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Abstract 

The exchange of carbon between the Earth’s atmosphere and biosphere influences the 

atmospheric abundances of carbon dioxide (CO2) and methane (CH4). Airborne eddy covariance 

can quantify surface-atmosphere exchange from landscape-to-regional scales, offering a unique 

perspective on carbon cycle dynamics. We use extensive airborne measurements to quantify 

fluxes of sensible heat, latent heat, CO2, and CH4 across multiple ecosystems in the Mid-Atlantic 

region during September 2016 and May 2017. In conjunction with footprint analysis and land 

cover information, we use the airborne dataset to explore the effects of landscape 

heterogeneity on measured fluxes. Our results demonstrate large variability in CO2 uptake over 

mixed agricultural and forested sites, with fluxes ranging from -3.4 ± 0.7 to -11.5 ± 1.6 µmol m-2 

s-1 for croplands and -9.1 ± 1.5 to -22.7 ± 3.2 µmol m-2 s-1 for forests. We also report substantial 

Page 1 of 31 AUTHOR SUBMITTED MANUSCRIPT - ERL-107543.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 2 

CH4 emissions of 32.3 ± 17.0 to 76.1 ± 29.4 nmol m-2 s-1 from a brackish herbaceous wetland 

and 58.4 ± 12.0 to 181.2 ± 36.8 nmol m-2 s-1
 from a freshwater forested wetland. Comparison of 

ecosystem-specific aircraft observations with measurements from eddy covariance flux towers 

along the flight path demonstrate that towers capture ~30–75% of the regional variability in 

ecosystem fluxes. Diel patterns measured at the tower sites suggest that peak, midday flux 

measurements from aircraft accurately predicts net daily CO2 exchange. We discuss next steps 

in applying airborne observations to evaluate bottom-up flux models and improve 

understanding of the biophysical processes that drive carbon exchange from landscape-to-

regional scales. 

1 Introduction 

The terrestrial biosphere plays a dynamic role in the global carbon cycle, removing an estimated 

25–30% of the carbon dioxide (CO2) emitted from fossil fuel emissions (Ciais et al., 2013; Le 

Quéré et al., 2018). However, the prognosis for this sink remains poorly constrained due to 

uncertain climate feedbacks on the atmosphere-biosphere cycling of CO2 (Cox et al., 2013; 

Wenzel et al., 2016; Bond-Lamberty et al., 2018). In addition, the land biosphere acts as a net 

source of methane (CH4) (Saunois et al., 2016; Tian et al., 2016), with large uncertainties (>20 

Tg/y) in magnitudes and ecosystem-dependent responses to climate state (Turner et al., 2019). 

Thus, it is critical to accurately determine CO2 and CH4 fluxes, and their associated sensible and 

latent heat fluxes, from landscape-to-regional scales to better constrain the global carbon 

budget. 

 

Several approaches exist for quantifying terrestrial carbon exchange. Top-down methods use a 

combination of observed atmospheric mixing ratios, transport models, and prior emissions 

estimates to infer fluxes of CO2 (Houweling et al., 2015; Wang et al., 2018) and CH4 (Bousquet 

et al., 2011) on regional to global scales. These atmospheric inversion models provide a useful 

constraint on flux but offer limited attribution information on the underlying biophysical factors 

driving the carbon cycle. Bottom-up methods, in contrast, rely on biomass inventories (e.g. 

Pacala et al., 2001; Pan et al., 2011), surface flux tower networks (Baldocchi et al., 2001; Jung et 

al., 2011), or biophysical process models (e.g. Schaefer et al., 2008) to extrapolate flux from 

local to global scales. However, inventory-based estimates have large associated uncertainties 

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - ERL-107543.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 3 

of up to 75% (Hayes et al., 2018), and discrepancies persist between different modeling 

approaches (Huntzinger et al., 2012; Melton et al., 2013) and model-tower data comparisons 

(Schwalm et al., 2010; Schaefer et al., 2012). Tower-based flux observations can provide 

benchmark information and a basis for validation, but their spatial representativeness is very 

limited at regional to continental scales (Villarreal et al., 2018). 

 

Airborne eddy covariance (EC) provides near-direct measurements of surface-atmosphere 

exchange over landscape-to-regional scales (e.g. Lenschow et al., 1981; Desjardins et al., 1982, 

1989; Crawford et al., 1996; Sellers et al., 1997; Gioli et al., 2004; Sayres et al., 2017; Wolfe et 

al., 2018). Such observations have successfully been used to evaluate CH4 emissions inventories 

(Hiller et al., 2014) and to scale up tower- or aircraft-based fluxes via empirically-derived 

environmental response functions (Miglietta et al., 2007; Metzger et al., 2013; Zulueta et al., 

2013). Airborne EC has also been applied to validate regional-scale flux inversions (Lauvaux et 

al., 2009), light-use efficiency models of carbon and energy fluxes (Kustas et al., 2006; Anderson 

et al., 2008), and biophysical process models of forest carbon exchange (Maselli et al., 2010). 

 

Attribution of airborne fluxes requires knowledge of the spatial contribution of surface fluxes to 

the measurement at aircraft altitude: the flux footprint (Leclerc and Thurtell, 1990; Schuepp et 

al., 1990). In conjunction with surface information (e.g. thematic land cover), footprint analysis 

enables the allocation of fluxes to the underlying surface state. For example, the flux fragment 

method (FFM) decomposes fluxes using the subset of observations that have a homogeneous 

footprint in the EC calculation (Kirby et al., 2008; Dobosy et al., 2017; Sayres et al., 2017). While 

this method is highly reliable, it is best suited to regions with sufficient homogeneity to capture 

enough single-footprint observations, or to aircraft flying low enough to minimize the footprint 

size. More complex algorithms incorporate footprint-weighted land cover information to 

decompose observed fluxes using numerical or regression analysis (Chen et al., 1999; 

Ogunjemiyo et al., 2003; Wang et al., 2006; Hutjes et al., 2010). Such methods are more 

practical for data sets with mixed underlying terrain. 
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Here, we utilize an extensive airborne flux dataset to explore the effects of surface 

heterogeneity on the land-atmospheric exchange of sensible and latent energy, CO2, and CH4. 

Footprint analysis in conjunction with thematic land classification maps demonstrates that 

airborne fluxes can resolve spatial heterogeneity in land type at the 1–2 km2 scale. We highlight 

campaign results for two case studies: a predominantly agricultural area between Maryland and 

Delaware, and a wetland forest located in coastal North Carolina. We further validate campaign 

measurements against flux observations from several towers and explore whether empirical 

time trends from towers yield a means of scaling airborne flux samples to net daily CO2 

exchange. Finally, we discuss next steps in utilizing airborne observations to calibrate and 

evaluate modeled flux products.  

2 Methods 

2.1 Airborne flux campaign and data 

The NASA Carbon Airborne Flux Experiment (CARAFE) platform, payload, and data processing 

are described in detail by Wolfe et al. (2018). The data presented here were collected during 

two CARAFE deployments in September 2016 and May 2017. Flights spanned the Mid-Atlantic 

states and targeted a variety of land-use and ecosystem types, including forests, agricultural 

lands, and wetlands. Flux transects (Figure 1) cumulatively comprise ~7,000 km of linear 

distance, with typical altitudes of 80–300 m. Eddy covariance fluxes of sensible heat (H), latent 

heat (LE), CO2 (FCO2), and CH4 (FCH4) were determined via continuous wavelet transforms 

(Torrence and Compo, 1998), as detailed in Wolfe et al. (2018) and summarized in Section S1.1. 

1-Hz processed flux data from the CARAFE campaigns, in addition to supporting scalar and 

winds data, are publicly available: https://www-air.larc.nasa.gov/missions/carafe/index.html.  

 

2.2 Flux tower data 

CARAFE flights included ~50 overpasses of flux towers (Figure 1). Table 1 lists key information 

for each tower. The USDA Choptank (USDA-Chop) tower is situated in the Choptank River 

watershed, an agricultural area of predominantly soy and corn crops on the eastern shore of 

the Chesapeake Bay (Sun et al., 2017). The remaining four towers are part of the larger 
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AmeriFlux network. The St. Jones tower (US-StJ) samples the St. Jones Reserve tidal marsh in 

southeastern Delaware (Capooci et al., 2019). The Cedar Bridge tower (US-Ced) and the Silas 

Little tower (US-Slt) are both located in the Pinelands National Reserve in southern New Jersey, 

with mostly pitch pine-dominated stands near US-Ced and mixed oak stands near US-Slt (Clark 

et al., 2018). The US-NC4 tower is located in the Alligator River National Wildlife Refuge, a 

forested swamp in North Carolina (Miao et al., 2017). Tower sites processed eddy covariance 

flux data according to standardized AmeriFlux procedures, as summarized in Section S1.2, and 

AmeriFlux data are publicly available: https://ameriflux.lbl.gov. All towers report H, LE, and FCO2, 

while the US-StJ and US-NC4 locations additionally report FCH4. With the inclusion of a small 

storage correction (typically <10%), towers also report net ecosystem exchange (NEE). Note 

that NEE is opposite in sign to FCO2. The tower fetch across all sites ranges from 100–2500 m. 

 

2.3 Flux decomposition by land class 

2.3.1 Land classification 

Land cover information was taken from the National Land Cover Database (NLCD 2016), a high-

resolution (30 m x 30 m) map based on Landsat imagery (Yang et al., 2018). The CARAFE 

domain includes 14 of the 20 NLCD land classes. Dominant land classifications sampled during 

CARAFE include woody wetlands (45%), cultivated crops (22%), and dry forests (evergreen, 

deciduous, and mixed classes) (21%). The remaining types are developed land (open, low, 

medium, and high density), open water, emergent herbaceous wetlands (hereafter herbaceous 

wetlands), shrubs, pastures, and grasslands, which individually make up less than 5% of the 

cumulative footprint. 

 

2.3.2 2D flux footprint analysis 

The flux footprint relates the spatial distribution of fluxes at the surface (𝐹𝑠) to the observed 

flux (𝐹𝑜𝑏𝑠) measured at coordinates 𝑥𝑚, 𝑦𝑚 and measurement height 𝑧𝑚 (Horst and Weil, 1992; 

Schmid, 1994): 

𝐹𝑜𝑏𝑠(𝑥𝑚, 𝑦𝑚 , 𝑧𝑚) = ∬ 𝑓(𝑥, 𝑦, 𝑧𝑚)𝐹𝑠(𝑥, 𝑦, 0) 𝑑𝑥 𝑑𝑦
∞

−∞
    (1) 
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where, 𝑥 and 𝑦 are arbitrary horizontal coordinates and 𝑓 is the flux footprint function, which 

expresses the contribution of each upwind unit surface element to 𝐹𝑜𝑏𝑠. We use the two-

dimensional Flux Footprint Prediction (2D-FFP) developed by Kljun et al. (2015), a 

parameterization based on a Lagrangian stochastic particle dispersion model (Kljun et al., 2002) 

that is applicable to many turbulence regimes and measurement heights. The parameterization 

utilizes the following inputs: measurement height 𝑧𝑚, the mean horizontal wind speed 𝑈, the 

planetary boundary layer (PBL) height 𝑧𝑏l, the Obukhov length 𝐿𝑂𝐵, the standard deviation of 

the lateral (crosswind) velocity fluctuations 𝜎𝑣, and the friction velocity 𝑢∗. We derive 𝜎𝑣 from 

the wavelet variances of the horizontal wind velocity vectors. 

 

We calculate the 2D-FFP for all 1 Hz data points (~75 m distance at typical flight speed) along all 

flux transects below 200 m. Each data point has an associated 𝑧𝑚, but leg-average values of the 

micro-meteorological variables (i.e. 𝑈, 𝑢∗, 𝜎𝑣, 𝐿𝑂𝐵) are used as the FFP is based on a mean flow 

parameterization, and point-to-point momentum fluxes exhibit significant variability. We 

estimate the boundary layer height from vertical profiles before and after each set of flux 

transects as described in Wolfe et al. (2018). Note that even a 20% error in 𝑧bl has less than a 

0.5% impact on the size and distribution of the footprint, except in highly stable conditions 

(Kljun et al., 2015) atypical during the CARAFE flights. Once calculated, the 2D-FFP was rotated 

into the mean wind direction and transformed into the geographic coordinate space of the 

measurement, generating a gridded map of the footprint function associated with each flux 

observation. Figure 2 depicts an example of a single footprint for a flux measurement from the 

May 18, 2017 flight to Choptank, MD superimposed on the NLCD 2016 land cover map. For all 

flux observations from the 2016 and 2017 campaigns below 200 m in altitude, the 90% upwind 

extent for calculated footprints ranged from 1.5–10 km. 

 

2.3.3 Disaggregation into component fluxes 

To derive fluxes representative of a single land class, we use the Disaggregation combining 

Footprint analysis and Multivariate Regression (DFMR) methodology described by Hutjes et al. 

(2010). DFMR relies on the flux footprint and land cover to estimate a weighted contribution of 
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 7 

each land class to the flux measurement. The observed flux, 𝐹𝑜𝑏𝑠, can be written as a linear 

summation of component fluxes from each of 𝑛 land classes within the footprint: 

𝐹𝑜𝑏𝑠 = ∑ 𝐶𝑘𝐹𝑘
𝑛
𝑘=1         (2) 

where 𝐶𝑘 is the fractional area of the 𝑘th land class within the footprint and 𝐹𝑘  is the 

corresponding component flux, or the mean land-class flux for a given set of observations (i.e., 

a single flight). The values 𝐶𝑘 can be determined using the flux footprint function 𝑓 to weight 

the relative contributions of land cover patches within the footprint, as patches closer to the 

sensor influence the measurement more heavily than patches farther away (Equations S1 and 

S2). 

 

The multiple linear regression (Equation S3) was performed on a flight-by-flight basis to derive 

land-class component fluxes for each flight. A grid of 2D-FFP values was superimposed onto the 

NLCD 2016 map to generate the weighted fractional area of each land class in every footprint 

(see Figure 2). Although NLCD displayed 14 land classes in our sampling region, we down-

selected for land classes that constituted more than 20% of the footprint-weighted area in at 

least 4 km of cumulative (but not necessarily consecutive) flux observations. This screening 

criterion, which was optimized via comparison with flux sub-samples from homogeneous 

footprints (Figure S1), ensured that selected land types were sampled enough to provide a 

meaningful average. 

 

In addition to residual error, random and systematic measurement errors (see Wolfe et al., 

2018) were propagated through the regression, and errors were summed in quadrature to yield 

the total uncertainty for each component flux. Uncertainties in a priori surface characterization 

and footprint extent are not included. While the footprint calculation should introduce minimal 

error (barring significant changes to the fractional areas), mischaracterization of the surface 

cover could introduce significant biases. Corrections for vertical flux divergence are likewise not 

included due to large uncertainties in the correction factors (see Wolfe et al., 2018). The flights 

all took place near midday and targeted fair-weather conditions. However, the data are not 
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 8 

screened for the presence of clouds, and such variations may contribute another source of flux 

variability in addition to those discussed below.  

3 Results and Discussion 

3.1 Disaggregated fluxes by region 

3.1.1 Choptank watershed and St. Jones Reserve 

CARAFE deployments included three flights to the Choptank agricultural area (September 12, 

2016, May 4, 2017, and May 18, 2017). Flux transects spanned the Delmarva peninsula from 

the Chesapeake Bay to the Atlantic Ocean (typical length 60 km) and included overflights of the 

USDA-Chop and US-StJ towers (Figure 1). This region had mixed terrain, with six land classes 

meeting the down-selection criteria described in Section 2.3.3. Table 2 summarizes footprint-

weighted contributions of each land class. 

 

Disaggregated fluxes highlight the variability in carbon dynamics between land classes and over 

time (Figure 3). Of particular interest, cultivated crops (e.g., annual crops such as soybean or 

corn) and forested lands (e.g., woody wetlands and deciduous forest) display substantial 

differences in FCO2 for the sampling periods. The CO2 uptake from cultivated crops ranged from -

3.4 ± 0.7 to -11.5 ± 1.6 µmol m-2 s-1, whereas deciduous and wetland forests display a much 

larger uptake, ranging from -12.1 ± 3.9 to -22.7 ± 3.9 µmol m-2 s-1 and -9.1 ± 1.5 to -22.7 ± 3.2 

µmol m-2 s-1, respectively.  Forest uptake of CO2 also dominates that by croplands in other 

regions with substantial cropland fraction (Fig. S2, S3). While the difference in CO2 uptake 

between croplands and forest will be strongly dependent on crop type and phenology 

(Lokupitiya et al., 2009), crops in the CARAFE region are typically in their early growth stages in 

May and undergoing senescence in September. Developed open lands, which comprise mostly 

lawn grasses and vegetation with < 20% impervious surface area, also draw down substantial 

CO2 (~-13 to -30 µmol m-2 s-1) during the May sampling period. 

 

Choptank data also exhibit a general anticorrelation between FCO2 and LE, expected for 

vegetated land surfaces where transpiration and stomatal control is a major contributor to 
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 9 

evapotranspiration. The sampling is too limited to infer much about seasonal flux response for 

the various land types, but forested lands are comparably photosynthetically active during the 

growing season between May and September. 

 

The disaggregation methodology also illustrates FCH4 variability with land type. FCH4 observations 

were at or below the detection limit for most CARAFE flights, and uncertainties are large due to 

poorly constrained regression results. However, it is known that soils from forested ecosystems 

represent a weak CH4 sink (Subke et al., 2018), whereas tree stems represent a weak CH4 

source (Vargas and Barba, 2019) that may counterbalance ecosystem scale CH4 fluxes in upland 

forested ecosystems. In contrast, herbaceous wetlands, located primarily on the Eastern end of 

the track near the St. Jones tower, exhibit relatively strong CH4 emissions of 76.1 ± 29.4 nmol m-

2 s-1 on Sep-12 and 32.3 ± 17.0 nmol m-2 s-1 on May-04. This region has a mix of herbaceous 

wetlands that extend across a salinity gradient, where lower CH4 emissions may be associated 

with wetlands in brackish waters and larger CH4 emissions with freshwater wetlands 

(Poffenbarger et al., 2011; Capooci et al., 2019). 

 

3.1.2 Alligator River 

Three flights over the Alligator River region took place during the CARAFE deployments on 

September 24, 2016, May 15, 2017, and May 26, 2017. Flux transects spanned the Alligator 

River National Wildlife Refuge in the N-S direction, with the US-NC4 tower located near the 

middle of the flight transects (see Figure 1). The dominant land cover contributions included 

woody wetlands, open water, and some minor areas of cultivated crops and herbaceous 

wetlands. Table 2 contains a summary of the land-cover contributions to the footprint for 

Alligator River region. 

 

The component fluxes from Alligator River display significant variability with land type (Figure 

4). For example, the open water component of H is at or near zero for all flights, and 

evaporation dominates the surface energy fluxes for this class, as displayed by LE values 

generally greater than 200 W m-2. Note that although classified as open water in the NLCD, the 
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 10 

coastal waters sampled near Choptank and Alligator River are actually comprised of estuarine 

waters and tidal mudflats. We observed occasional CO2 emissions from these waters of 6.2 ± 

2.2 µmol m-2 s-1 over the Alligator River (Sep-24, Fig. 4) and 6.4 ± 3.7 µmol m-2 s-1 in the 

Choptank region (May-18, Fig. 3). Both regions also display positive fluxes of CH4, with means of 

40.5 ± 12.2 nmol m-2 s-1 over the Alligator River and 20.5 ± 10.1 nmol m-2 s-1 in Choptank. These 

values are within the range of prior flux estimates, which can be up ~10 µmol CO2 m-2 s-1 in low 

salinity estuarine waters, ~30-35 nmol CH4 m-2 s-1 in tidal mudflats (Abril and Borges, 2005).  

 

The woody wetlands land class, a freshwater forested swamp in the Alligator River region, also 

displays persistent, large CH4 emissions ranging from 58.4 ± 12.0 to 181.2 ± 36.8 nmol m-2 s-1. 

These unusually high values are recurrent and consistent over long periods at this site (Mitra et 

al., 2019a), which has recorded among the highest CH4 emissions from wetlands globally, 

including tropical wetlands. Other temperate swamplands exhibit mean CH4 emissions of ~35 

nmol m-2 s-1 (Turetsky et al., 2014), but few global observational records exist for wetland 

ecosystems. 

 

3.2 Comparison to tower flux observations 

Direct comparison of aircraft and tower flux observations is challenging in heterogeneous 

landscapes, as the two platforms often sample different terrain due to the mismatch in 

footprint size (on the order of ~100 m for towers and ~3 km for CARAFE flights). During the 

CARAFE campaign, most flights contained numerous land cover types within a single footprint 

(Figure 2), resulting in an amalgamated signal from land-use and ecosystem states with varied 

carbon fluxes. In contrast, each tower sampled the local surface state with footprints that were 

typically homogeneous.  

 

For each flight, tower data are averaged over the duration of the flight and compared to the 

aircraft disaggregated component flux corresponding to the tower’s primary land class (Figure 

5). Note that the aircraft component flux is derived using data from the entire flight region, and 

thus we are comparing a mean regional land-class flux to the site-specific land-class flux at the 
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tower location. The correlation between aircraft and tower fluxes varies between species, with 

H exhibiting the strongest correlation (r2 = 0.76, Figure 5a) and the tightest fit (NRMSE = 15%). 

The slope of 0.58 ± 0.21 indicates a low bias in the aircraft fluxes, which may stem from the 

vertical flux divergence, which has not been included in the disaggregation. Divergence 

corrections typically range from ~10–60% with uncertainties of greater than 30% in the 

correction factors. LE fluxes display a slightly weaker correlation (r2 = 0.53, Figure 5c) with 

notably more scatter between the aircraft and tower observations (NRMSE = 30%). FCO2 

demonstrates similar scatter between the aircraft component fluxes and tower observations 

(NRMSE = 30%) but shows a weaker overall correlation (r2 = 0.30) that may be skewed by a 

couple of outlying points in the US-Slt comparison (Figure 5b). The slopes for both LE (0.74 ± 

0.31) and FCO2 (0.68 ± 0.31) contain substantial uncertainty in magnitude. The limited number of 

tower FCH4 observations make quantitative comparison with the aircraft fluxes difficult, and the 

correlation is not statistically significant, with a p-value > 0.05 (figure 5d). Nonetheless, aircraft 

data overrepresent CH4 fluxes at US-StJ and underrepresent CH4 fluxes at US-NC4. 

 

Comparisons between the aircraft and tower observations suggest that local tower 

measurements capture 30–76% of the variance in regional ecosystem-dependent fluxes. The 

larger scatter (and weaker correlation) in observations of LE and FCO2 as compared to H could in 

part stem from errors in source area attribution. For example Kustas et al., (2006) and Bertoldi 

et al., (2013) found that footprint extents can differ between active (e.g., T) and passive scalars 

(e.g., H2O, CO2) in heterogeneous landscapes. A full quantification of the source contribution 

error requires computationally expensive boundary layer flow simulations outside the scope of 

this study. 

 

Despite potential footprint inconsistencies, variability in the underlying drivers of carbon 

exchange within a land type expectedly results in discrepancies between aircraft and tower 

observations. In the Choptank watershed, where cultivated crops dominate the footprint, the 

disaggregation could be further refined based on crop type or land-use inventories to better 

quantify the effect of these parameters on CO2 uptake (e.g., Zhang et al., 2015). Additionally, 
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forested classes dominate several regions in the CARAFE domain, including the Alligator River 

and Pocomoke Forest (Table S2). Combining land cover with maps of forest canopy structure 

(Hurtt et al., 2004) or metrics of photosynthetic activity, such as solar-induced fluorescence or 

vegetation indices (Frankenberg et al., 2011), could provide additional observational constraints 

on the regional heterogeneity in the CO2 sink. 

 

In wetland regions, the underlying biogeochemical factors that control CH4 emissions are not 

implicit with land class, and in some circumstances, CH4 fluxes can be highly episodic and 

localized (Whalen, 2005). For example, CH4 fluxes in the brackish herbaceous wetlands near the 

US-StJ site depend on flooding and drying conditions that change salinity gradients across the 

tidal zone (Capooci et al., 2019). In the freshwater forested wetlands near US-NC4, Mitra et al., 

(2019b) found that methanogen substrate availability produced via photosynthesis largely 

controls CH4 flux, whereas water-table depth and surface temperature played a non-causal role 

in emissions. The complexity of the underlying controls of CH4 fluxes stresses the need for 

continued regional-scale studies of these important yet understudied wetland ecosystems. 

 

Although the observed variability in flux cannot be fully attributed to land class, the results 

emphasize the utility of spatially distributed observations in probing carbon cycle dynamics 

across heterogeneous regions. Typically, flux tower networks are used as ground-truth 

observations to evaluate carbon exchange in process models (Friend et al., 2007; Raczka et al., 

2013) and to inform a priori errors in atmospheric inversions (Chevallier et al., 2006). However, 

individual tower sites are limited in regional representativeness (this work; Villarreal et al., 

2018), and aircraft EC can provide a valuable supplement with which to examine landscape-

scale changes in the underlying drivers of carbon exchange.  

 

3.3 Upscaling with tower temporal trends 

Tower flux observations offer a long-term record of local carbon cycle dynamics, of which 

aircraft observations only capture a brief subsample. Here, we explore whether the temporal 
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record of net ecosystem exchange (NEE) from towers can inform the extrapolation of local 

fluxes to regional, daily-integrated values using aircraft observations. 

 

The tower sites included in the CARAFE domain demonstrate a distinct correlation between 

daily- and peak-NEE for the 2016 annual datasets (Figure S5). We define peak-NEE as the mean 

CO2 exchange between 11:00 and 15:00 local, the time of day in which maximum CO2 uptake by 

the biosphere is usually observed. Most CARAFE flights took place within this time frame. Daily-

NEE is the 24-hour integral of half-hourly or hourly tower measurements. Figure 6a depicts the 

linear least squares fits of daily- versus peak-NEE for each individual tower site colored by land 

class, and the fit parameters and uncertainties are summarized Table 3. Note that this analysis 

does not account for inter-annual variability. 

 

Four of the five tower sites display similar relationships between peak and daily exchange, with 

a mean slope of 0.30 ± 0.02, excluding US-StJ. The St. Jones tower samples a variable footprint, 

creating more scatter in the daily- vs. peak-NEE (see Figure S5, Table 3), and this site is strongly 

influenced by tides, which are known to affect diel patterns of NEE (Kathilankal et al., 2008). 

Furthermore, mean diurnal NEE profiles for the month of August 2016 shown in Figure 6b 

reveal a larger ecosystem respiration from this land class as compared to other tower sites, 

accounting for the shallower slope of 0.21 ± 0.02. Nonetheless, the generally high correlations 

suggest that peak-NEE is predictive of net daily exchange across land types in the CARAFE 

domain, and peak CO2 fluxes observed during the midday CARAFE flights encapsulate 50–90% 

of the day-to-day variability in carbon exchange. The temporal relationships observed at the 

tower sites thus provide a mechanism for inferring regional daily carbon exchange via airborne 

sampling.  

 

Despite the similar relationships between daily- and peak-NEE across tower sites, ecosystem-

dependent variability still results in large differences in carbon exchange, within and across 

individual days (e.g., Figures 3 and 4). A full assessment of the relationships between peak-NEE 

and longer-term trends is beyond the scope of this work. However, Zscheischler et al., (2016) 
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have shown that observations of annual NEE from several tower sites in temperate forests, 

including US-Ced and US-Slt, demonstrate a strong correlation with the number of days having 

ecosystem fluxes above a high percentile. These analyses indicate that such temporal 

relationships can provide an empirical proxy for the climatic factors driving longer-term 

variability in carbon exchange. Furthermore, extracting longer-term information from airborne 

fluxes can facilitate comparison with flux inversions and process models, which often lack fine-

timescale resolution. 

4 Conclusions 

We demonstrate that airborne fluxes, when combined with footprint and land cover 

information, resolve spatial heterogeneity in landscape flux. During the September and May 

sampling periods, results often show substantial differences in FCO2 with land type, and forests 

typically display a larger CO2 uptake than croplands. This likely stems from the fact that in May 

most crops are typically still in early development and by September they are undergoing 

senescence heading towards harvest, whereas forests are consistently photosynthetically active 

during this time frame. We also observe a small but significant source of CH4 from estuarine 

waters and tidal mudflats. Larger CH4 emissions of up to ~75 nmol m-2 s-1 are observed near the 

St. Jones Reserve, a brackish herbaceous wetland, and up to ~180 nmol m-2 s-1 in the Alligator 

River Refuge, a freshwater woody wetland. 

 

Our results also suggest that the tower sites located along the flight path capture ~30–75% of 

the regional variability in ecosystem-dependent fluxes of H, LE, and FCO2, but the limited 

number of tower sites with FCH4 observations makes quantitative comparison difficult. Diversity 

in the underlying biophysical drivers of flux within land classes likely accounts for the observed 

regional-scale ecosystem variability. Moreover, the underlying biogeochemical controls of CH4 

flux in wetlands are often not directly tied to land class, including such factors as substrate 

availability, salinity, and water table depth. The persistently high CH4 emissions observed during 

CARAFE at the local US-StJ and US-NC4 tower sites emphasize the need to further test the 

representativeness of these understudied and heterogeneous ecosystems. 
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Although towers offer limited regional representativeness both within and across ecosystem 

states, tower observations complement airborne EC by providing a long-term record of 

ecosystem-dependent carbon cycling. The tower sites in the CARAFE domain display nearly 

consistent relationships between peak- and daily-CO2 exchange (within uncertainty), suggesting 

a means of upscaling to regional daily carbon cycle dynamics via airborne measurements. 

 

While this study focused on thematic land cover, a wealth of remote sensing data yields unique 

opportunities to assess model-derived fluxes and quantify uncertainties in regional flux 

products. Potential future work includes extending the disaggregation methodology to derive 

relationships between observed fluxes and surface parameters such as canopy height, solar-

induced chlorophyll fluorescence (SIF), or normalized difference vegetation index (NDVI) that 

initialize model- and satellite-derived fluxes (e.g. Hurtt et al., 2004; Zhang et al., 2014), thus 

enabling direct evaluation. Additionally, the spatially-distributed fluxes from airborne EC 

provide the unique capability of evaluating landscape-scale flux maps derived from remote 

sensing models (Anderson et al., 2008) as well as gaining a greater understanding of boundary 

layer dynamics affecting flux footprint and source area modeling using large eddy simulations 

(Bertoldi et al., 2013). 

 

The importance of terrestrial ecosystems in the global CO2 and CH4 budgets motivates the need 

for continued measurements over regions where large uncertainties in carbon exchange 

persist, such as natural wetlands and areas of rapid environmental and land-use change. 

Incorporating remote-sensing surface information could further focus such studies, exploiting 

the full potential of airborne flux observations in constraining carbon cycle dynamics. 
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Table 1. Summary of flux towers underlying CARAFE flight tracks. The primary NLCD 2016 land 
class is also listed. 

Tower Description Lat, Long Land Class Measurements Overfly Date 

US-Ced 
Cedar Bridge, 
NJ 

39.8379° N 
74.3791° W 

Evergreen 
forest 

H, LE, FCO2 
20160914 
20160923 
20170509 

US-Slt Silas Little, NJ 
39.9138° N 
74.5960° W 

Deciduous 
forest 

H, LE, FCO2 
20160914 
20160923 
20170509 

US-NC4 
Alligator 
River, NC 

35.7879° N 
75.9038° W 

Woody 
wetlands 

H, LE, FCO2 
FCH4 

20160924 
20170515 
20170526 

US-StJ St. Jones, DE 
39.0882° N 
75.4372° W 

Herbaceous 
wetlands 

H, LE, FCO2 
FCH4 

20160912 
20170504 
20170518 

USDA-
Chop 

Choptank, 
MD 

39.0587° N 
75.8513° W 

Cultivated 
crops 

H, LE, FCO2 
20160912 
20170504 
20170518 
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Table 2. Summary of land cover contributions for Choptank/St.Jones and Alligator River case 
studies. FP-weighted area is the mean for all flights. 

Region Land Class FP-Area 

Choptank/St. Jones Cultivated crops 
Woody wetlands 
Deciduous forest 
Developed-Open 
Herbaceous wetlands 
Open water 
 

56% 
21% 
  6% 
  6% 
<5% 
<5% 

Alligator River Woody wetlands 
Open water 
Cultivated crops 
Herbaceous wetlands 

83% 
10% 
<5% 
<5% 
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Table 3. Linear regression parameters for daily NEE vs. peak-NEE both in units of µmol m-2 s-1 
calculated using the flux tower observations from 2016. Slope and intercept are listed with 95% 
confidence intervals. 

Tower Slope Intercept r2 RMSE‡ 

US-Ced 0.31 ± 0.02 -0.64 ± 0.16 0.78 0.90 

US-Slt 0.30 ± 0.02 -0.84 ± 0.15 0.81 1.04 

US-NC4 0.30 ± 0.02 -0.44 ± 0.11 0.83 0.73 

US-StJ 0.21 ± 0.02 -1.10 ± 0.30 0.54 1.95 

USDA-Chop 0.27 ± 0.01 -0.36 ± 0.12 0.88 0.89 
‡Units: µmol m-2 s-2  
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Figure 1. Map of the NASA CARAFE flux transects from September 2016 (red) and May 2017 
(cyan). All flights were based out of Wallops Flight Facility (WFF) in Wallops, VA. The locations 
of five flux towers situated beneath the flight tracks are indicated by white triangles. 
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Figure 2. A single flux transect from the May 18, 2017 flight over the Choptank/St. Jones 
region, overlaid on the NLCD 2016 land cover map. The grey shading indicates the cumulative 
footprint for all observation points along the leg. The inset box shows a single 2D footprint 
calculated using the Kljun et al. (2015) parameterization, with black contours depicting 
weighted contributions to the observed flux from 10–90% in 10% increments. The white 
arrow denotes the mean horizontal wind direction, and the magenta circle indicates the 200 
m radius around the USDA-Choptank tower. 
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Figure 3. Disaggregated fluxes by land class for flights to the Choptank Watershed region: (a) 
Sensible heat flux; (b) latent heat flux; (c) CO2 flux; and (d) CH4 flux. Land class fluxes are 
grouped by fractional area and ordered by flight date from left to right. Note that September 
dates are from the 2016 campaign and May dates are from 2017. Error bars represent ±2𝜎 
uncertainty in the component flux, which includes systematic and random error propagated 
through the regression analysis, in addition to the regression residuals. CARAFE was not 
sampling fast CH4 measurements on May-18, and no FCH4 data are available on this date. 
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Figure 4. As in Fig. 3, but for flights to the Alligator River in North Carolina. Emergent 
wetlands were not sufficiently represented in the Sep-24 observation footprints. 
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Figure 5. Comparison of disaggregated aircraft fluxes and tower fluxes by land class for (a) 
sensible heat, (b) CO2, (c) latent heat, and (d) CH4. Error bars for aircraft observations indicate 
±2𝜎 uncertainty, which includes systematic and random error propagated through the 
regression analysis, in addition to the regression residuals. Tower errors are assumed to be ± 
10%. The dashed line is the 1:1 reference, and the solid grey line indicates the best fit, with 
slope and intercept reported with 95% confidence intervals. The towers sample the following 
land classes: Evergreen forest (US-CED), deciduous forest (US-Slt), cultivated crops (USDA-
Chop), woody wetlands (US-NC4), and herbaceous wetlands (US-StJ). 
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Figure 6. Linear fits of the daily NEE vs. peak NEE for the five tower sites in 2016 (a). The fits 
are colored by the tower land class: US-Ced (deciduous forest), US-Slt (mixed forest), US-NC4 
(woody wetland), USDA (cultivated crops), US-StJ (herbaceous wetlands). Monthly mean 
diurnal CO2 fluxes for US-Ced and US-StJ during August 2016 (b). The shaded area indicates 
the ±1𝜎 of all NEE observations over the given timeframe. 
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