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ABSTRACT

Organizations within the public and private sectors are looking to
improve their data science operations for research, development,
and operational purposes. As this interest in data science grows,
so too does interest in tools and programs that facilitating such op-
erations. This paper presents EnDEVR, the Environment for Data
Engineering in Virtual Reality, a user-extensible system that allows
for the execution of custom data science functions. We describe the
user-centered design process for the EnDEVR system, based on the
needs of subject matter experts within the aerospace and aviation
industries. Fundamental to this design is a method for users to in-
tegrate their existing analysis code (that may leverage third-party
vendors) as usable objects in the virtual environment; this allows
organizations to operate without the price tag and lifetime obliga-
tions associated with commercial data science toolkits, a concept
known as “vendor lock-in”. We then present our system design with
iterative implementations, and conclude with lessons learned. The
presented work may provide insight into future user-centered design
processes for VR applications, particularly for digital transformation
stakeholders to circumvent vendor lock-in.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual Reality; Human-
centered computing—Visualization—Visualization systems and
tools; Human-centered computing—Visualization—Visualization
application domains—Visual analytics

1 INTRODUCTION

Organizations in every sector are going through a digital transforma-
tion, in which they deliberately integrate new digital technologies
into existing processes to improve how they operate and deliver
value to customers [1, 34]. Virtual reality (VR) is one such technol-
ogy that has received increasing attention in a variety of domains,
such as education [27,43], healthcare [13,41], manufacturing [7,31],
tourism [28,60], and the space sector [29]. VR demonstrates promise
as a tool for data analysis and exploration thanks to its ability to
display arbitrary, interactable 3D visualizations [18,39]. This makes
VR an exciting candidate for organizations undergoing digital trans-
formation to elevate their data science practices.

Data science-focused digital transformation is nearly always
paired with third-party services and libraries for data engineering
and state-of-the-art artificial intelligence [48]. Libraries such as
Scikit-Learn for Python [49] and Google’s ML Kit Application Pro-
gramming Interface (API) [9] offer prepackaged functionality for
users to incorporate directly into their code. Tools such as IBM
Cloud Paks [25], Splunk [53], and Tableau [55] provide graphical,
“pipeline-based” interfaces for data scientists to explore and interact
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with their data sets. However, organizations who seek to use these
tools often risk coupling their own software implementations tightly
to a vendor’s API or service. Consequently, if these organizations do
not make incredibly nuanced purchasing decisions, they can incur
high operating costs for these toolkits while simultaneously limiting
their data science capacity to that of the vendor. These effects can
be more impactful in organizations that do not have a trained data
science staff on-hand to sufficiently augment vendor capabilities.
Even open-source frameworks are often optimized for their com-
mercial cloud offerings [6]. In many cases, this can tie a project’s
framework to a vendor for life, a concept called “vendor lock-in”.
Vendor lock-in provides two expensive options to an organization:
either accepting the high cost and low level of modifiability of these
commercial tools, or developing custom tools themselves.

Organizations wishing to improve their data science infrastructure
in a way that leverages new API and services, but avoids vendor
lock-in, face the following challenges:

• (C1) Because data science practices vary between industries,
potential users must be an integral part of the data infrastruc-
ture engineering process to ensure the acceptability of any
subsequent system design.

• (C2) Because data science teams may use any number of tools
or algorithmic implementations to achieve their goals, the
infrastructure needs to be user-extensible (e.g. support an open-
ended collection of analysis operations, native code, third-party
libraries, and other processing capabilities).

• (C3) Because data science operations can be highly complex,
any new data science tools introduced to the infrastructure
must provide enough novelty and utility to justify the learning
curve and labor investment involved in adoption. Otherwise, a
data scientist will likely stay with their current tool suite.

With these challenges in mind, we present the EnDEVR system, an
Environment for Data Engineering in Virtual Reality. EnDEVR is an
applied mathematics and data science ecosystem that allows users
to construct and investigate customizable data analyses from a VR
environment. This system addresses vendor lock-in issues among
data science toolkits while promoting VR as a viable data science
platform in the aerospace and aviation industries. The principal
characteristic of the system is user extensibility, in which users can
submit custom or prototype algorithm implementations, and employ
them in VR data processing pipelines. A dedicated computing server
then processes the pipelines, generating VR visualizations of the re-
sults for users to inspect in 3D. Users can also export these pipelines
as computer code to include in their mission workflows. Because
users submit them, these pipelines can leverage any number of ac-
cessible third-party libraries, systems, or API, reducing operational
dependency on any individual vendor and avoiding vendor lock-in.

This paper makes the following contributions:

• A user study on the data analytics practices and VR accep-
tance criteria among scientists and engineers in a promi-
nent aerospace organization. This addresses C1 by providing
guiding principles and design points to ensure acceptibility of
the final system.



• A proposed system for aerospace professionals to conduct
data science operations in VR. This addresses C2 by incor-
porating specific design points for handling of open-ended
algorithmic implementations, data sources, and high level
workflows.

• A presentation of lessons learned while implementing the
system within the context of commercial and government
infrastructure. This addresses C3 by leveraging practical
experience to identify barriers to adoption within our industry.

The rest of the paper is organized as follows. Section 2 discusses
the study background and related work; Section 3 describes our
user study; Sections 4 and 5 describe our system design and imple-
mentation demonstration respectively, while Section 6 discusses our
lessons learned and Section 7 concludes.

2 RELATED WORK

The ability to interact with data in a 3D environment can allow users
to understand complex and disparate data sets more readily than 2D
methods. NASA Jet Propulsion Laboratory (JPL) demonstrated the
utility of commercial-off-the-shelf (COTS) VR hardware to generate
a 3D environment from 2D images of Mars taken by the Curiosity
rover, allowing for more significant knowledge discovery [11]. Other
work has identified increased feelings of satisfaction and success,
fewer errors, and comparable mental effort among testers when
using VR over 2D graphs [35]. Research within the aerospace
industry has verified similar results in VR and augmented reality
(AR) for data visualization, highlighting the cognitive bottleneck
between data and discovery in a 2D environment [3, 18, 22, 36,
37]. Adequate visualization of high-dimensional feature spaces
is a critical challenge addressed by operating in 3D spaces [14].
However, the need for algorithms that generating 3D visualizations
of arbitrary data has been identified as an open research topic, with
several proposed frameworks [39, 50].

Digital transformation and machine learning are tightly coupled
concepts in the aerospace and aviation communities. These commu-
nities have verified the utility of VR in design and system verification
and validation [30, 56, 59]. The aerospace community is currently
focused on the problem of communicating with and maintaining
assets in remote, potentially hazardous conditions [32,45,46]. Space
weather has also become a target for new machine learning research
[4,12]. In the aviation sector, the integration of physics-informed ma-
chine learning and high-quality modeling for assured, autonomous
decision-making is a significant research area [20, 21, 38]. The abil-
ity to use VR for design and verification, paired with the growth of
machine learning applications to aerospace and engineering, makes
the ability to command diverse machine learning technologies from
VR a logical next step for the research community.

Enterprise services like Tableau [55] or IBM Cloud Paks [25]
advertise robust, high-compute performance. However, they offer
limited control or modifiability of the internal algorithmic logic,
with no current support for advanced user interfaces such as VR.
While some services like Splunk have begun to offer support for 3D
visualizations in VR [53,54], users are limited in the operations they
may perform based to what is offered by the vendor API provides.
Open-source platforms such as Orange [40] allow for algorithm
customization, but require both a significant understanding of the
framework’s codebase and recompiling of the entire codebase to
introduce a new algorithm.

2.1 Enabling Technologies
A VR game engine is built with low-level control logic in-place,
allowing simplified actions to create, place, and animate objects
within a 3D space, and reducing the need to develop this type of
code from scratch. Given their support and communities, the top
two candidate engines for developing the EnDEVR system were

Unity [24] and Unreal Engine 4 [15]. Various comparisons have been
made between the two [10, 58]. Both have benefits and drawbacks,
but there is currently no community consensus on the general utility
of either.

Both game engines permit limited use of common libraries for
their native programming languages (C# for Unity, C++ for Unreal
Engine). To overcome this limitation, real-time communication with
other processes and systems with expanded capability is necessary.
For the EnDEVR communication framework, we explored three
enabling technologies. The integration of native sockets with a
visual pipelining framework has previously been explored [26], but
requires significant socket management for implementation. gRPC
is a high-performance framework for Remote Procedure Calling
(RPC) that communicates using HTTP/2 [8, 33]. The framework
supports high-performance streaming between clients and servers,
but does not integrate well with VR game engines. gRPC works
directly with protocol buffers, a language and platform-neutral data
interchange mechanism for serializing structured data [19]. Finally,
the Websocket protocol operates over HTML5 and supports chat-like
communication between client and server [16]. It has demonstrated
a capability for fast, real-time data communication between systems
[42, 44]. Both Unity and Unreal Engine have third-party libraries
that permit Websocket communication.

3 STAKEHOLDER REQUIREMENTS GATHERING

User-Centered Design (UCD) is characterized by the early adoption
of user needs as guiding principles in the design process [47]. This
initial focus on end-users enables a team to make informed design
choices that meet the organization’s needs at large. To identify user
needs for the EnDEVR system, we began development with a series
of stakeholder interviews. The results of these interviews guided the
requirements for design, implementation, and testing. By employing
UCD from the beginning, we avoided common design pitfalls that
arise when creating and deploying an application at-scale. In the
following section, we discuss our user study methodology, results
evaluation, and key takeaways.

3.1 Interview Methodology

The stakeholders who participated in our interview process consisted
of industry subject-matter experts, and potential end-users for our
system. We manually selected participants from within our organiza-
tion based on availability, interest, and position in the organizational
hierarchy. The final group of stakeholders (n=20, five female) rep-
resented seven business centers within our organization and had a
combined total of more than 200 years of industry experience.

Each stakeholder was provided with a description of the proposed
system concept ahead of time. The interview session began with
a 15-minute presentation and system demonstration, consisting of
a high-level overview of the EnDEVR concept,its relation to the
organization, and potential applications. We followed with a semi-
structured interview with a free-form discussion. We asked each
stakeholder about their current data analysis tools and procedures,
any challenges they face with those tools and procedures, and their
prior experience with VR systems. Each interview session lasted
one hour and was recorded with consent.

We selected questions with an understanding that adopting our
system would require teams or business centers to adopt both VR
and a new machine learning framework; thus, questions were crafted
to improve understanding of current data analysis processes and
experiences in VR. In additions, during the free-form discussion,
nearly every stakeholder introduced ideas about potential organiza-
tional use cases that would require specific features to be added to
the original concept of the system.



Scope Time to Learn Difficulty Scalability Appeal Freq. of Use Originality Alignment
Total 16.17 20.5 19.83 10.83 10.83 15.92 21 9.5

Average 2.31 2.93 2.83 1.55 1.55 2.27 3 1.36
Std. Dev. 1.06 0.89 0.9 0.81 0.81 1.02 1.08 0.48

Table 1: Stakeholder feedback values with associated scores.

DRIVER DESCRIPTION
User Extensibility EnDEVR will provide the ability for end users to submit custom algorithms for use in workflow construction in

virtual reality.
Open Source EnDEVR will provide the ability for future developers to expand system functionality.

Usability EnDEVR will provide intuitive, interactive, and accessible user interfaces within the virtual reality environment.
Functionality EnDEVR will include built-in functions to provide out-of-the-box processing and use-case demonstrations on

top of a steel-thread implementation.
Security EnDEVR will meet the requirements of internal organizational software tools.

Performance EnDEVR will operate within reasonable time and computing constraints.
Reliability EnDEVR will be able to reproduce experiences and visualizations between user sessions.
Portability EnDEVR will be easily distributed and installed on supported devices and operating systems.

Table 2: Architectural drivers for the EnDEVR system design, elicited from stakeholder interviews.

3.2 Value Scoring

The purpose of the stakeholder interviews was to identify desired
system characteristics, functionality, and use cases to incorporate
into the final system and ensure acceptability and adoption among
end-users. Following each interview, these points were extracted
from the stakeholder responses and individually evaluated by each
interviewer according to the following values: scope of the work to
be done with the system, the time to learn the system, difficulty of
using the system, scalability, general appeal, anticipated frequency
of use, originality of the system concept, and alignment with team
goals. Each interviewer scored the stakeholder’s responses on a
5-point Likert scale for each of these values, where 1 was the best
score and 5 the worst. Scores for each category were averaged across
interviewers, while the sum of scores across categories represented
the final score for each stakeholder (summarized in Table 1).

The lowest-scoring stakeholders reflected those suggestions and
priorities aligned most closely with EnDEVR’s scope and concept,
and so were prioritized in the subsequent system design. The data
from the initial interview analysis showed a clear trend among the
top three lowest-scoring stakeholders: they each received perfect
scores for Scalability, Appeal, Accessibility, and Alignment. Results
imply that the initially proposed concept for EnDEVR was aligned
with key stakeholders in our organization. Conversely, Time to Learn
and Difficulty score were among the highest, which is reasonable
given the small size of the EnDEVR development team. The final
scores were summarized and presented to project leadership. The
final list of stakeholder needs, and their corresponding scores, were
used to develop the system architectural drivers described in Table
2, and eventually, the initial set of system requirements.

3.3 Development of System Design Guidelines

The information gathered during the stakeholder interviews revealed
a wide variety of tools and practices used within our organization.
Stakeholders reported their teams engaging in data science oper-
ations such as reinforcement learning, using neural networks to
classify text and image inputs, natural language processing, vari-
able correlation, and autoencoding. They also reported using tools
such as Python and Matlab data science libraries, dedicated machine
learning SDKs such as TensorFlow and OpenCV, cloud-based ser-
vices such as Google Cloud Platform and Apache Spark, Jupyter
notebooks, and Watson Explorer. They also reported managing data
sources in various formats, such as raw text files (e.g., plain text,
XML, CSV), spreadsheet documents, Hierarchical Data Format files,

PDFs, and images. All stakeholders were all receptive to adopting
VR as a tool for their work, provided appropriate precautions were
taken to address motion-sickness factors, and to make the system as
accessible as possible. Additionally, they all expressed interest in
the potential uses of EnDEVR in their respective fields.

As a result of the stakeholder interviews, we identified three
recurring, high-level needs that EnDEVR would need to address:

• The ability to perform free-form data exploration: This
need was mentioned many times by many different stakehold-
ers. Scientists in our organization routinely have to perform
open-ended knowledge discovery operations on vast, disparate
data sets, so tools to improve that process would be welcome.

• The ability to process, visualize a wide range of high-
dimensionality data: In our organization, data sets take many
different forms and can represent a spectrum of variables and
dimensions. When considering VR as a platform for visualiz-
ing data sets, one stakeholder remarked, “What is intriguing
to me is the other quantities such as training an algorithm that
impact [our understanding of] vehicle dynamics, and being
able to display the weights of a neural network at the same
time as displaying the altitude and movement of an aircraft.”

• A mechanism to securely author, reuse, and share algo-
rithms and data sets between users: Another recurring theme
among stakeholders was reducing redundancy by sharing and
reusing both data sets and algorithmic implementations be-
tween team members and throughout the organization. Stake-
holders additionally reported being dissatisfied with the current
data management guidelines within the organization, the clean-
liness of the data they received, and the format of that data.

Using these insights in combination with the manual value scores,
we developed architectural drivers for the EnDEVR system (summa-
rized in Table 2). These drivers guided system design and provided
heuristics to verify the utility of the system in our organization.

4 SYSTEM DESIGN

The EnDEVR system design centers around the idea of a workflow,
which is a structured set of computable tasks, called widgets. Each
widget represents a custom algorithmic implementation to be exe-
cuted, and can be comprised of any combination of native code and
calls to third-party libraries, APIs, or external services. A connection
between widgets indicate that a given widget accepts the output of a
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Figure 1: Example data science workflows, where composite nodes
(grey) perform algorithmic operations and leaf nodes (white) return
results or visualizations.

Figure 2: Sequence diagram for creating and executing a workflow
using the EnDEVR system.

prior widget as an input in its own computation. Users in virtual real-
ity construct workflows by selecting widgets from a list of available
options and connecting the widgets into a pipeline. Two examples of
workflows that could be built with the EnDEVR system are shown
in Fig. 1. The user can then command the system to forward the
workflow to a remote server, which executes the selected operations
and returns corresponding results for 3D visual assessment. This
process is reflected in Fig. 2.

4.1 System Architecture
The EnDEVR system design is an N-tier system architecture (N=4)
[23], as reflected in Fig. 3. The tiers are organized as follows:

• Presentation Tier: comprised of the VR environment and all
related user-interface logic. Manages the user’s ability to move
and interact with elements in the environment, including select-
ing and configuring widgets; displaying workflow status and
error messages; and displaying and interacting with workflow
output visualizations.

• Control Tier: coordinates the presentation tier, executes com-
mands or operations that the VR game engines are incapable
of, and sends workflows to the processing tier. Serves as a
proxy between the Presentation and Processing tiers.

Figure 3: EnDEVR architectural model

• Processing Tier: receives and executes commands from the
control tier. Principally responsible for downloading code for
workflows from the data layer, arranging and executing this
code according to the workflow structure, and streaming results
back to the control tier. More information about this tier is
presented in Sections 4.2 and 4.3 respectively.

• Data Tier: maintains algorithms and corresponding code avail-
able for use in workflow construction, as well as general author,
user, system logging, and role-based access control informa-
tion. Provides a standalone GUI to allow users to submit new
algorithms. Algorithm submission is covered in greater detail
in Section 4.4.

This architecture maps to the architectural drivers of Table 2 as
follows. The VR environment at the Presentation tier grants the
system usability and functionality. After reviewing alternatives, we
selected candidate technologies at this tier that would allow for out-
of-the-box, intuitive usage. By placing a Control tier between a
VR environment and backend server, the architecture addresses the
reliability driver by ensuring the system still has some local capa-
bility if the connection with a backend server is lost. The design
of the middle two tiers also accounted for connections being lost
and recovered. The server tier permits both system portability and
performance by minimizing dependencies for local users and push-
ing the bulk of responsibilities to the server. The Data tier provides
user extensibility and security by permitting the user community to
submit algorithms and share them with authorized users. Finally,
we documented the process for source control, documentation, and
logging/debugging for this modular architecture to promote adoption
and contribution to the open-source community.

4.2 Data Source Handling and Representation
When the user starts the EnDEVR application, the system creates
a digital thread across all four architecture tiers. Fig. 2, mark A



Algorithm 1: Data Source Loading and Processing
Input: Data location L, Location type T
Output: Math representation r
/* acquire data source */

1 if T is local filepath then
2 file← uploadToServer(L)
3 end
4 else if T is remote URL then
5 file← downloadToServer(L)
6 end
/* process data source */

7 storeInTempDirectory(file, session.ID)
8 metadata m← extractDataCharacteristics(file)
9 mathRep r← convertToMathRep(file, m)

10 return r

depicts this procedure. After selecting a data widget within the
EnDEVR Pipeline Builder, the user specifies a local or remote path
as a data source and passes the path information to the Control tier.
If the path is local, the Control tier uploads the data to the Processing
tier. If not, the Processing tier will be sent the remote path URL
and will download the data to temporary storage. When the user
submits a workflow through the Presentation tier, the system embeds
references to the data in temporary storage in the instructions for
processing. This digital thread allows the system to avoid using the
user’s local machine processing power to upload data directly into
the VR environment.

When the user uploads data to the Processing tier, the Control
tier receives a reply as a stream of mathematical representations of
the data, which the VR algorithmically visualizes. The standard
EnDEVR representations include: matrices, sets, sequences, strings,
graphs, numbers, functions, probability distributions, and tuples. A
data widget can only produce the first four of these representations.
The rest are outputs of custom algorithm widgets. These structures
were selected based on a review of key mathematical objects and
notations used in automata theory [52] and abstract algebra.

The Presentation, Control, and Processing tiers have a common
understanding of these representations. For example, the Presenta-
tion tier does not handle raw data. Instead, it only ever visualizes
or allows the user to explore one of the representations derived
from the data (with visual mapping to the original data specifica-
tion). The Control tier performs validation checks on a workflow
based on these representations, and the Processing tier translates
between the inputs and outputs of widgets and these representations
when processing a workflow. The messages to each tier, containing
these representations, include metadata that are the byproduct of
rudimentary analyses (e.g. mean, variance, standard deviation).

4.3 Workflow Processing
The central use case of EnDEVR is for a user at the Presentation
tier to construct a workflow and submit it for processing. At the
Presentation tier, the workflow exists as simple mappings of inputs
to outputs. The workflow is logically validated at the Control tier
and forwarded to the Processing tier, which runs the referenced
algorithm implementations in order. Once the user submits a valid
workflow for processing, the server is responsible for parsing that
workflow into a set of executable steps with the appropriate data
flow between steps (shown in Fig. 2, mark B ).

In processing, we formulate a workflow as a directed, acyclic
graph (DAG), G = (V,E), where V is a set of identifiers for algo-
rithm implementations and E is a set of V ’s edges. Without loss
of generality, for a workflow G, if (u,v) ∈ E, then the output of
the algorithm referenced by u is one of the inputs of the algorithm
referenced by v. G must also contain one or more sources and sinks

Algorithm 2: Workflow Processing and Execution
Input: Workflow object W
Output: Set of math representations (returned async)
/* convert workflow to directed acyclic graph */

1 for widget w in W do
2 add node(w) to G
3 for existing node(v) in G do
4 if W contains out-in dependency(v, w) then
5 add directed edge(v, w) to G
6 end
7 end
8 end
/* traverse graph by level and execute */

9 nodeGroup← getSourceNodes(G)
10 nodeOutputs← { }
11 while nodeGroup is not empty do
12 for node n in nodeGroup do
13 node[] p← getParentNodes(n)
14 output[] in← nodeOutputs.getForNodes(p)
15 output out← executeStoredCode(n, in)
16 nodeOutputs.add(n, out)
17 returnAsync(out.toMathRep())
18 end
19 nodeGroup← getImmediateChildNodes(nodeGroup)
20 end

for the workflow to be processed by the system. Each widget in
the workflow is represented by a vertex v ∈ V with its associated
executable code.

Algorithm 2 describes the steps for workflow processing at the
Processing tier in two main phases. In the first phase, we convert the
workflow mapping of inputs and outputs into a logical DAG (lines
1-8). Each widget in the workflow is added to the graph with directed
edges indicating that a node’s output is used as an input for another.
The Processing tier queries the executable code and dependencies
from the Data tier. In the second phase, the system traverses the
graph by layer and executes the code for each node in the layer in
parallel (lines 9-20). As each widget completes computation, results
are converted into a system math representations and sent back to
the Control tier immediately, passing them to the Presentation tier.
These same results are serialized and stored as a temporary file on
the Processing tier server using a language-based serialization library
(e.g., Pickle [57]). Subsequent widgets that need these results as
input deserialize these files and read their contents. This process
continues until all sinks in the tree have been processed.

4.4 Algorithm Handling and Storage
Users specify algorithms for the EnDEVR system as function-level
scripts, stored in the Data tier as binary snapshots. The Data tier
stores additional metadata for each algorithm, such as the function
name, a user-friendly display name for reference in the VR environ-
ment, a description, a functional category, and the corresponding
author. Library dependencies and information about expected inputs
and outputs are also stored. The Data tier supports custom code
written in Python, R, and other data analysis scripting languages and
calls to third-party services and APIs.

Fig. 5 shows an example of an acceptable algorithm for the Data
tier in Python. It contains source code and a Docstring describing
the function, parameters, output value, and any errors raised. Any
libraries that the function depends on are listed as function-level
import statements. The function, as a file, is uploaded to the Data
tier via the Algorithm Submission Portal, which walks the user
through the steps of providing the metadata mentioned above. The
portal automatically extracts some information directly from the
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Figure 4: Screenshots of the EnDEVR steel thread.

Figure 5: Sample algorithm formatted for submission to EnDEVR.

function, such as the function description and list of dependencies.
Other information has to be manually provided by the user. Once
the user provides all of the requisite metadata, the function file is
stored directly as a binary snapshot, and the algorithm is ready for
use in workflow construction.

Organizing and storing algorithms in this way serves several
important functions. It supports the User Extensibility and Open
Source architectural drivers by allowing users to submit their own
algorithmic implementations that exactly meet their own unique
goals; it supports the Security architectural driver by identifying
algorithmic authorship for access control; and it lessens user reliance
on individual data science libraries or services by allowing users to
submit multiple implementations for the same algorithm if project
needs or vendor functional offerings change.

5 SYSTEM IMPLEMENTATION

To refine acceptance criteria for a full EnDEVR system, over four
months, we developed a “steel-thread” implementation [2], con-
taining the basic functionality of the system. The lessons learned
from demonstrating this system to stakeholders across our organiza-
tion were incorporated into the design and development of the full
EnDEVR system.

5.1 Steel Thread
The steel-thread contained the main functionality for each tier of
EnDEVR, using native socket communications. The Presentation
tier was implemented as an application developed in Unity [24],
designed for use with the Oculus Rift-S. The Control and Processing
tiers were implemented as C# client and server applications, respec-
tively. Our organization provided a small CentOS virtual machine
(VM) on an enterprise business server to host the Processing tier. We
also were provisioned 2TB of space from the organization’s existing
managed MySQL database server.

The steel-thread Presentation, Control, and Processing tiers com-
municate using C# TCP/IP sockets. The Control tier application
communicates with the Processing tier VM through an SSL (Secure
Sockets Layer) tunnel connection over the organization’s internal

network. All communication among the tiers was in the form of
JSON (JavaScript Object Notation) messages. When a user initiates
the VR application, the Control tier is started and connects to the
Processing tier server. The algorithm submission tool for the Data
tier was implemented as a simple command-line C# tool.

Fig. 4 shows some screenshots of the steel-thread during runtime.
Once in the VR environment, the user can upload a new dataset
or resume work on an existing dataset. A request is then made for
available widgets to the Data tier. The user selects, moves, and
connects widgets using hand gestures (Fig. 4a). When the user
submits a workflow (Fig. 4b), it is sent to the Control tier, parsed
into a JSON object, and forwarded to the Processing tier. The
Processing tier then deserializes this object, requests the scripts from
the Data tier database, and assembles the scripts according to the
current workflow. The system calls Python or a custom executable
based on the assembled scripts. Results are then returned to the
Control tier, read through the Unity API and visualized in the VR
environment (Fig. 4c).

5.2 Full System Implementation

By evaluating the steel-thread with stakeholders, we identified sev-
eral key issues to address in implementing a full system. First, due
to the nature of our organization, Unity’s licensing model was not
cost-effective for adopting new developers across the organization
to our team. Unreal Engine provides a more cost-effective licens-
ing model for our organization to grow the EnDEVR system and
team. In addition, Unreal Engine’s asset marketplace tends to offer
visualizations that are of higher visual quality [10]. A stakeholder
comparison verified these results, and we adapted the mid-level
design of the system to Unreal Engine.

Second, we reimplemented the Control and Processing tier appli-
cations in Java, for its platform-independence and concurrency fea-
tures necessary for growing the system’s user community within our
organization. In addition, the steel-thread relied on a set of custom-
defined JSON messages, which required redefining these messages
for the application at every tier. For communication between tiers,
the system uses Protobuf, WebSockets, and gRPC. Messages are
serialized as protobuf messages, defined once and understood by
all tiers. The VR environment communicates with the Control tier
client on the same local machine, passing Protobuf messages via
interprocess communication (IPC) over WebSockets. Communica-
tion between the Control tier and the Processing server application
occurs using gRPC. A full system diagram reflecting these changes
is illustrated in Fig. 6.

Finally, stakeholders indicated that we needed a straightforward
mechanism for submitting algorithms to the Data tier. For this,
we developed a set of database-enabled Jupyter notebooks for data
analysts to use when submitting existing scripts or prototyping new
analyses. The algorithm submission notebook presents a traditional
form-based GUI which walks authors through the process of loading



Figure 6: EnDEVR full-system implementation diagram.

Representation Visualization
Sets Word/Symbol Cloud

Matrices Parallel Coordinates Plot
Sequences N-D Scatter Plot

Tuples Scatter Plot Heat Map
Functions Equation Text

Graphs Graph Drawing
Numbers Histogram Complex Number

Distributions Density Plot
Strings Word Cloud

Table 3: Mapped visualizations for EnDEVR math representations.

an algorithm for submission, extracting the key metadata, performing
some preliminary validation, and finally submitting it to the database.

5.3 Evaluation
Objectively evaluating EnDEVR is admittedly difficult. There is no
benchmark test suite where we can compare our results against com-
parable systems. Therefore, we solicited the stakeholders within our
organization analysis use cases that would be ideal for the environ-
ment. We chose three use cases, focused on intelligent aircraft, space
weather, and independent verification & validation (IV&V) of sys-
tems, respectively. We implemented the intelligent aircraft use case
in the steel-thread and all three in the full system implementation.

The steel-thread was evaluated on an experimental eVTOL (elec-
tric vertical takeoff and landing) vehicle model known as Lift-Plus-
Cruise [51]. eVTOL has become the focus of the latest research in
urban air mobility and intelligent flight. The stakeholder’s group
was researching the use of kinetic and potential energy estimation
for on-board assessment of the vehicle. In coordination with the
subject matter experts, we developed and submitted the algorithms
necessary for running a MATLAB autoencoded simulation of the
Lift-Plus-Cruise in flight. For this use case, we developed scripts for
three widgets: the first to allow a user to parameterize the mass of
various parts of the vehicle, the second for running the MATLAB
simulation with specific trajectories, and a third that takes in the
simulation outputs and computes the kinetic and potential energy of
the rigid-body system during flight. We verified the results in the
VR environment against those on a standalone laptop for correct-
ness. While this was the first successful instance of commanding
and analyzing an external simulator from the environment, the 3D
rendering of the result data was unintelligible. This led to develop-
ing algorithms for plotting multiple time series as shown in Fig. 7
and the system mapping of math representations to corresponding
visualizations shown in Table 3.

For the second use case, we demonstrated the analysis of issue
reports submitted to the IV&V group. These issue reports describe
problems in project development, covering topics from inconsistent
design to missing code. Current practice for mining these reports
centers on extensive manual investigation and filtering efforts, re-
sulting in significant duplication of effort between analysts. We

Figure 7: Time series plot in EnDEVR full system implementation.

(a) Workflow

(b) Visualization

Figure 8: IV&V use case screenshots.

implemented new EnDEVR widgets to generate word clouds based
on descriptions of issues logged for a given project (example work-
flow shown in Fig. 8a). Stakeholders indicated that this kind of
visualization in VR would be significant to their mission of iden-
tifying project-level trends. For this use case, we implemented
algorithms for three new widgets, and published them for use via
the Algorithm Submission Toolkit (the results of which constituted
our first demonstration of the system for text-based data and guided
subsequent visualizations for natural language processing):

• Field Filter: Accepts a 2D matrix of data, and filters based on
a selected condition. For our use case, we subdivided the data
set by unique values in a particular field (e.g. project name).

• Keyword Extractor: Applies document summarization and
N-gram keyword extraction to string data. For this use case,
it returns the top K keywords and their associated weights for
each data subset.

• Word Cloud Visual: Generates a word cloud for a given set of
keywords and their associated weights. We generated a “cloud
of clouds” for this use case where each data subset received
its own cloud (2D examples shown in Fig. 8b). Because label
placement in 3D space is a complex problem space [5], we are
leaving more robust cloud display logic for future work.

For the third use case, our Heliophysics research group identi-
fied magnetic disturbance data from US NOAA [17] that would
be suitable for submitting machine learning algorithms to the Al-
gorithm Submission Toolkit. As NOAA had previously hosted a



Figure 9: Magnet use case visualization screenshot.

competition for this data with publicly available code, we used this
to demonstrate the ability of the system to incorporate open-source
code. We downloaded open-source analysis code for predicting dis-
turbance storm-time indices (DST) using solar wind data, and used
it to develop 15 new algorithms from this open-source codebase,
many of which have strong potential for reuse outside of the space
weather application. This conversion process from open-source code
to algorithms suitable for the EnDEVR system was completed by
an individual Computer Science PhD student over approximately
3 work days ( 24 hours). They noted difficulty interpreting and
removing dependencies within the open-source code. Much of their
time was spent writing descriptions of each widget and figuring out
how to make changes to remove those interdependencies.

6 DISCUSSION

In the following section, we will discuss our lessons learned through-
out the process of implementing EnDEVR, as well as a selection of
open problems and future work.

6.1 Lessons Learned
Our takeaways from evaluation of the EnDEVR system fit into
several categories that will guide future developments: system inno-
vation, general system robustness and error-handling, client/server
environment configuration, code structure and organization, and
documentation.

System Innovation: Numerous system innovations became ap-
parent as EnDEVR approached completion. The 3D widgets used
in workflow building allow for practical data engineering in VR,
allowing users to incorporate diverse APIs in separate implementa-
tions, thus avoiding vendor lock-in. The Processing tier specifically
demonstrated its ability to handle numerous types of data and algo-
rithms to effectively compute pipelines developed for data science
and engineering operations. Behind the scenes, the WebSocket and
gRPC connections between tiers provide an effective communication
vehicle for seamless real-time processing. The use of WebSockets
with the VR front-end will be a key system feature going forward.

Robustness and Error-handling: Several lessons were learned
for general system robustness and error-handling that should be
applied to future development. When transferring CSV files between
tiers using gRPC protobuf serialization, empty values cause errors.
Therefore, the data being sent must be fully populated with values or
use a special value denoting missing data. This may cause more data
to be sent than necessary and can effect real-time processing. On
the algorithm submission side, successful validation of submitted
Python scripts required strict formatting constraints which were
communicated to the algorithm author prior to submission.

Environment Configuration: As part of the artifacts created dur-
ing system development, our team documented a set of guidelines

for environment configuration and hosting. This included a list of
required software installations, required versions and dependencies,
and environment variables to ensure correct inter-tier communica-
tion using WebSockets, gRPC, and C++/Java executables. As a
general rule, when setting up the EnDEVR environment, adherence
to organization-level expectations for security, availability, accessi-
bility must be considered during all phases of system development
and use. This is especially true using internal hosting platforms,
which can help reduce computational load bottlenecks.

Code Structure, Organization, and Documentation: We devel-
oped consistent development processes for maintaining uncluttered
code structure and organization. Eclipse, Visual Studio, and Unreal
Engine software facilitated handling of the large number of files
used to create EnDEVR. Maintaining consistent code structure and
organization across the multi-tier system was important, as (at the
time of this writing) Unreal Engine 4.26.2’s capacity for source
control with Git is still fairly immature.

6.2 Open Problems and Future Work
EnDEVR is an on-going project. There are a number of open prob-
lems that this first phase introduced and that we plan to address in
future work. First, we will explore additional methods for mapping
arbitrary data sources to the systems math representations. In large
organizations, institution-level conventions regarding data structure
and storage practices are generally lacking, leading to data storage
form factors ranging from CSVs to raw text documents to images
of spreadsheets. As such, algorithmically understanding the nature
of these data sources and developing appropriate representations
remains an open problem.

Second, we will explore methods for more stringent validation
and verification of submitted algorithms and workflows. Algorithms
must be syntactically and semantically verified, while workflows
must be examined to ensure compatibility of output-to-input con-
nections between widgets. Additionally, graceful error handling
as well as suggested improvements for workflow organization and
unexplored analytical operations still need to be investigated.

Finally, we will explore access control and security measures to
mediate sharing of algorithms and data sources within our organi-
zation. Authentication and authorization are significant concerns
for all organizations in both public and private sectors, and are
made even more important when large-scale, mission-critical, and
export-controlled data stores are involved. Further, any security
measures that are implemented should not only meet end-user and
project-level expectations for privacy and access control, but must
also conform to any regulations set forth by the parent organization.

7 CONCLUSIONS

In this paper, we presented Environment for Data Engineering in
Virtual Reality (EnDEVR), an applied mathematics and data science
ecosystem that allows users to command and investigate customiz-
able data analyses from a virtual reality environment. A key feature
of the Environment for Data Engineering in Virtual Reality (En-
DEVR) ecosystem is that it is not dependent on any one proprietary
data science platform, allowing users to extend its data analysis capa-
bilities without restriction. We presented a user study of data science
practices among expert stakeholders in the aviation and aerospace
industry, and used that feedback to drive the implementation of En-
DEVR, first as a “steel thread”, then as a full system implementation
with three aerospace and aviation use cases. Finally, we discussed
our lessons learned and a selection of open problems. In future
work, we will explore additional human factors to improve the user
experience and physical comfort when using EnDEVR.
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