (2018). The planetographic latitudes of the spots are indicated. Their velocities in the wind profile are shown in Figure 2. The upper x-axis gives the date (year/month/day).

115

117 118

Figure S4. Long-term drift in System III longitudes during 2019 of three white (W) and dark (D) spots observed at red wavelengths (~ 650 – 900 nm) on the double jet between latitudes ~ 60°N and 67°N. These spots form a system of cyclones and anticyclones as described in del Rio-Gaztelurrutia et al. (2018). The planetographic latitudes are indicated. Their velocities in the wind profile are drawn in Figure S5. The upper x-axis gives the date (year/month/day).

- 125
- 126
- 127

Figure S5. Zonal wind profile in Saturn's North Polar Region measured in 2019 relative to System III rotation frame. The red dots are from the correlation velocimetry on HST images in 19-20 June 2019 (Simon et al., 2021) and blue dots from motions of major features manually tracked and binned in latitude bands with a width 0.5° - 1° from the same HST images (error bars indicated). The magenta dots are spots tracked in ground-based images in 2019. The three large purple dots correspond to the long-lived spots (Figs. S1 and S3). The black profile and dark dots is the wind profile from Cassini ISS measurements [García-Melendo et al. 2011] and the grey profile from Voyagers 1 and 2 [Sánchez-Lavega et al. 2001]. The shadowed area indicates the latitude band where the 2018 storms evolved.