

Integrated Demand Management (IDM) Concept of Operations

POCs: Nancy M. Smith Nancy.m.smith-1@nasa.gov, Paul U. Lee Paul.u.lee@nasa.gov

Integrated Demand Management (IDM)

CONCEPT SUMMARY: IDM integrates NextGen strategic and tactical traffic management capabilities to increase system efficiency, schedule predictability, and user-preferred flight outcomes when demand/capacity imbalances affect traffic going to a major airport.

In the strategic time horizon, a Collaborative Trajectory Option Program (CTOP) is developed to "precondition" demand into the tactical Time Based Flow Management (TBFM) arrival scheduling and spacing system*. Flights are assigned departure times and routes to regulate demand delivery to one or more constraints.

*Strategic preconditioning is not exclusively limited to CTOP; other traffic management initiatives may also be used.

In the intermediate time horizon, the plan is executed and monitored, and adjusted as needed when conditions change. TBFM operations are also planned during this period, and its automation configured for the expected demand.

In the tactical time horizon, after flights cross the TBFM freeze horizon, TBFM departure scheduling and arrival metering provide a well-sequenced and coordinated feed to the TRACON and airport.

The graphic below shows a sequence of IDM-related events a flight may encounter. The slides that follow elaborate on the corresponding ground operations performed within each time horizon.

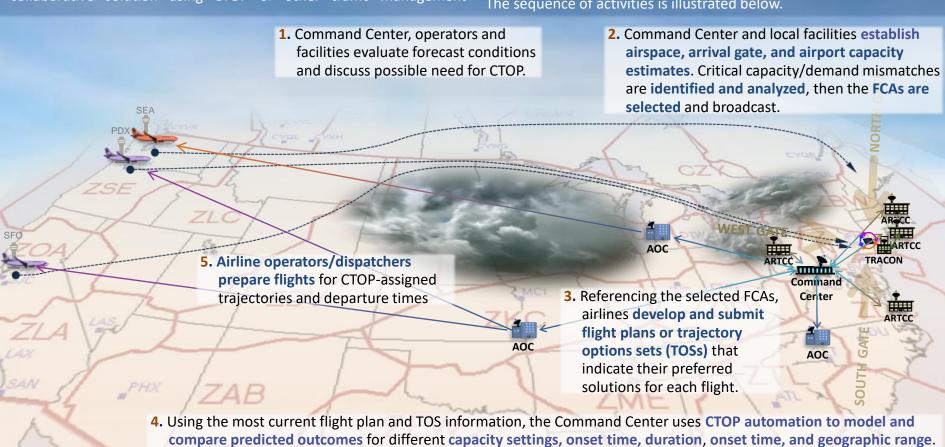
STRATEGIC TIME HORIZON

Plan, coordinate and initiate a Collaborative Trajectory Option Program (CTOP).

INTERMEDIATE TIME HORIZON

- Implement, monitor and adjust program.
- Configure TBFM as needed to manage inbound traffic.

TACTICAL TIME HORIZON


Conduct time-based flow management (TBFM) operations.

IDM Ground Operations STRATEGIC TIME HORIZON

Plan, coordinate and initiate a Collaborative Trajectory Option Program (CTOP)

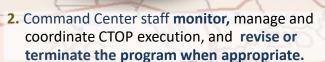
SUMMARY OF STRATEGIC GROUND OPERATIONS (~4-6 hours before program onset): Forecast conditions suggest that capacity limitations at one or more airspace resources may impact flights traveling to a major NAS airport. The ATC System Command Center (ATCSCC) coordinates with both users and affected air traffic facilities to determine the nature and extent of the problem, and to develop a collaborative solution using CTOP or other traffic management initiatives (TMIs). Operators may submit flight plans or trajectory option sets (TOSs) that indicate to CTOP the operators' preferred solution with respect to ground delay and route assignment. CTOP parameters (including flow constrained areas (FCAs), capacity settings, program onset time, and duration) are finalized, and the program is initiated.

The sequence of activities is illustrated below.

A solution is finalized and the CTOP is initiated, with departure times and route assignments sent for all flights.

IDM Ground Operations INTERMEDIATE TIME HORIZON

NORTH GATE


marin .

Command

Center

Implement, monitor and adjust CTOP program

- (1) CTOP GROUND OPERATIONS SUMMARY (after program initiation): The Command Center and local air route traffic control centers (ARTCCs) monitor the CTOP for changes in either capacity or demand, which can occur for a variety of reasons. Airline operators may make flight substitutions, revise TOSs, or cancel flights. Flights may be re-routed or experience unexpected delays. Previously unscheduled "pop-up" flights may appear. When forecast demand deviates too much from the target capacity, CTOP automation can trigger an automatic revision. When forecast capacity changes (e.g., due to weather), the Command Center may choose to manually revise the CTOP in order to reallocate the demand.
- Center controllers and traffic managers manage reroutes and gate reassignments with appropriate coordination, and report any changes in airspace capacity.

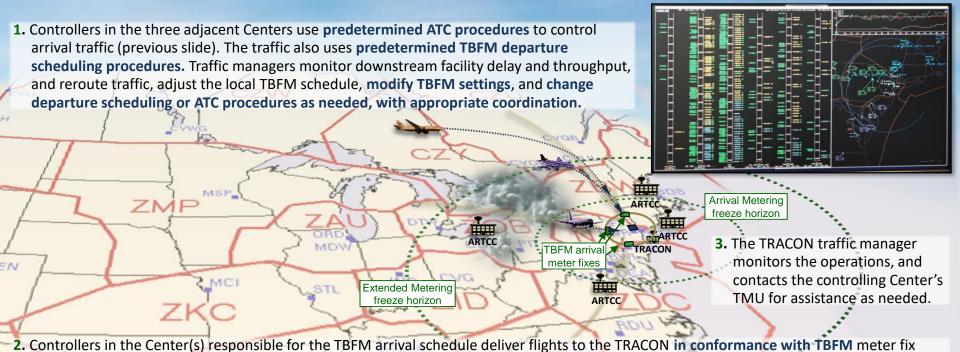
3. Airline personnel manage flights using TOSs, substitutions and cancellations to minimize operational impact

Configure TBFM for pre-conditioned demand

(2) TBFM GROUND OPERATIONS SUMMARY (2-4 hours before arrival): TBFM procedures and configuration settings may be changed based on observed conditions and expected demand. Examples include use of specific procedures or settings for TBFM departure scheduling, changes to TBFM buffer or acceptance rate entries, and different air traffic control procedures, especially in the Extended Metering region. Depending on the situation, the latter can vary from active metering with "times on the glass", to Ground Interval Management (GIM) speed clearances, to simple delay monitoring until the need for more active control arises. Decisions are coordinated as appropriate across all Centers involved in managing the TBFM traffic.

- 1. Traffic managers at the TBFMcontrolling Center evaluate the situation and configure TBFM, coordinating entries and plans with the adjacent facilities.
- 2. Center traffic managers responsible for both Arrival and Extended Metering regions prepare to manage the TBFM traffic. Each facility evaluates its expected demand and selects an air traffic control method appropriate to the situation. TBFM departure load is checked and TBFM departure scheduling methods are planned to minimize the occurrence of excessive airborne or ground delay.
- 3. Local decisions are communicated, insuring that Center plans are coordinated and will provide the desired outcome.

 4


IDM Ground Operations TACTICAL TIMEFRAME

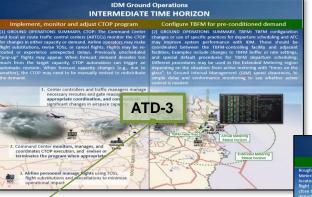
Conduct time-based flow management (TBFM) operations

SUMMARY OF TACTICAL OPERATIONS: Roughly 90 minutes before arrival, aircraft cross the TBFM Extended Metering freeze horizon, or call for release from departure airports located within the TBFM region, transitioning from CTOP to TBFM flight management. Predepartures are scheduled into arrival slots close to their CTOP-assigned departure times using appropriate TBFM departure scheduling protocols. As indicated in the prior slide, TBFM-related control of airborne flights in the Extended Metering airspace will vary

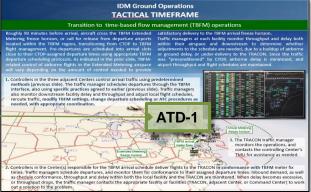
depending on the amount of control needed to provide satisfactory delivery to the TBFM arrival freeze horizon.

Traffic managers at each facility monitor throughput and delay both within their airspace and downstream to determine whether adjustments to the schedule are needed due to a buildup of airborne or ground delay, or under-delivery to the TRACON. Since the traffic was "preconditioned" by CTOP, airborne delay is minimized, and airport throughput and flight schedules are maintained.

times. Traffic managers schedule departures, and monitor them for conformance to their assigned departure times. Inbound demand, as well as schedule conformance, throughput and delay within both the local facility and the TRACON are monitored. When delay becomes excessive, or throughput drops, the traffic manager contacts the appropriate facility or facilities (TRACON, adjacent Center, or Command Center) to work out a solution to the problem.


IDM Overview

Strategic Initial Traffic Management Initiatives


Integrated Demand Management (IDM) Concept IDM integrates NextGen strategic and tactical traffic management capabilities to improve efficiency and predictability within the National Airspace System and provide a framework for gate-to-gate trajectory based operations. IDM Trajectory Operations: TBFM freeze horizon 2. The flight is rerouted 3. The flight crosses into because of weather. 4. Air traffic clearances may be TBFM-controlled airspace. 1. A departure time and issued to manage the flight to ZDV trajectory are assigned to TBFM-assigned arrival times the CTOP-managed flight. at one or more meter points. **IDM Ground Operations:** INTERMEDIATE TIME HORIZON TACTICAL TIME HORIZON STRATEGIC TIME HORIZON Plan, coordinate and initiate a Collaborative Implement, monitor and adjust program. Transition to time-based flow management Trajectory Option Program (CTOP). · Configure TBFM as needed.

Intermediate Airborne and Pre-departure Adjustments

IDM in conjunction with ATDs can form an initial gate-to-gate TBO framework

Tactical TBFM Scheduling to the Airport

