In-Time Aviation Safety Management Systems

IASMS

Examining The Changing Roles and Responsibilities of Humans

NASA

Lawrence J. Prinzel III, Ph.D. Senior Technical Advisor NASA System-Wide Safety Project May 19, 2021

This is a prerecorded presentation for the 21st International Symposium on Aviation Psychology

Examining The Changing Roles and Responsibilities of Humans in Envisioned Future In-Time Aviation Safety Management Systems

Lawrence J. Prinzel III, Ph.D. Paul Krois, Ph.D. Mist Kyle K. Ellis, Ph.D. Rob John H. Koelling

Misty D. Davies, Ph.D. Robert W. Mah, Ph.D.

Langley Research Center Hampton, VA

Crown Consulting, Inc. Aurora, CO

Ames Research Center Moffett Field, CA

Air Transportation System Vision

Future Airspace Increasingly Diverse Operations

Advanced Air Mobility

Advanced Air Mobility

Air Traffic System Today

Collaborative Air Traffic Management

Collaborative Air Traffic Management

Enabling The Future Air Transportation System

Complexities, Risks, and Constraints

Safety Management Systems

From Reactive to Proactive to Predictive

¹ https://www.faa.gov/about/initiatives/sms/explained/basis/

NASA

Enabling Vision 2035/2045

Automatically-assured adaptive <u>in-time</u> safety management

In-Time Aviation Safety Management

https://doi.org/10.17226/24962.

In-Time System-Wide Safety Assurance

In-Time System-Wide Safety Assurance

In-Time Aviation Safety Management

Progress Toward In-Time Aviation Safety Management

National Academies Report

NASA Strategic Implementation Plan

Architecture and Information Requirements TM

In-Time Aviation Safety Management Systems (IASMS)

- Domain Specific In-time Safety Monitoring and Alerting Tools
- Integrated Predictive Domain Level Application
- Adaptive Real-time Safety Management

Services, Functions, & Capabilities

Configuration Settings

र्े

ANSP

Infrastructure

T

Weather

(MET)

1

Population Configuration

Settings

ŝ

Density

Safety

Reports

Human

Performance

P

assessments, and performs or informs a safety assurance action Interconnected ISSA SFCs that provide In-Time Risk Management and Safety Assurance

Integrated, Service-Oriented Architecture

Envisioned New Roles and Responsibilities

	RULES			
LEVEL OF AUTOMATION	MONITORING	GENERATING	SELECTING	IMPLEMENTING
Manual Control	Human	Human	Human	Human
Action Support	Human/Computer	Human	Human	Human/Computer
Batch Processing	Human/Computer	Human	Human	Computer
Shared Control	Human/Computer	Human/Computer	Human	Human/Computer
Decision Support	Human/Computer	Human/Computer	Human	Computer
Blended Decision Making	Human/Computer	Human/Computer	Human/Computer	Computer
Rigid System	Human/Computer	Computer	Human	Computer
Automated Decision Making	Human/Computer	Human/Computer	Computer	Computer
Supervisory Control	Human/Computer	Computer	Computer	Computer
Full Automation	Computer	Computer	Computer	Computer

ROLES

Level of Automation Taxonomy Example (from Endsley & Kaber, 1999)

NASA

Paradox of Automation — $? \rightarrow$ Autonomy

Images creative commons (17 U.S. Code § 107.Limitations on exclusive rights: Fair use)

CC-BY-SA 4.0 Matti Blume

Boeing 737-800 Flight Deck

IASMS¹ Services, Functions, Capabilities Maturation

¹In-time <u>Aviation Safety Management System</u>

Exploring Human Roles and Responsibilities

Images creative commons (17 U.S. Code § 107.Limitations on exclusive rights: Fair use)

Images creative commons (17 U.S. Code § 107.Limitations on exclusive rights: Fair use)

- "...a listing of those respects in which human capabilities surpass those of machines must, of course, be hedged with the statement that we cannot foresee what machines can be built to do in the future"¹
- "... less and less qualities are uniquely human, and the overall balance of humans and machines promises to set the profile of our future as a technology-dependent species."²

CC-BY-SA 2.0 Atomic Taco

¹ Fitts, P. M. (Ed.) (1951). Human engineering for an effective airnavigation and traffic-control system. Washington, DC: National Research Council

² J.C.F. de Winter and P.A. Hancock / Reflections on the 1951 Fitts List: Do Humans Believe Now that Machines Surpass them? Procedia Manufacturing, 3, 5334 – 5341

New Human-System Interactions May Be Possible

Challenge and Opportunity of the Envisioned

Challenge and Opportunity of the Envisioned

S-Curve

Images creative commons (17 U.S. Code § 107.Limitations on exclusive rights: Fair use)

- New Models and Frameworks
- New Methods
- New Tools & Techniques
- More Research
- ... Lot More Papers

Images creative commons (17 U.S. Code § 107.Limitations on exclusive rights: Fair use)

- New Models and Frameworks
- New Methods
- New Tools & Techniques
- More Research
- ... Lot More Papers

"Better Together"

NASA

Toward IASMS Through Use Cases

¹ J. Shively (2020). AAM Human Factors Issues.64th Annual Meeting of the Human Factors and Ergonomics Society. San Antonio: HFES. Note: Human-

Human-Autonomy Teaming Model¹

Wildfire Management Response

NASA

Toward IASMS Through Use Cases

¹ J. Shively (2020). AAM Human Factors Issues.64th Annual Meeting of the Human Factors and Ergonomics Society. San Antonio: HFES. Note: Human-

Human-Autonomy Teaming Model¹

Services, Functions, Capabilities Required

Addressing Risks and Constraints

¹O'Neill T, McNeese N, Barron A, Schelble B. Human–Autonomy Teaming: A Review and Analysis of the Empirical Literature. Human Factors. October 2020. doi:10.1177/0018720820960865

"There currently exists almost no empirical longitudinal research on HAT dynamics, or field research" ¹

Risks and Constraints

- Flight outside of approved airspace
- **Unsafe proximity** to air traffic, people on the ground, terrain or property
- Critical system failures (including loss of link, loss or degraded positioning system performance, loss of power, flight control failure and engine failure
- Loss-of-Control (i.e., envelope excursions)
- Physical/Environment Related Risks
 - Weather encounters (including wind gusts)
 - Threat by person—malicious
- Cyber-security related risks
- Those our predictive and prognostic SFCs have **not identified yet...**

Building Reference SFCs

¹O'Neill T, McNeese N, Barron A, Schelble B. Human–Autonomy Teaming: A Review and Analysis of the Empirical Literature. Human Factors. October 2020. doi:10.1177/0018720820960865

"There currently exists almost no empirical longitudinal research on HAT dynamics, or field research" ¹

Example Reference SFCs

- SAFEGUARD
- Proximity to Threat Service, Non-participant Casualty Risk Assessment, ICAROUS, Safe2Ditch
- RF Interference Modeling GPS Degradation Modeling APNT Services (alternatives to GPS) Battery Health Prognostics Command and Control Link Monitor
- Hyper-local weather modeling → Climacell (SDSP example) Vehicle-as-a-sensor services
- Adaptive security procedure development
- Industry-developed Cyber-security solutions and protocols
- Multiple Kernel Anomaly Detection (MKAD)

SFC Maturity Levels for Key Risks

Contingency Management

- Future challenges includes understanding the information requirements for human operators and how those change with diverse and increasingly complex levels of autonomy and contingency management capabilities
- In-time safety assurance SFCs must be developed with these considerations that may be significantly different dependent upon the concept of operation employed

Summary

- Human-Autonomy Teaming approaches may need to scale as the architecture of SFCs, use of interdependent automated systems, and operational environments evolve toward greater complexity
- The multi-dimensional space for design of IASMS has implications for the envisioned changing roles and responsibilities of the human operator
- The IASMS Monitor-Assess-Mitigate functions can inform design decisions about what information the human operators should monitor, when they need to make assessments, and how they need to intervene

