Exploring the Atmosphere of Uranus with

Small Next-generation Atmospheric Probe

IEEE Hampton Roads September 2019 Meeting Virginia Air and Space Center, September 26, 2019

Kunio Sayanagi Associate Professor Atmospheric & Planetary Sciences Department Hampton University

NASA Langley

Study Team (All)

K. M. Sayanagi¹, R. A. Dillman², D. H. Atkinson³, J. Li³, S. Saikia⁴, A. A. Simon⁵, T. R. Spilker⁶, M. H. Wong⁷, D. Hope², A. Arora⁴, S. Bowen², A. Bowes², J. Brady², W. C. Edwards², R. Fairbairn², D. Goggin², D. Hope², S. Horan², S. Infeld², J. P. Leckey², T. Marvel², R. M. McCabe¹, A. Parikh², D. Peterson², S. Primeaux², A. Scammell², K. Somervill², L. Taylor², C. Thames², H. Tosoc², L. Tran².

(31 Team Members total)

¹Atmospheric and Planetary Sciences Department, Hampton University (23 E Tyler St. Hampton, VA, 23668, [kunio.sayanagi@hamptonu.edu\)](mailto:kunio.sayanagi@hamptonu.edu), ²NASA Langley Research Center, 3Jet Propulsion Laboratory, California Institute of Technology, 4Purdue University, ⁵NASA Goddard Space Flight Center, ⁶Planetary Mission Architect, ⁷University of California, Berkeley.

Mission Design Center: NASA Langley Research Center Engineering Design Studio

MPTON NASA Langley **PURDUE** NASA Gradand **P**

NASA Planetary Science DeepSpace SmallSat Program (PSDS3) Selected Proposals

Venus

Christophe Sotin, NASA's Jet Propulsion Laboratory, Pasadena, California: Cupid's Arrow Valeria Cottini, University of Maryland, College Park: CubeSat UV Experiment (CUVE)

Moon

Suzanne Romaine, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts: CubeSat Xray Telescope (CubeX) Timothy Stubbs, NASA Goddard Space Flight Center, Greenbelt, Maryland: Bi-sat Observations of the Lunar Atmosphere above Swirls (BOLAS)

Asteroids

Jeffrey Plescia, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland: Asteroid Probe Experiment (APEX),

Benton Clark, Lockheed Martin Space Systems Company, Littleton, Colorado: CubeSat Asteroid Encounters for Science and Reconnaissance (CAESAR)

Mars

David Minton, Purdue University, West Lafayette, Indiana: Chariot to the Moons of Mars Anthony Colaprete, NASA Ames Research Center, Moffett Field, California: Aeolus

Icy Bodies and Outer Planets

Kunio Sayanagi, Hampton University, Virginia: Small Next-generation Atmospheric Probe (SNAP) Robert Ebert, Southwest Research Institute, San Antonio, Texas: JUpiter MagnetosPheric boundary ExploreR (JUMPER)2 **Ames Research Center**

SNAP Hardware Configuration

Baseline Carrier Mission

Venus-Earth-Earth-Jupiter-Uranus Trajectory

• Launch: 5/25/31, VEEJ gravity-assists + Two DSMs

NASA Langley

- Launch Vehicle: Atlas V541, ~4450 kg C₃ = 11.9 km²/s²
- 12-year cruise to UOI

Uranus Arrival: May 17, 2043

- Close to 2049 Equinox
- After 2028 Northern Summer Solstice
- Voyager flyby 1986 was during Southern Summer Solstice
- Periapsis r_p = 1.05 R_U
- Capture orbit period $=$ ~142 days

Atmospheric Entry & Descent

Why Send Probes to Uranus?

Where in Solar System did Uranus Form?

"Nice Model" of Solar System Evolution Jupiter and Saturn pushed out Uranus and Neptune, and scattered many icy left-over materials.

Did Uranus and Neptune form closer to the sun that they are today?

Planetary Formation and Atmospheric Composition

- More lighter elements \rightarrow Isotopic Ratios \rightarrow Noble Gas Abundance

Missing Key: Noble Gas and Isotopic Ratios

Noble Gas and Isotopic Ratios have not been measured at Saturn, Uranus and Neptune

How do clouds with 5 Condensibles Form Layers and Interact?

There are 5 condensable species on Uranus: $CH₄$, SH₂, NH₃, NH₄SH, H₂O Earth has one $(H₂O)$!

How does the Atmosphere Circulate on Uranus?

Seasons on Uranus

HAMPTON NASA Langley **PURDUE** NASA Gradand JPL

UNIVERSITY

Public-domain figure

Review: Probe Scientific Objectives

Atmos. Composition - Formation and Evolution

- **- Noble Gas**
- **- Isotopic Ratios**

Thermal Structure and Energy Balance

- **- Temperature vs. Pressure**
- **- Radiative Flux**

Role of Clouds/Haze/Aerosols

- **- Composition & Light Scattering Properties of Aerosols**
- **- Vertical Distribution of Aerosols and Vapors**

Atmospheric Dynamics

- **- Zonal Circulation**
- **- Meridional Circulation**
- **- Vertical Mixing of Disequilibrium Species**

Review: Key Observables

Question #1: How deep do probe(s) need to reach?

Sampling CH4-ice and H2S-ice clouds is possible with 10-bar probes, <100 km below 1-bar. Sampling H2O-ice requires ~50-bar, 200-300 km below 1-bar. Reaching below all clouds requires descent to 200-500 bar pressure, >500km below 1-bar.

Question #2: Which Latitude(s)? How many probes?

Example: Cloud bands and circulation on Uranus

Which cloud band(s) should we target? Where do we best sample the zonal wind? **How do we best test meridional circulation? What's the effect of Seasonal forcing?**

Some quantities are Homogeneous

Spatially Homogeneous quantities do not need to be measured at multiple locations.

Review: Instruments

Red Letters = Usual Suspects

Explore Summer and Winter Hemispheres of Uranus Proposal:

Multi-Probe Missions

Enable Future Multi-Probe Planetary Missions:

- Advocated by Decadal Surveys
- Provide data on spatially varying atmospheric phenomena.
- **2003 Survey**: Advocated for a Jupiter Multi-Probe mission
- **2013 Survey:** Emphasized that a second probe can significantly enhance the scientific value of a probe mission
- Never realized due to perceived high-cost.
- SNAP Design applicable to Saturn, Uranus and Neptune (with possibilities for Venus)

 ON NASA Langley $PURDUE$ Mass Gradand IPL

SNAP Enables Future Multi-Probe Missions

Multi-Probe Science Objectives

Multi-Probe Shared Objectives:

Determine spatial variability in atmospheric properties:

- Vertical distribution of cloud-forming molecules
- Thermal stratification and static stability
- Atmospheric dynamics as a function of depth **Proposal: Probe Summer and Winter Hemispheres**

Main Probe-only Objectives:

Determine Bulk Composition:

VERSITY

• Measure abundances of the noble gases (He, Ne, Ar)

NASA Langley **PURDUE** NASA Gradand

• Measure isotopic ratios of H, C, N, and S

Science Instruments

Mass Spectrometer:

VERSITY

Noble gas abundance and isotopic ratios

NanoChem Atmospheric Composition Sensor:

Vertical distribution of cloud-forming molecules

Atmospheric Structure Instrument (ASI):

 \rm{DN} NASA Langley \bf{PURDUE} Masa $\cal C$

Thermal stratification and static stability

Ultra-Stable Oscillator (USO):

Atmospheric dynamics as a function of depth (Through Doppler Wind Experiment)

Mission Design Assumptions

- 1. Baseline Carrier Mission: Uranus Orbiter with Probe Mission Architecture #5 by Ice Giants Flagship SDT:
	- 1913 kg Uranus Orbiter
	- All-chemical Propulsion (no SEP)
	- 50 kg Science Payload on Orbiter
	- 321 kg Probe (= Primary Probe = PP)
- 2. Add SNAP as a Second Probe
- 3. Deliver PP and SNAP at Uranus with large spatial separation

NASA Langley PURDUE

4. PP/SNAP and CRSC trajectories must enable data relay

NASA's Uranus Mission in 2030s

*10-bar is requirement for hardware operation for margin, science objective is to reach 5-bar.

Add SNAP as a Second Probe

*10-bar is requirement for hardware operation for margin, science objective is to reach 5-bar.

Challenges of Multi-Probe Missions

- Deliver Primary Probe and SNAP at two significantly different locations (**latitude**, longitude, time-of-day)
- During each probe's atmospheric descent:
	- Orbiter used to receive data from probe, relay to Earth

NASA Langley PURDUE NASA

- Orbiter must be within 30 degree comm. cone around zenith.
- Each probe must reach at >5-bar while Orbiter is in 30-deg cone.

Uranus Entry Locations

V.

Accessibility of Entry Locations

- Trajectory gives access to a wide range of latitudes and spatial distribution for the entry probes
- One probe can enter the night side and the other on the day side (After 2028 Northern Summer Solstice)

Crosses rings Red: Yellow: Exceeds 200g during entry Feasible Green:

NASA Langley PURDUE

MASA

Approach direction

Dual Probe Delivery Trajectory

Dual-Probe Delivery Trajectories

Trajectory Solution to add SNAP to Ice Giant SDT Architecture #5

Atmospheric Entry & Descent

Science Instruments

AMPTON NASA Langley PURDUE AN Gradand JPL

NanoChem: How it works

- Measures Changes in Resistivity in response to vapor concentration
- Sensor Heads can be arrayed up to 16 x16 grid on a single chip
- Under Development at NASA Ames (PI: Jing Li)

 Gas molecules

NanoChem: TRL = 4 Today

Launched and Operated in Space

Navy MidSTAR-1 satellite in 2007

Environmental Monitoring on ISS

Sensitivity demonstrated for:

- ... CH_4 , H₂O, and NH₃, among others
- … in Mars and Earth conditions

Need to

... develop sensitivities for H_2S … demo in Giant Planet Conditions

NanoChem Commercialization

- **► Development at NASA Ames** PI: Jing Li
- A/D on NanoChem Attachment
- \triangleright Power from Phone (~mW)
- \triangleright Processing on the Phone
- \triangleright High sensitivity ppb to ppm
- \triangleright Data Transmission through Cellular Network

Baseline Hardware Configuration

Baseline Hardware Configuration

Probe Mass Summary

SNAP Design Summary

Dual-Probe Trajectory Solutions Found SNAP Mass: 30 kg (Instrument Mass = 4 kg) Total Data Return = 5.1 Mbit Total Mass Addition to Carrier Mission: 77 kg Total Estimated Cost: 79.5M (FY18\$) SNAP: Enable Future Multi-Probe Missions

A little bit about Tunable Laser Spectrometer (TLS)

- Shoot a tunable laser through gas sample
- Scan wavelength around an absorption line
- (Usually) One tunable laser required for one target gas molecule

 $10¹⁰$

15

Example: Mars Curiosity SAM instrument (Mahaffy et al. 2012)

Mars Curiosity SAM: State-of-the-Art Atmospheric Composition Instrument

Curiosity Sample Analysis at Mars (SAM):

- Combination of:
	- Quadrupole Mass Spec.
	- Gas Chromatograph
	- Tunable Laser Spec.
	- Solid Sample Inlet Tube
	- Solid Manipulation System
- 40 kg instrument mass
- Curiosity's Total Inst Mass $= 75$ kg
- SAM was >50% of total instr mass
- Curiosity total mass $= 899$ kg

Mars Curiosity SAM instrument (Mahaffy et al. 2012)

Probe Design Comparison

- •Design Considerations:
	- •Instruments
		- Usual Suspects: Mass Spec, ASI, USO …
		- Mass Spec has large impact on probe mass.
	- Entry Latitude & Depth
- •Design Comparisons
	- Galileo Probe
	- Huygens
	- 2010 Decadal Uranus Orbiter and Probe
	- 2017 Ice Giant SDT Study
	- SNAP

Probe Mass Comparison

Probe Mass Comparison

Review: Probe Scientific Objectives

Atmos. Composition - Formation and Evolution

- **- Noble Gas**
- **- Isotopic Ratios**

Thermal Structure and Energy Balance

- **- Temperature vs. Pressure**
- **- Radiative Flux**

Role of Clouds/Haze/Aerosols

- **- Composition & Light Scattering Properties of Aerosols**
- **- Vertical Distribution of Aerosols and Vapors**

Atmospheric Dynamics

- **- Zonal Circulation**
- **- Meridional Circulation**
- **- Vertical Mixing of Disequilibrium Species**

Review: Instruments

Red Letters = Usual Suspects

Take Home Message

Atmospheric Composition Instruments are the Primary Driver for Total Mass of an Atmospheric Entry Probe

Current State-of-the-Art:

Mass Spectrometer + TLS combination (e.g. Curiosity SAM)

Current Needs:

- **Reduce Mass and Power of Gas Composition Instruments**

Next generation:

- **Miniaturized Mass Spectrometer?**
- **TLS without Harriot Cell? (e.g. LaRC's Diode Laser Hygrometer)**

NASA Langley **PURDUE** NASA Gradual \blacksquare

- **Vapor Sensors?**

 \mathcal{L}

BACK UP SLIDES

SNAP IS A 30-KG ATMOSPHERIC PROBE THAT ENABLES MULTI-PROBE MISSIONS TO SATURN, URANUS AND NEPTUNE

SNAP Study Goals

Enable Future Multi-Probe Planetary Missions:

- Advocated by past Decadal Surveys
- Provide data on spatially varying atmospheric phenomena.
- **2003 Survey**: Advocated for a Jupiter Multi-Probe mission
- **2013 Survey:** Emphasized that a second probe can significantly enhance the scientific value of a probe mission
- Never realized due to perceived high-cost.
- SNAP Design applicable to Saturn, Uranus and Neptune (with possibilities for Venus)

 ON NASA Langley **PURDUE** Not Gradual JPL

SNAP Enables Future Multi-Probe Missions

Development Steps

CML 1: Cocktail Napkin – The science questions have been well articulated, the type of science observations needed for addressing these questions have been proposed, and a rudimentary sketch of the mission concept and high-level objectives have been created. The essence of what makes the idea unique and meaningful have been captured.

CML 2: Initial Feasibility – The idea is expanded and questioned on the basis of feasibility, from a science, technical, and programmatic viewpoint. Lower-level objectives have been specified, key performance parameters quantified and basic calculations have been performed. These calculations, to first-order, determine the viability of the concept.

CML 3: Trade Space – Exploration has been done around the science objectives and architectural trades between the spacecraft system, ground system and mission design to explore impacts on and understand the relationship between science return, cost, and risk.

CML 4: Point Design – A specific design and cost that returns the desired science has been selected within the trade space and defined down to the level of major subsystems with acceptable margins and reserves. Subsystems trades have been performed.

CML 5: Baseline Concept – Implementation approach has been defined including partners, contracting mode, integration and test approach, cost and schedule. This maturity level represents the level needed to write a NASA Step 1 proposal (for competed projects) or hold a Mission Concept Review (for assigned projects).

CML 6: Integrated Concept – Expanded details on the technical, management, cost and other elements of the mission concept have been defined and documented. A NASA Step 2 CSR is at this level of maturity. There is no corresponding milestone for assigned projects.

CML 7: Preliminary Implementation Baseline – Preliminary system and subsystem level requirements & analyses, demonstrated (& acceptable) margins and reserves, prototyping & technology demonstrations, risk assessments and mitigation plans have been completed. This is the maturity level needed for competed missions to hold their Preliminary Mission System Review (PMSR) and for assigned projects to hold their Mission Definition Review (MDR)

CML 8: PDR (Integrated Baseline) – Design and planning commensurate for a Preliminary Design Review (PDR).

CML 9: CDR – Design and planning commensurate for a Critical Design Review(CDR).

Probe Mass Summary

Multi-Probe Missions

Enable Future Multi-Probe Planetary Missions:

- Advocated by National Academy Decadal Surveys
- Provide data on spatially varying atmospheric phenomena.
- **2003 Survey**: Advocated for a Jupiter Multi-Probe mission
- **2013 Survey:** Emphasized that a second probe can significantly enhance the scientific value of a probe mission
- Never realized due to perceived high-cost.
- SNAP Design applicable to Saturn, Uranus and Neptune (with possibilities for Venus)

ON NASA Langley **PURDUE** NASA Gradand JPL

SNAP Enables Future Multi-Probe Missions

Interplanetary Trajectory Options

- A broad of catalog of ballistic chemical gravity-assist trajectory options
- SEP options not investigated due to high mass

Dual probe delivery architecture possible for multiple interplanetary trajectory options

 $\frac{SN}{N}$ NASA Langley PURDUE NASA Gradual

Baseline Baseline

Science Instruments

AMPTON NASA Langley PURDUE AN Gradand JPL

Overall Mission ConOps

PAP: Primary Atmospheric Probe

Overall mission ConOps with critical events

NanoChem: TRL = 4 Today

Launched and Operated in Space

Navy MidSTAR-1 satellite in 2007

Environmental Monitoring on ISS

Sensitivity demonstrated for: ... CH_4 , H₂O, and NH₃, among others … in Mars and Earth conditions Need to develop sensitivities for: $\dots H_2S$

… in Giant Planet Conditions

NanoChem Commercialization

- **► Development at NASA Ames** PI: Jing Li
- A/D on NanoChem Attachment
- \triangleright Power from Phone (~mW)
- \triangleright Processing on the Phone
- \triangleright High sensitivity ppb to ppm
- \triangleright Data Transmission through Cellular Network

Impact on Carrier Mission

Trajectory:

– Release SNAP after Uranus Orbit Insertion

Hardware:

- Mounting & deployment hardware
- Pre-deployment power & data connections

NASA Langley PURDUE

- Orbiter propellant
- Software & operations:
	- Accommodate second probe delivery and data relay

Link Analysis

Baseline Hardware Configuration

Probe Mass Summary

63

SNAP Probe Power Summary

NASA Langley

In left, we assume use of x3 RHUs.

Battery-powered heaters are also possible.

- After probe release until atmo. entry
- \rightarrow SNAP needs 3W of heating. For 30-day "coast"… Li-Ion (current, 145 Wh/kg) = 21 kg Li-Ion (future, 400 Wh/kg) = 7.5 kg
	- Li/CFx (639 Wh/kg) = 4.7 kg

Mass Impact on Carrier Mission by Addition of SNAP

- SNAP margined mass = 30 kg.
- Requires additional mass to baseline Uranus mission:
	- Probe Support Systems on the Orbiter
	- Propellant on the Orbiter

Technology Needs

- Instrument/Sensor Technology NanoChem is TRL = 4 today (Under Dev. at Ames)
- > Thermal Protection System: HEEET is needed for low density (Under Dev. at Ames)
- Power Batteries:

Low-temp., High Specific Energy Batteries alleviate need for RHUs

Electronics:

Low-survival temp will reduces heater power needs

 $\frac{SN}{IN}$ NASA Langley $\frac{PURDUE}{IN}$ NASA $Grddud$

Study Team (Science Team)

Kunio M. Sayanagi (PI) Robert A. Dillman David H. Atkinson Amy A. Simon Michael H. Wong Thomas R. Spilker Sarag Saikia Jing Li Drew Hope W. Chris Edwards

Hampton University NASA Langley Research Center Jet Propulsion Laboratory NASA Goddard Space Flight Center University of California, Berkeley Independent Consultant Purdue University NASA Ames Research Center NASA Langley Research Center NASA Langley Research Center

Mission Design Center:

NASA Langley Research Center Engineering Design Studio

 ON NASA Langley $\frac{PURDUE}{Nass}$ Gradand

Planetary Science deep Space SmallSat Studies

Science Objectives:

Tier-1 Objectives: Determine spatial differences of the following atmospheric properties from the Main Probe entry site:

- 1. Vertical distribution of cloud-forming molecules
- 2. Thermal stratification
- 3. Wind speed as a function of depth

Tier-2 Objectives: Augment Main Probe Science Objectives:

- 4. Measure abundances of the noble gases (He, Ne, Ar)
- 5. Measure isotopic ratios of H, C, N, and S

Team Members/Institutions

Kunio M. Sayanagi | Hampton University Robert A. Dillman | NASA Langley Research Center David H. Atkinson | Jet Propulsion Laboratory Amy A. Simon **INASA Goddard Space Flight Center** Michael H. Wong **Interval H. Wong Conserversity of California**, Berkeley Thomas R. Spilker | Independent Consultant Sarag Saikia **| Purdue University** Jing Li | NASA Ames Research Center Drew Hope **NASA Langley Research Center** W. Chris Edwards | NASA Langley Research Center

Supported by: NASA Langley Research Center Engineering Design Studio

Mission Overview:

Baseline Mission Configuration: Add SNAP to Uranus Orbiter and Probe Mission Orbiter delivers Main Probe and SNAP to Uranus

Baseline Spacecraft Configuration: Mass: 30 kg Probe Diameter: 50 cm Probe Power: Primary Batteries Heatshield Material: HEEET

Notional Payload:

NanoChem: Detect cloud-forming molecules Atmospheric Structure Instrument: Measure thermal profile Ultrastable Oscillator: Atmospheric Dynamics

Alternate Interplanetary Trajectories

- Dual probe delivery possible for multiple trajectory options
- \triangleright SNAP mission concept is applicable to many interplanetary trajectories

69

Concept-of-Operations: Dual-Probe Delivery

- \triangleright Shows hyperbolic approach trajectories of orbiter + SNAP (blue, right) and primary probe (red)
- \triangleright Shows elliptical captured orbit of orbiter (blue, left) and elliptical trajectory of SNAP (green)
- 30° Margined HWHM beam cone is centered around the negative of planet-relative velocity vector of the probes as they undergo entry and descent
- Orange cone: Ongoing probe entry mission but no orbiter-probe contact

 AMPTON NASA Langley PURDUE NASA $\mathcal G$ rddard _

 \triangleright Green cone: When orbiter is in contact with the probe

Cost Analysis

SNAP Cost Through Development

