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1. Abstract
In the Kavango-Zambezi area of southern Africa, three million people live within 
areas frequently traveled by free-ranging elephants. As the region continues to 
develop rapidly, urban and agricultural settlements further encroach upon the land
that these elephants use. As elephants come into more frequent contact with urban
areas, human populations face financial loss through crop damage and the 
potential for injury from direct conflict with elephants. Elephant populations are 
also at risk of injuries from conflict as well as illness related to the consumption of 
waste. In order to implement human-elephant conflict mitigation strategies, local 
conservation groups need to be informed on best practices for coexistence. This 
project aided Ecoexist Project and Connected Conservation in understanding the 
ecological factors that drive elephant movement into human settlements and 
provided Earth observation data to support future conflict management. The team 
used Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager 
(OLI) data to create land use land cover maps and calculate vegetation indices and 
used TerraClimate data to analyze drought conditions. These classified maps 
display a time series of human settlement from 1990 to the present and were made
explorable alongside other environmental variables in an updated Google Earth 
Engine tool. This project also provided heatmaps that show the risk of human-
elephant conflict based on historical data of human-elephant conflict locations. 
This analysis will provide support for conservation experts in determining best 
practices for future mitigation and prevention of human-elephant conflict.

Key Terms
human-wildlife coexistence, land use land cover, NDVI, food security, spatial risk 
analysis, African elephants

2. Introduction
2.1 Background Information
In the Kavango-Zambezi region of Sub-Saharan Africa, human-elephant conflict 
(HEC) threatens the lives and livelihoods of vulnerable communities (Gerhardt-
Weber, 2017). Here, three million people find themselves living in close quarters 
with African elephants, Loxodonta africana (African Elephant Status Report, 2016).
Urban and agricultural expansion is continuously encroaching upon the available 
rangeland for elephants, and the corridors in which they travel and find resources 
are shifting (Gerhardt-Weber, 2017). This habitat fragmentation, compounded by 
ecological factors such as drought or bushfires which make normally abundant 
resources scarce, drive elephants into other areas with high resource yield, such 
as agricultural plots (Dr. Loki Osborn, Personal Communication, February 2, 
2021). In addition to these stressors, elephant and human populations are rapidly 
approaching the region’s carrying capacity, subsequently increasing the frequency 
of HEC as resource competition intensifies (Shaffer, 2019). Elephant raids often 
reduce crop yields, injure livestock, destroy property, or otherwise disrupt the 
daily function of small, rural villages. In some rare cases, instances of HEC result 
in the loss of elephant or even human life (Buchholtz et al., 2019).

The focus for conservation work has begun to shift away from mitigation tactics 
and towards preventative measures since elephants are quick to learn different 
mitigation techniques, making them less effective over time (Mmbaga, 2017). Also 
adding to the pressures of legislating solutions is that public perceptions of 
conservation practices are becoming more negative as elephant conflict increases 
(Shaffer, 2019). This reported lack of trust between stakeholders creates a need 
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for data that can show how urban expansion is affecting elephant rangeland and 
contributing to HEC, and also highlight potential areas for conservation and 
elephant corridors. 

The first term of this project provided the partners with an analysis of 
environmental factors that may influence elephant movements and with tools for 
comparing the intersection of these variables with the elephant data they collect. 
The results suggest that elephants spend more time congregating around water 
sources in the dry season and travel greater distances during the wet season, 
indicating that crop-raiding events are most likely to occur at the end of the wet 
season when crops are ready to be harvested and elephants are more mobile. This 
project expanded upon the first term outputs to enhance the partners’ 
understanding of elephant movement drivers and identify high-risk areas for HEC 
over the broader Kavango-Zambezi area (Figure 1) through the incorporation of 
Land Use Land Cover (LULC) change mapping from 1990-2020 and historical 
conflict data analysis.

Figure 1.  The study area of this project was the Kavango-Zambezi area of southern
Africa

2.2 Project Partners & Objectives
The team continued working with two local non-governmental organizations, 
Connected Conservation and Ecoexist Project. Connected Conservation operates 
within the Kavango-Zambezi area to foster biodiversity conservation, 
environmental, social and economic best practices (Connected Conservation, 
2021). Connected Conservation has monitored elephant movement and HECs 
within the area since 2012 and has developed mitigation strategies such as selling 
locally grown pepper pellets through “The Pepper Company” to deter crop raiding 
events within the region. Ecoexist Project focuses its efforts in the Okavango Delta 
of Botswana, where 15,000 elephants and 15,000 people compete for land, food 
and water resources (Ecoexist Project, 2021). Ecoexist Project has been tracking 
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elephants in the Okavango region since 2014 and uses NASA Earth observations to
monitor and map elephant movement corridors but has not previously applied 
Earth observations to HEC risk assessments. Both partners aim to use the results 
and findings of the project to educate local agencies and decision makers in order 
to better the livelihoods of farmer and elephant co-inhabitants while promoting 
coexistence. 

First, the team produced a LULC time series analysis to identify areas of 
significant urban and agricultural expansion that encroach on elephant habitat. 
The team produced HEC risk heat maps to identify areas of high, moderate, and 
low risk of conflict in the study region. By studying the landscape corridors the 
elephants frequent alongside the LULC classification, careful land use planning 
methods can be employed to minimize HEC occurrence. End users will be able to 
import the HEC heat maps into a Google Earth Engine (GEE) script to perform 
specific repeat analysis by altering spatial and temporal parameters within the 
code produced by the DEVELOP team. Partners will be able to identify key areas 
and focus on specific phenological data freely and as needed. The StoryMap 
deliverable created by the team provides a much-needed visual representation that
outlines the scope of this project and combines aspects of our final products with 
qualitative data to show the perspectives of local residents, farmers, 
conservationists, and other stakeholders affected by HEC events.

3. Methodology
3.1 Data Acquisition 
3.1.1 Environmental Variables 
To assess potential environmental drivers of HEC, the team accessed Earth 
observations in GEE, as shown in Table 1. The team assessed vegetation health by 
calculating Normalized Difference Vegetation Index (NDVI) and Soil Adjusted 
Vegetation Index (SAVI) using Landsat 5 Thematic Mapper (TM) and Landsat 8 
Operational Land Imager (OLI) Surface Reflectance (SR) Tier 1 data (USGS, 
2021a; USGS 2021b). The team also utilized Landsat 5 TM, Landsat 8 OLI, and 
elevation data from the Shuttle Radar Topography Mission (SRTM) to create 
annual LULC maps of from 1990-2020, excluding the years 2002 and 2012 which 
had no data (Farr, 2007). 

The team extracted drought, surface temperature, and precipitation accumulation 
data from the TerraClimate: Monthly Climate and Climatic Water Balance for 
Global Terrestrial Surfaces dataset produced by the University of Idaho and 
imported into GEE. This dataset joins atmospheric evapotranspiration and 
temperature measurements with interpolated surface temperature and moisture 
measurements from the Climate Research Unit Time Series 4.0 (CRU ts4.0), 
Japan’s 55-year Reanalysis (JRA55), and WorldClim datasets (Abatzoglou, 
Dobrowski, Parks, Hegewisch, 2018). To capture drought, the team used the 
Palmer Drought Severity Index (PDSI) from TerraClimate which is a metric 
commonly used to quantify long-term drought in low and middle latitudes (Dai & 
National Center for Atmospheric Research Staff, 2019). In addition to PDSI, the 
team also extracted interpolated surface temperature and accumulated 
precipitation raster images from the TerraClimate dataset for the study period 
1990-2020. 

Table 1. Summary of datasets used for the project. 
Dataset or Sensor Date Range Variables
Landsat 5 TM Surface January 1990 – May 2012 NDVI
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Reflectance Tier 1 SAVI
LULC

Landsat 8 OLI Surface 
Reflectance Tier 1

April 2013 – December 
2020

NDVI
SAVI
LULC

TerraClimate: Monthly 
Climate and Climatic 
Water Balance for Global 
Terrestrial Surfaces

January 1958 – December
2019

PDSI
Surface temperature
Precipitation accumulation

SRTM Elevation February 2000 LULC

3.1.2 Human-Elephant Conflict Data
Ecoexist Project collected annual HEC and associated attribute data for Botswana 
via enumerator survey whenever a conflict event arose. The team utilized this 
dataset for analysis, along with a similar HEC dataset for Victoria Falls from 
Connected Conservation. From the Ecoexist Project partners, the team examined 
HEC data from 2008-2010, 2012-2016, 2017, and 2019. From Connected 
Conservation, we examined data for the years 2012 and 2015-2018. Victoria Falls 
enumerator survey efforts for HEC incidence have increased over time whereas 
monitoring has decreased overall in Botswana. Most of the data included GPS 
coordinates, demographic information related to farmers, vegetation type (as well 
as crop stage and quality), method of determent, time of raid, elephant 
demographic data (number of elephants, sex, life stage), and more attributes that 
were not monitored consistently across all years. The only four attributes that were
collected for every year were elephant sex, number of elephants per raid, crop 
maturity, and the village where the HEC occurred. In addition to conflict data from
both partners, we had access to Connected Conservation’s GPS elephant tracking 
data from 2012-2019, which we used to identify elephant movement zones within 
the study region in Victoria Falls and rank them by intensity of use. 

3.2 Data Processing
3.2.1 Environmental Variables
The team created a GEE tool to access, analyze, and visualize imagery from 
Landsat 5 TM, Landsat 8 OLI, and TerraClimate between 1990 and 2020. The tool 
filters Landsat imagery by user-selected date and location then pre-processes the 
resulting images to mask clouds and shadows and apply a cloud score that ranks 
images by the lowest cloud cover. Next, the tool creates a composite image for 
each year based on the least cloudy pixels, which were determined by the cloud 
score. In order to account for temporal gaps due to cloud masking, the team 
created 5-month composite images corresponding to the wet season from March to
July. The team calculated NDVI and SAVI from the resulting images using 
Equations 1 and 2 below, 

(1)

NDVI=
(NIR−R )

(NIR+R )

(2)

SAVI=
(NIR−R )

(NIR+R+L )
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where Near-Infrared (NIR) and Red (R) refer to Landsat 5 TM bands 4 and 3 and 
Landsat 8 OLI bands 5 and 4, respectively. NDVI is a metric used to assess 
“greenness” – a proxy for vegetation health – and is calculated based on the ratio 
of red and infrared signals in spectral imagery (Madonsela, Cho, Ramoelo, 
Mutanga, & Naidoo, 2018). SAVI is a similar vegetation index used to assess 
vegetation health in sparsely vegetated areas (Huete, 1988). For this project, the 
team leveraged both indices to account for differences in agricultural and non-
agricultural areas as well as annual differences in vegetation cover (Schultz, 
Shapiro, Clevers, Beech, & Herold, 2018). When calculating SAVI, we applied a 
correction factor (L) between 0 (dense vegetation) and 1 (sparse vegetation) to 
modify the index for a specific landscape. For this project, we used a correction 
factor of 0.75 to account for the density of vegetation found in the Kavango-
Zambezi area because higher correction factors led to greater soil influences that 
less accurately represent the vegetation present (Huete, 1988). However, the 
script allows the user to adjust this value based on the study area being analyzed. 
The team extracted monthly PDSI, surface temperature, and accumulated 
precipitation values for each year within the study period from the TerraClimate 
dataset into a new image collection filtered by the user-selected date and location. 
The team pre-processed the TerraClimate image collection by multiplying the PDSI
band by a necessary scale factor of 0.01 and the maximum temperature band by 
0.1 in accordance with the TerraClimate user-guide (Abatzoglou, Dobrowski, 
Parks, Hegewisch, 2018). Finally, the team reduced the image collection to one 
image per variable per year, derived from each annual maximum value.

3.2.2 Land Use Land Cover Classification
The team used the cloud-free composite images along with high-resolution base 
maps in GEE to create sample training data for classification using the GEE 
Geometry toolbox. The team used land cover classification schemes provided by 
The Peace Park Foundation Kavango-Zambezi (KAZA) Dataset Land Cover 2005, 
used for reference in drafting a classification scheme (GeoterraImage, 2007). The 
existing KAZA classifications were available for 2005. The team referenced the 
classification scheme provided by the Peace Park Foundation against the 
classification scheme associated with KAZA’s dataset in order to make educated 
decisions in aggregating classes. The team input the longitude and latitude 
coordinates of sample points for each class present in the KAZA 2005 classification
into Google Earth Pro v7.3. Within Google Earth Pro, the team recorded a snapshot
of the aerial photography for each coordinate and compared it to other classes. 
After reviewing visual examples for each class, the team aggregated classes with 
similar attributes into seven classes – bare, urban, agriculture, water, wetland, 
grassland, and woodland – based on the criteria described in Table A1. More 
information about the class aggregations can be found in Appendix A. The team 
validated the training data through visual comparison with high-resolution base 
maps in GEE, then merged each class of training data into one feature collection. 
The team then subset the data with a 70:30 random split to produce a training 
dataset with 70% of the data and a validation dataset with the remaining 30% of 
the data, to ensure that the training and validation datasets were independent. 

The team utilized the random forest classifier in GEE to create LULC maps for 
each year in the study period. The random forest classifier is a machine learning 
supervised classification algorithm that consists of a user-specified number of 
decision trees which are trained to output classification predictions based on tree 
aggregations popularity vote (Breiman, 2001). First, the team mapped NDVI and 
elevation layers onto the composite image collection, resulting in annual composite
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images with nine layers – blue, green, red, near infrared, shortwave infrared 1, and
shortwave infrared 2, and brightness temperature bands from Landsat 5 and 8, 
NDVI, and elevation from the SRTM (Farr, 2007). At each training point, the 
random forest classifier recognizes the spectral signatures of each training layer 
from the stacked images and classifies the composite Landsat images accordingly. 
The classifier was run using 100 decision trees and the default classifier setting in 
GEE of a bag fraction of 0.5 per tree and 0 randomization seeds (Breiman, 2011).  

3.2.3 Human-Elephant Conflict Data
Because multiple discrepancies existed within and across the partner-sourced HEC
datasets due to different data collection efforts between partner organizations, the 
team employed pre-processing methods to standardize the conflict data within 
Microsoft Excel. We removed null or erroneous values, conducted coordinate 
conversion, and removed data for 2013 since there were only ten conflicts 
recorded by Ecoexist Project and they were all during dry season months (July and 
August). Every other HEC recorded for each year occurred within the later wet 
season months (January to May). A similar issue existed for the Connected 
Conservation data at Victoria Falls, where in 2012 not all of the recorded HEC had 
recorded georeferenced coordinates. After we cleaned the partner data, we 
imported the data individually into Esri ArcMap 10.6 Desktop to create annual 
HEC incidence heat maps and perform all other geospatial processes.

First, the team used the point density tool to calculate an individual heat map for 
every year for the main study area. We then standardized and merged those into 
one decadal heat map for each region to identify risk zones as well as to prioritize 
known elephant corridors and croplands in the region. The same was done for 
Victoria Falls, except we created our own corridor layers from the GPS elephant 
tracking data since none existed for this region and the span was only five years. 
The team used the elephant GPS collar tracking points to create a kernel density 
heat map of elephant movements where the densest elephant locations were 
extracted to create an elephant corridor shapefile for the collared elephants in 
Victoria Falls. Thus, we were able to use the HEC data in conjunction with the 
LULC maps for Botswana and Victoria Falls to prioritize certain areas more likely 
to experience a conflict based on historical elephant presence.

The team used partner-provided shapefiles containing agricultural lands and 
known elephant corridors in the Okavango Delta and Victoria Falls to generate 
overall HEC heat maps of both regions. We used the Zonal Statistics tool and 
prioritized zones based on risk, defined as the likelihood for a conflict to occur in 
an area based on historical trends. In addition, we reduced the categories of HEC 
incidence to three (Low, Medium, and High) in order to run a basic risk 
assessment that incorporates our LULC maps. We created a risk index where any 
pixel that was not urban or agriculture was assigned a value of zero, urban was 
assigned a value one (as indicators of human presence and a proxy for human-
elephant interactions), and agriculture was assigned a value of two. We combined 
this risk index with our decadal incidence heatmap using the Raster Calculator tool
to identify zones that have experienced the most elephant crop raiding activity 
over the last ten years and prioritized those that occurred within areas defined as 
agriculture or urban.

3.3 Data Analysis
3.3.1 Human-elephant Conflict Drivers
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To assess the relationship between trends in the environmental variables and 
LULC conversion, the team created a user-friendly graphical user interface (GUI) 
in GEE to display the calculated variables, including vegetation health, 
temperature, drought, precipitation, and LULC. The team added the functionality 
to display time series charts of the calculated variables from user-specified 
locations with a point inspector tool in the GUI to demonstrate changes in each 
variable. Once time series charts are produced for the user-selected date range, 
location, and analyzed variable, the charts can be analyzed within the GUI or can 
be exported in CSV format for further analysis. The team tested the classified 
LULC maps for accuracy using error matrix accuracy assessments. We then 
applied the trained random forest classifier to classify the validation dataset. This 
produced a ‘classification’ property in the validation dataset, which we assessed 
for accuracy using the error matrix function in GEE. For each annual classified 
composite, the team produced a confusion matrix representing the validation, or 
expected, classification accuracy. 

3.3.2 Conflict Data
Using Microsoft Excel, the team created histograms to analyze the risk and 
frequency of HEC and crop raiding events in relation to certain variables, including
sex of participants, number of elephants, repeat raid area, crop maturity and 
village of occurrence. These histograms were then used to calculate statistical 
measurements to analyze the dynamics of HEC within the region. The team 
imported the annual HEC maps for the study region into the GEE environment for 
the overlay analysis. We used the LULC classification maps in conjunction with 
these heat maps to delineate potential corridors and areas that were highly utilized
by elephants based on the original conflict data provided. By comparing HEC 
incidence to the classes, we assembled a new high, medium, and low risk 
assessment map of HECs with the goal of being able to identify and prioritize those
areas at higher risk for conservation purposes and to designate where agricultural 
and urban expansion should be limited as to avoid putting both elephant and 
civilian lives at risk. While the categories are the same, this incidence heat map 
highlights different areas of high priority concern not just based on HEC 
frequency.

4. Results & Discussion
4.1 Analysis of Results
4.1.1 Environmental Variables 
The GEE GUI allows users to import ancillary datasets such as HEC risk maps or 
elephant corridor shapefiles. Thus, end users can directly compare vegetation 
health, climate conditions, and LULC to elephant movements and reported conflict 
in the interface for a complete analysis of HEC conflict drivers and resulting HEC. 
Furthermore, the tool calculates annual changes in NDVI, SAVI, PDSI, 
temperature, and precipitation over the user-selected date ranges to highlight 
environmental and climate anomalies associated with trends in HEC. 

4.1.2 Land Use Land Cover Change 
The 1990 Classification had an 80% validation accuracy, using a composite image 
from March through July (Figure 2). In order to have zero cloud coverage in the 
composite image, we created a five-month composite determined based on a cloud 
score. This five-month period coincides with the wet season when seasonal water is
more prominent, and also captures the peak crop harvest time from March through
June, when most crop raiding occurs. The five-month composite was necessary to 
produce cloud-free imagery but is limiting in that not all of the imagery will be 
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sampled from similar dates. Thus, Landsat scene image footprints are visible in the
classified image, suggesting some inconsistencies in the classification across 
images due to illumination inconsistencies for the satellite return. However, our 
LULC still had a high accuracy, particularly in the geographic areas with high 
incidence of HEC, which was the focus of the study.

Figure 2. LULC classification for 1990 

The 2020 Classification had an 85% validation accuracy (Figure 3). In 2020, the 
five-month composite range had lower cloud cover than 1990, so fewer pixels were
removed by the cloud mask during image pre-processing. As a result, the 2020 
composite image had greater homogeneity between imagery dates and less 
noticeable image footprints compared to the 1990 Classification, which improved 
the validation accuracy. While the 2020 accuracy was still greater than the 
accuracy for 1990, one of the main challenges the team faced was training the 
random forest classifier to distinguish salt pans in the study area. These salt pans 
are sometimes filled with seasonal water and at other times are barren, depending 
on what month the images are composited from. Additionally, the classification 
model accuracy for all years was limited by the computational power of GEE, 
which imposes restrictions on the size of the training set that is used for 
classification. Due to the large expanse of the Kavango-Zambezi study area, 
collecting training data representative of the diversity of land cover within the 
study area was challenging and may have contributed to lower classification 
accuracies. These limitations could be overcome, however, by running the random 
forest model on smaller subregions within the broader Kavango-Zambezi area, 
which had higher validation accuracy values. 
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Figure 3. LULC classification for 2020 

From 1990-2020, there was significant loss in woodland cover, coinciding with an 
increase in all other land cover classes (Figure A2). The agriculture class increased
by approximately 200 km2 and the urban class increased by approximately 2,000 
km2. These classes increased across the whole study area, not just the subset 
shown in Figures 2 and 3 above. These results, combined with the approximate 
10,000 km2 loss of woodland cover, serve as evidence of the human settlement 
expansion at the expense of elephant habitat loss or fragmentation. However, 
further analysis of the land cover transitions on a pixel-by-pixel basis is necessary 
to determine which land cover classes replaced the woodland cover. Upon closer 
examination of land cover change between 1990 and 2020, the urban and 
agricultural expansion is pronounced in two areas of high HEC risk, the Okavango 
Delta and Victoria Falls (Figure A3 and Figure A4). 

4.1.2 Human-elephant Conflict Risk Analysis 
We used the results of the HEC incidence heat maps to rank known corridors and 
agricultural fields, as well as to implement our LULC agricultural and urban 
classes to prioritize areas that had already been identified as having a higher 
likelihood of future conflict based on partner-collected HEC data. In Figure 5 
below, the villages are displayed proportionally, with those that have seen higher 
conflict incidence appearing larger. The higher incidence areas had approximately 
40 events per square kilometer. We also ranked the known elephant corridors by 
priority status. Critical corridors were typically adjacent to at least two villages 
where a higher number of incidence reports over the past ten years had been 
recorded. 
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Figure 5. Ranked elephant corridors over HEC incidence heat map for the
Okavango Delta (Botswana), standardized and merged.

The team simplified the HEC incidence heat map into three categories (low, 
medium, or high risk) based on historical data (Figure 6). The sum of this raster 
with the reclassified LULC categories produced the resultant priority zone map 
that highlights and specifies areas that may be of high risk but still are not of 
critical priority because the dominant class was not agriculture. Critical zones 
were defined as areas with the dominant class being agriculture and where 
incidence risk was high. Moderate priority zones were defined as either areas with 
high incidence risk and without mainly agricultural land cover classes, or as areas 
with medium incidence risk but mainly agricultural classes. Minimal priority zones 
included areas either with medium incidence risk and mostly urban classes, or 
areas with low incidence risk with agricultural classes.

Figure 6. HEC Risk Assessment based on our LULC agriculture and urban classes.
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The team generated priority zones using elephant GPS collar tracking data, shown 
in Figure 7. We aggregated all of the Victoria Falls HEC data from Connected 
Conservation to produce a heat map with approximately 500 reported HEC events 
from 2015-2018 (Figure 7A). Here, the risk zones have also been categorized as 
low, medium, and high. The Connected Conservation 2012-2019 elephant GPS 
tracking data were clipped to the extent of the study region where there was HEC 
incidence data (Figure 7B). The result was another point density heat map based 
on elephant movement density with three categories representing elephant route 
usage: low, medium, and heavy (Figure 7C). These corridors were also overlaid 
onto the HEC incidence map and we were able to prioritize them based on 
intensity of use (Figure 7D).

Figure 7. Elephant Corridor Risk Assessment, Victoria Falls

4.1.3 Conflict Data Statistical Analysis
Our analysis of the HEC data provided by Ecoexist Project indicates that roughly 
65% of the sampled villages experienced over 100 HEC events during the study 
period. This relates to the community concern of frequent elephant presence in 
urban and agricultural areas, as it would mean 65% of the villages averaged over 
11 HEC events annually (Figures B1-B4). Given the prevalence of subsistence 
agriculture within the region, these HEC events could dramatically impact the 
financial and physical security of people living in close contact with elephants. At 
the end of the study period, the frequency of HEC in villages was 21 times lower 
than in 2008 (Figure B5). 

In addition to villages, the team analyzed variations in participation between the 
two genders. Female elephants were four times more likely to participate in HEC 
events if accompanied by a male. Furthermore, females participated in a quarter of
recorded HEC events for the study period, whereas males alone perpetrated 52% 
of the events (Figure B6). Male elephants were involved in an average of 109 HEC 
events annually, with females and multi-sex groups averaging 5 and 32 instances 
annually, respectively (Figure B7). It is interesting to note that within HEC data 
collected from Connected Conservation, females did not actively participate in 
HEC until 2014, in which the team observed a positive trend afterward. The exact 
cause of this phenomena is unknown at the time and requires more research. It is 
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worth highlighting the disparity in HEC participation between sexes during the 
study period. Specifically, females had eight times the number of participants at 
the end of the study period than originally, whereas males had 41 times more 
participants at the beginning of the study period (Figure B7). Females participated
in 95% of events involving 20 or more participants; conversely, females 
participated in less than one percent of events perpetuated by a single elephant. 
Additionally, 95% of HEC events occurred in groups of ten or less participants 
(Figure B8). Given partner knowledge of elephant family dynamics in the Botswana
region, this could indicate that family groups are not responsible for the majority 
of HEC events as they tend to operate in groups of eight or larger. 

Variations in crop maturity preference were relatively sporadic during the study 
period. Mature crops were raided 262 times in 2008, but zero times in 2019. 
Similarly, interim crops were raided 192 times in 2008, and 25 times in 2019. 2008
marked the peak year of crop raiding for all three crop categories except 
seedlings, in which seedlings peaked at 72 raid events during 2010. Seedlings 
were raided 22 times a year on average, with interim and mature crops being 
raided 69 and 59 times a year respectively (Figures B9-10). 

The sampled area from Ecoexist Project averaged 212 instances of HEC annually. 
However, 2010 was the last year in the study period to have a higher frequency of 
HEC than the average, indicating that the earlier years in the study period had a 
much larger frequency of HEC than later years (Figure B5). This correlates to the 
observed decline in HEC frequency during the study. During the decline in HEC 
frequency, there were observed spikes in HEC in 2015 and 2017. Environmental 
stressors like drought were assessed for correlation; however, there was only a 
drought present in 2015, whereas 2017 had peak precipitation accumulation 
values. The exact causes of this decline in HEC are unknown at this time, but they 
could indicate variations in sampling standards, or could attest to the effectiveness
of partner mitigation efforts within the region. 

4.2 Future Work
If there was more time to continue work on this project, the team would choose to 
pursue analyzing the role of wildfires and burned areas in elephant movement. 
This would involve documenting and georeferencing historic fires in relation to 
elephant tracking data and assessing fire location proximity to elephant movement 
corridors and areas of high activity. A byproduct of analyzing correlation between 
fires and elephant locations could be insightful regarding the role of elephants as 
wildfire disturbance drivers. 

Another potential for future work could be differentiating riparian vegetation from 
wetlands as its own class in a LULC classification. This could provide further 
insight regarding differences between elephant movement in grasslands, 
woodlands, wetlands, and riparian vegetation habitats since elephants use these 
landscapes differently. Utilizing the transect method from vegetation ecology, the 
composition and distribution of different vegetation species could be monitored 
and cataloged within habitats transitioning from low to high elephant use. This 
could possibly shed light into drivers of elephant movement within riverine 
habitats. 

Future research could also be applied to monitoring mining infringement on 
elephant movement corridors and frequented areas. Considering that female 
participation in HEC was eight times higher at the end of the study period, it would
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be worthwhile for partners to pursue tagging more female elephants for future 
research. To understand the observed trend of increasing female participation 
continued regression analysis between environmental variables and HEC from 
2014 onward is crucial to understanding what factors may be driving the 
increasing trend. Furthermore, increasing the sample pool of collared elephants to 
include those that do not actively participate in crop raiding events would be 
beneficial in eliminating sampling bias and determining more accurate correlations
between environmental drivers and patterns in elephant movement. 

5. Conclusions
The team built a GEE tool that will allow partners to continuously use Earth 
observations to monitor LULC change and drivers of HEC. The team created an 
ArcGIS StoryMap for partners to use in presentations, outreach, and educational 
programming. The team generated HEC heat maps for each year with data 
available in order to identify areas of high, medium, and low risk of conflict in the 
study region with the purpose of conducting an overlay analysis. Using point 
incidence data, known elephant corridors were prioritized by frequency of HEC. 
The team also identified areas of critical and moderate priority for proactive HEC 
mitigation efforts within the Victoria Falls and Okavango Delta areas. These maps, 
along with the LULC classifications, will allow end-users to identify areas at high 
risk to analyze trends and patterns in their region of interest, and incorporate 
those areas into land use planning. This risk assessment also allowed us to 
delineate potential corridors frequently used by elephants in an effort to minimize 
HEC occurrence and mitigate future conflict events. Urban and agricultural 
expansion was observed along water sources like the Okavango Delta. Woodland 
habitat available to elephant use decreased by 10,000 km2. Data reveals that 
females participated in a quarter of recorded HEC events, and that they were four 
times more likely to participate if accompanied by a male. Given that females 
participated in less than one percent of single-elephant HEC events, males are the 
dominant perpetrators of HEC events. This can be corroborated by the statistic 
that males participated in 64% of HEC events during the study period. Histograms 
and scatterplots indicate that the frequency of HEC decreased during the study 
period. Increases in female participation at the end of the study period indicate 
possible future research focus on possible ongoing dynamic shift in HEC 
participation. Considering that urban and agricultural expansion increased, yet 
HEC decreased, could possibly attest to the effectiveness of partner and 
community mitigation efforts in the region.
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7. Glossary
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
GEE – Google Earth Engine, platform used for LULC classification
HEC – Human-elephant conflict, events where elephants raid farmers’ crops, 
threatens residents, damage property, or eat refuse from landfills
LULC – Land Use Land Cover, refers to various land uses and land covers across 
and landscape that can be used for classification
NDVI – Normalized Difference Vegetation Index, indicator of vegetation greenness
PDSI – Palmer’s Drought Severity Index
SAVI – Soil Adjusted Vegetation Index, indicator of vegetation greenness with a 
correction factor of soils
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Appendix A

Decisions Around LULC Classification 
After a general classification scheme was developed, the team tested it in a 
random forest classification training set in GEE. Upon training set creation and 
analysis, the team determined that two distinct vegetation classes would more 
accurately portray the region of interest. Furthermore, two vegetation classes 
could provide insight regarding differences in elephant movement in various 
vegetation landscapes. The team decided that it was best to have a “grasslands” 
and a “woodlands” class. These two vegetation classes were meant to be 
generalized differentiations of savanna shrubland ecosystems and forest 
ecosystems. The team’s generalized classification scheme was then submitted to 
partners for input on accordance with partner end-use requirements. After 
receiving partner input, the team decided to further aggregate agriculture classes 
from “dryland / subsistence cultivation” and “commercial cultivation” into a single 
“agriculture” class. The team agreed with partners that further differentiating 
agriculture into three classes, could provide further insight regarding amount of 
HEC events occurring in different agricultural areas, but would require ground 
truth data from the partners and thus should be considered as an opportunity for 
future work. Based on partner feedback, the seven classes in our classification 
scheme are representative of dominant land cover and HEC drivers in the region. 
The list of classes and a general description of each class can be found in Table A1 
below.

Table A1. Summary of classes in the land use land cover classification
Class 
Number

Class Name Description

0 bare Predominantly non-vegetated areas with 
exposed rocky soils

1 urban Areas of impervious cover that are man-made 
or related to anthropogenic use

2 agriculture Rain fed subsistence and communal cultivated
areas

3 water Areas of open water present in one through all
four seasons

4 wetlands Permanent or semi-permanent wetland areas 
including contained riparian vegetation

5 woodlands Tree dominated bushlands and forests
6 grasslands Grass and shrub dominated ecosystems with 

low, open canopies
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Figure A2. Net land cover change between 1990 and 2020.
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Figure A3. LULC change between 1990 and 2020 along the eastern Okavango
Delta panhandle in Botswana demonstrates agricultural expansion around elephant

corridors
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Figure A. LULC change between 1990 and 2020 around the Victoria Falls Airport
in Zimbabwe reveals urban and agricultural expansion in increasing HEC risk

zones
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Appendix B 

Figure B1. Sum of HEC events per village during the study period

Figure B2. Variation in HEC frequency for villages, including Seronga, Gunotsoga,
Beetsha, Mokgacha, Mogotho, Erestha
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Figure B3. Variation in HEC frequency for villages, including Ngarange, Gudigwa,
Xakao, Kaputura, Divava, Kyeica

Figure B4. Variation in HEC frequency for villages, including Gowa, Kauxwi,
Modubana, Tobera, Mohembo, Sekondomboro
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Figure B5. Annual sum of HEC events from 2009 to 2019

Figure B6. HECs by sex of elephant participant

23



Figure B7. Variation in elephant participation by sex
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Figure B8. Frequency of HEC events binned by number of participants

Figure B9. HECs by crop maturity at time of event
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Figure B10. Crop maturity preference over time
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