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Key Points: 13 

 A novel strategy for combining three fully independent precipitation datasets into a single14 

merged precipitation dataset is presented.15 

 A merged dataset is built from: (i) gauge-based, (ii) satellite-based and (iii) soil moisture16 

retrieval-based precipitation estimates.17 

 The merged dataset validates better against independent data than does each contributor,18 

benefitting from their complementary strengths.19 
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Abstract 

Three independent, quasi-global, gridded datasets of precipitation (a rain gauge-based 

dataset, the satellite-only component of the NASA Integrated Multi-satellitE Retrievals for 

Global Precipitation Measurement mission [IMERG] Final Run precipitation product, and 

precipitation estimates derived from NASA Soil Moisture Active Passive [SMAP] soil moisture 

retrievals), are objectively combined into a single pentad precipitation dataset at 36-km 

resolution using a unique approach based on extended triple collocation.  The quality of each of 

the four datasets is then evaluated against independent observations.  When a global land surface 

model at 36-km resolution is integrated four times, once utilizing the merged precipitation 

forcing and once with each of the three contributing datasets, the near-surface soil moisture 

variations produced with the merged forcing validate best against independent satellite-based soil 

moisture fields.  In addition, the merged dataset is found to be more consistent, relative to each 

contributor, with estimates of air temperature variations across the globe.  The merged dataset 

thus appears to draw successfully on the complementary strengths of each contributor:  the 

particularly high quality of the rain gauge-based dataset in areas of high gauge density, the more 

uniform accuracy across the globe of the IMERG data, and the moderate accuracy, particularly in 

semi-arid regions, of the soil moisture retrieval-based data.  

Plain Language Summary 

Obtaining measurements of precipitation across the globe can be challenging.  Rain gauges in 

some ways provide the most accurate measurements, but gauges are absent in many parts of the 44 
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world, and even where they exist, they only measure precipitation at the gauge itself and 

therefore may not provide an accurate large-scale average.  Satellite-based estimates of 

precipitation largely overcome these problems, but such data have their own issues, notably a 

“snapshot” (rather than a time-average) character of the measurements and difficulty associated 

with interpreting the measured radiances in the presence of complex land surfaces.  In the present 

paper, we use a novel approach to generate a “merged” dataset, one that optimally combines the 

gauge precipitation information and the satellite-based precipitation information with a third set 

of estimates derived from soil moisture retrievals.  The merged precipitation dataset and each of 

the three contributors (aggregated here to 5-day averages at a spatial resolution of about 36-km) 

are then evaluated for consistency with independent geophysical fields.  The merged dataset is 

found to perform best, a clear indication that it takes proper advantage of the complementary 

strengths of each contributor and, accordingly, that the presented approach for merging the 

different contributors is indeed viable. 57 

58 



4 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

1. Introduction

Precipitation imposes a first-order control on the surface water balance, and accordingly, 

accurate precipitation forcing is central to accurate hydrological modeling (Larson and Peck, 

1974).  A hydrological model may comprise well-calibrated and physically sensible treatments 

of interacting hydrological processes – and may thereby be ready to provide useful estimates of 

subsurface soil moisture content and transport, groundwater discharge, and large-scale 

evapotranspiration – but if the precipitation that drives the model is poor, then so too will be its 

products.  The impact of precipitation accuracy on hydrological simulation, which has been 

explored in numerous studies (e.g., Obled et al., 1994; Renard et al., 2010; Arnaud et al., 2011; 

Bisselink et al., 2016), has long served as a key motivation for improved precipitation 

measurement systems (e.g., Sorooshian et al., 2000). 

Global hydrological modeling accordingly requires an accurate global dataset of 

precipitation forcing.  Gauge-based global datasets (e.g., Chen et al., 2008; Schneider et al., 

2015) have the longest historical legacy and continue to be produced and utilized by the 

community, and they are generally considered the gold standard where the gauge data are 

available.  The advent of satellite measurements, however, ushered in new strategies for 

measuring global rainfall variations (Tapiador et al., 2012).  In essence, these remote sensing 

techniques translate radiances from various combinations of hydrometeors, clouds, and water 

vapor into precipitation rates.  The algorithms range from early statistical relationships, such as 

the Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI; Arkin 

and Meisner, 1987), to the more physically-based Goddard PROFiling algorithm (GPROF; 

Kummerow et al., 2015; Randel et al., 2020).  The former related infrared (IR) cloud-top 

temperatures to radar rainfall estimates in the Global Atmospheric Research Project (GARP) 81 
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Atlantic Tropical Experiment (GATE) in the Atlantic off of West Africa in 1974, while the latter 82 

uses a Bayesian scheme to select entries in libraries of vertical profiles of radiative transfer 83 

calculations, hydrometeor content, and atmospheric temperature and humidity, each related to a 84 

surface precipitation rate, that best match multi-channel passive microwave radiance 85 

observations by a sensor. 86 

Note that the gauge-based and satellite-based precipitation datasets have specific 87 

advantages and disadvantages.  The chief advantage of the gauge-based products is the simple 88 

fact that precipitation amounts at the gauge locations are directly measured rather than inferred – 89 

the rates obtained at a given station can be considered highly accurate (though still subject to 90 

measurement error, e.g., due to undercatch during windy conditions).  The usefulness of gauge 91 

products at the global scale, however, is limited by: (i) the low density or complete lack of 92 

measurement stations in many parts of the world (Kidd et al., 2017), and (ii) the fact that, even in 93 

well-gauged regions, the gauges measure precipitation at a point rather than over a large area, so 94 

that spatial representativeness errors can significantly degrade the gridded product.  In contrast, 95 

the data underlying satellite-based precipitation products are far more globally comprehensive, 96 

with each data value representing an areal average rather than a point measurement.  97 

Furthermore, satellite datasets can potentially offer high spatial and temporal resolution [e.g., 98 

0.1°×0.1°, half-hourly for the Integrated Multi-satellitE Retrievals for Global Precipitation 99 

Measurement (GPM) mission (IMERG); see Section 2.1.2].  Satellite-based products, however, 100 

are subject to their own disadvantages: (i) since the individual measurements represent snapshots 101 

in time, the data are subject to temporal representativeness error, and (ii) the satellites measure 102 

radiances that must be converted into precipitation rates using calibrated algorithms, and these 103 

algorithms are particularly difficult to apply over heterogeneous land surfaces. 104 
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An additional, fully independent approach to deriving global gridded datasets of 

precipitation forcing has recently been garnering attention.  The SM2RAIN algorithm (Brocca et 

al., 2013, 2014) interprets time variations in remotely-sensed soil moisture retrievals in terms of 

the precipitation rates that forced them (see Section 2.1.3).  As with the other satellite-based 

products, the soil moisture retrievals underlying SM2RAIN represent areal averages with 

extensive global coverage.  However, because soil moisture integrates, in a sense, the impacts of 

precipitation over time, the “snapshot” issue limiting the other satellite-based products is less 

problematic.  The SM2RAIN algorithm, of course, has its own important limitations, including: 

(i) an inability to capture high intensity precipitation estimates, for which liquid precipitation

might run off directly rather than infiltrate the soil, (ii) coarse time resolution (as controlled by 

the revisit time of the satellite) and spatial resolution, (iii) errors associated with the unknown 

timing of the precipitation between the soil moisture retrievals, and (iv) poor or no estimates in 

areas with snow, frozen ground, or dense vegetation. 

We focus in this paper on the benefits of combining these three distinct and fully 

independent global precipitation dataset types – datasets based on rain gauge measurements, 

satellite measurements of cloud and water vapor properties, and satellite measurements of soil 

moisture – into a single merged dataset that capitalizes on the relevant advantages of each.  

Because the merging process combines the three contributors optimally based on estimates of 

their relative accuracies, the merged dataset should, in principle, prove superior to each 

contributor on its own.   

We use a triple collocation-based approach (see Section 2.2) to merge the three 

contributing precipitation datasets.  The approach is simpler than some existing approaches (e.g., 

Beck et al. 2017) but has the advantage of offering a uniquely intuitive estimation of the relative 127 
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accuracy of each dataset.  We thus view our study as complementing existing work.  Triple 

collocation, which has been used extensively in the geosciences (e.g., Stoffelen, 1998), is made 

viable here by the independence of the errors in the three contributing precipitation datasets.  

Triple collocation has in fact already been used for merging precipitation datasets; Dong et al. 

(2020) used it to merge satellite-based, reanalysis, and SM2RAIN precipitation data into a single 

merged precipitation product that they then evaluated against a gauge-based precipitation dataset 

in Europe.  These authors found that their merged product indeed validates better against the 

gauge-based dataset than does any of their contributing datasets individually, illustrating clearly 

the potential effectiveness of the approach. 

Here we employ the same general strategy as Dong et al. (2020), but with two important 

differences.  First, instead of using reanalysis precipitation as one of the three contributors, we 

use a gauge-corrected weather analysis dataset (in most areas, see Section 2.1.1); because our 

goal is to produce the most accurate precipitation dataset possible for global hydrological 

modeling, we want the merged product to take full advantage of the gauge information where it 

exists – we want to ingest the gauge data into our merged product to the fullest extent possible.  

Second, we extract the weights used for the merging in a way that is, to our knowledge, unique 

(section 2.2).  Our specific approach may have applicability to data merging exercises in general. 

The various precipitation datasets we examine differ in their spatial and temporal 

resolutions.  To make the interpretation of this first study more straightforward, we focus here on 

the information content of each dataset at a relatively coarse spatial (~36-km x 36-km) and 

temporal (5-day average) resolution.  That is, after coarsening each contributing dataset as 

necessary to these resolutions and combining them into a single merged dataset, we determine 

whether the merged dataset validates better against independent data than do any of the 150 
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coarsened contributors.  (The added benefit obtained from the higher resolution information 

available with some datasets will be addressed in a future study.)  Because the soil moisture 

retrievals used are unavailable during snow periods, we also limit our analysis here to the boreal 

warm season of May–September.  For our main validation exercise, we evaluate the increase in 

accuracy achieved (relative to an available, independent global dataset of soil moisture 

retrievals) when the merged data rather than the individual contributors are used to generate soil 

moistures in a hydrological modeling system. 

Finally, note that we will not evaluate absolute magnitudes of precipitation.  Such an 

evaluation is intractable given that we are already using the best precipitation data available to 

produce the merged dataset, and any fully independent large-scale “truth” we did come across 

would be subject to the limitations noted above.  While we might instead attempt to get at 

precipitation magnitudes by comparing the streamflow totals generated with our hydrological 

modeling system against observed streamflow totals, this would almost certainly reflect more on 

the accuracy of the land model than on the precipitation inputs themselves.  In essence, in this 

study, the long-term (climatological) averages of the magnitudes of our merged precipitation 

data will be forced to agree with those of the gauge data.  Our focus for evaluation will instead 

be on the time variability of the estimated precipitation amounts.   The precise timing and 

relative magnitudes of events in a precipitation time series are indeed key to the overall 

characterization of hydrological variability and to the modeling of interactions between the land 

surface and the rest of the climate system.  The time variability of precipitation, our focus here, 

will draw from all three contributors and should be most accurate within the merged dataset.   

Our overall approach – the contributing datasets, the merging procedure, and the 

validation methodology – is described in Section 2.  Our inferences regarding the relative 173 
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accuracy of the different contributing datasets and our evaluation of the merged precipitation 174 

product against available global data are provided in Section 3.  Section 4 provides further 175 

discussion, and Section 5 provides an overall summary. 176 

177 

2. Data and Methods178 

2.1 Precipitation datasets. 179 

2.1.1 Gauge/Analysis.   180 

The first precipitation dataset considered, the “Gauge/Analysis” dataset, consists of the 181 

precipitation data used in the production of the SMAP Level 4 soil moisture product (Reichle et 182 

al., 2017b).  For the most part, it can be considered a rain gauge dataset; over most of the globe, 183 

the Gauge/Analysis data are derived from the 0.5-degree daily Climate Prediction Center Unified 184 

(CPCU) rain gauge precipitation product (Xie et al., 2007; Chen et al., 2008), with consideration 185 

of the different gauge reporting times (Reichle and Liu, 2014; Reichle et al., 2021).  The 186 

exceptions are Africa and the high latitudes, where the CPCU gauge coverage is considered too 187 

poor for SMAP Level 4 production.  In Africa and north of 62.5°N, the Gauge/Analysis data 188 

consist of precipitation data produced by the National Aeronautics and Space Administration 189 

(NASA) Global Earth Observing System (GEOS) Forward Processing (FP) weather analysis and 190 

forecasting model (Lucchesi, 2018).  These latter data thus consist of model-generated 191 

precipitation amounts from a full atmospheric model “analysis” constrained heavily by 192 

assimilated observations of atmospheric temperature, humidity, winds, etc.  Between 42.5°N and 193 

62.5°N, a tapered blend of the gauge and analysis data is used.  Note that as part of the 194 

construction of the Gauge/Analysis dataset, both the CPCU rain gauge data and the GEOS FP 195 
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data were scaled so that their monthly climatologies matched those of Version 2.2 of the Global 196 

Precipitation Climatology Project (GPCP; Adler et al., 2003). 197 
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Reichle et al. (2017a, 2019) provide a comprehensive description of this composite 

precipitation dataset.  Prior to merging it with the other two precipitation datasets, we regrid the 

data to the ~36-km x ~36-km SMAP EASE grid (Brodzik, 2012) and temporally average them to 

5-day means.  The spatial regridding is performed through bilinear interpolation.

2.1.2 IMERG. 

IMERG is a U.S. GPM Science Team precipitation product.  IMERG provides half-hour, 

0.1° x 0.1° global gridded data in three “Runs”—Early (4h after observation time), Late (14h 

after observation time), and Final (3.5 months after observation time).  The algorithm 

intercalibrates, merges, and interpolates satellite microwave precipitation estimates as well as IR 

satellite estimates (intercalibrated to the microwave estimates) and precipitation gauge analyses 

at fine time and space scales for the period June 2000 to present over the globe (Huffman et al., 

2020).  In this study we use the satellite-only (precipitationUncal) data field in the Version 6 

Final Run (which is effectively the Late Run product), meaning that the estimates do not include 

explicit monthly gauge information and are thus independent of the gauges underlying the 

Gauge/Analysis data in this study.  The IMERG precipitation data are aggregated to the ~36-km 

x ~36-km SMAP EASE grid and temporally averaged to 5-day means.   

2.1.3 

SM2RAIN-based Rainfall Estimates.  Soil moisture tends to increase during a precipitation 

event, and the size of the increase is closely related to the precipitation volume.  An analysis of 

217 
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satellite-based soil moisture retrievals at a given site should therefore contain information on the 

precipitation falling at that site.  This idea was developed and explored extensively by Brocca et 

al. (2013, 2014), who successfully derived rainfall estimates from soil moisture retrievals 

produced by the Advanced Scatterometer (ASCAT) and other sensors using their SM2RAIN 

algorithm. 

Soil moisture retrievals based on L-band brightness temperature measurements are now 

available from the European Space Agency’s SMOS mission (Kerr et al., 2010) and NASA’s 

Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010).  These L-band soil 

moisture retrievals represent conditions in the top 5 cm of soil, a depth ~4-5 times greater on 

average than that represented by, e.g., ASCAT measurements.  The idea that this greater depth is 

intrinsically more appropriate for SM2RAIN-based precipitation estimation was tested by Koster 

et al. (2016), who quantified rainfall time series across the globe from SMAP, SMOS, and 

ASCAT retrievals and then compared them to an established rain gauge-based precipitation 

product.  They found that the L-band retrievals did indeed perform significantly better and that 

the SMAP data provided the best rainfall estimates. 

The SM2RAIN precipitation estimation approach continues to be developed and applied 

in numerous parts of the globe (e.g., Tarpanelli et al., 2017; Ciabatta et al., 2018; Chiaravalloti et 

al., 2018).  The version of the algorithm utilized here is that described by Koster et al. (2018), 

which features an empirically-fitted soil moisture loss function that varies in space (Koster et al., 

2017).  We use SMAP soil moisture retrievals from May-September in 2019-2020 (Release ID 

R17000) to fit the loss functions (working around a ~5-week SMAP data gap during June-July of 

2019), and we then apply the SM2RAIN algorithm to the SMAP retrievals to compute the 

SM2RAIN-based daily precipitation time series covering May-September of 2015-2018.  Note 240 
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that these time series, while daily, have identical values between the satellite’s 3-4 day revisit241 

time.  Finally, we aggregate the daily values to pentad averages. 242 

243 

2.2 Merging Approach: Extended Triple Collocation 244 

If the time series of a given variable is estimated in three different ways, using three 245 

independent sets of measurements (in particular, measurements with independent errors), the 246 

standard deviation of the errors associated with each of the three estimates can be quantified 247 

using triple collocation (Stoffelen, 1998).  Extended triple collocation (McColl et al., 2014) adds 248 

to the theory, providing the means to estimate the correlation ρX,Truth between each time series X 249 

and the unknown “truth” time series – another useful accuracy metric.  As discussed below, we 250 

use relative values of ρX,Truth to determine the weights needed to combine the three precipitation 251 

datasets into a single merged dataset, with higher weights naturally assigned to the datasets 252 

deemed, through ρX,Truth, to be more accurate.  These weights, of course, vary with location. 253 

Triple collocation, however, implicitly assumes a Gaussian distribution of the errors in 254 

the time series considered, and precipitation is far from Gaussian; even when the precipitation is 255 

averaged into pentads, the distributions tend to have a large and positive skew, the pentad 256 

precipitation has a nonzero probability of being exactly zero, and precipitation can never be 257 

negative.  Given these violations of the triple collocation assumptions, the application of triple 258 

collocation to raw precipitation time series is arguably difficult to justify.  To address the 259 

skewness issue, we take the natural logarithm of this average pentad precipitation after first 260 

applying a small minimum threshold, set to 1% of the local mean warm-season (May-September) 261 

pentad precipitation rate.  (The threshold is applied to avoid obvious problems with computing 262 
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logarithms of zero.  Any precipitation rate falling below this threshold is reset to the threshold 

prior to computing its logarithm.)  Lognormal distributions are known to characterize 

precipitation better than do normal distributions (e.g., Kedem and Chiu, 1987), a fact confirmed 

by numerous spot-checks with our own pentad data.  There still remains, however, the violation 

of the Gaussian assumption associated with zero precipitation.  In addition, the required 

independence between the datasets may be violated (probably only slightly) in Africa and high 

latitudes, given that the Analysis precipitation used in these particular regions may be affected by 

some of the same satellite radiance observations used to derive the IMERG retrievals.  Still 

another possible violation of the triple collocation framework involves the potential presence of 

significant seasonal cycles in the time series and in the errors (Draper et al., 2013), even for the 

limited (May-September) timeframe considered here.  Given various technical issues (e.g., 

associated with our use of logarithms – we cannot take a logarithm of a negative anomaly, and 

the alternative approach of computing anomalies of a time series of logarithms has little physical 

meaning), we are applying the triple collocation analysis to the original logarithm time series 

rather than to scaled anomalies relative to a seasonal climatology and are thus disregarding the 

fact that seasonal cycles could imprint themselves inappropriately on the results. 

In other words, even with the use of logarithms, we still face several potential violations 

to the triple collocation framework.  We will nevertheless show in Section 3 that our use of triple 

collocation leads to a viable merging of the contributing datasets. 

At a given grid cell, prior to taking logarithms, we first scale each precipitation time 

series to have the same long-term May–September mean (that of the Gauge/Analysis data), our 

goal being to focus on (and find the optimal merging of) the time-variation information 

contained within each dataset (see Section 1).  Letting LG(t), LI(t), and LS(t) represent the time 285 
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series of the logarithms of the scaled pentad precipitation rates from the Gauge/Analysis, 286 

IMERG, and SM2RAIN-based precipitation datasets, respectively, we compute the correlations 287 

between each possible pairing:  288 

ρGI = Corr( LG(t), LI(t) ) (1) 289 

ρGS = Corr( LG(t), LS(t) ) (2) 290 

ρIS = Corr( LI(t), LS(t) ). (3) 291 

Now let ρG,Truth, ρI,Truth , and ρS,Truth represent the temporal correlations between the unknown 292 

truth and, respectively, the logarithms of the Gauge/Analysis, IMERG, and SM2RAIN-based 293 

pentad data.  We use the triple collocation framework to estimate: 294 

ρG,Truth = { ρGI ρGS / ρIS }1/2 (4) 295 

ρI,Truth = { ρGI ρIS / ρGS }1/2 (5) 296 

ρS,Truth = { ρGS ρIS / ρGI }1/2 (6) 297 

See McColl et al. (2014) for further information; these equations are essentially a simplified 298 

version of their equation (9).  Note that due to sampling error, ρGS, ρIS, or ρGI could be small and 299 

negative; we enforce a minimum value of 0.01 for each prior to using them in (4)-(6). 300 

We convert these ρG,Truth, ρI,Truth, and ρS,Truth values into the weights used to generate the 301 

merged product by utilizing a unique (to our knowledge) approach.  Consider the general case of 302 

three measurement time series X1(t), X2(t), and X3(t) for a given variable that have independent 303 

errors and that are normally distributed with zero mean and unit variance.  Representing the true 304 

(and unknown) standardized time series for the variable as Truth(t), also assumed to be normally 305 



15 

distributed with zero mean and unit variance, we can write (e.g., Bras and Rodriguez-Iturbe, 306 

1985): 307 

X1(t) = ρ1,truth Truth(t)  +  (1 – ρ1,Truth
2)½ ε1(t) (7) 308 

X2(t) = ρ2,Truth Truth(t)  +  (1 – ρ2,Truth
2)½ ε2(t) (8) 309 

X3(t) = ρ3,Truth Truth(t)  +  (1 – ρ3,Truth
2)½ ε3(t), (9) 310 

where ρ1,Truth, ρ2,Truth, and ρ3,Truth are the correlations between the three measurement time series 311 

and the unknown truth, and ε1(t), ε2(t), and ε3(t) are independent and normally distributed random 312 

variables with zero mean and unit variance.  Our goal is to find the weights W1, W2, and W3 that, 313 

when used to compute a merged time series, Merged(t): 314 

Merged(t) = W1 X1(t) + W2 X2(t) + W3 X3(t), (10) 315 

maximize the value of the temporal correlation ρMerged,Truth of the merged data with the truth.  316 

Each of the weights found would be a function of the correlations ρ1,Truth, ρ2,Truth, and ρ3,Truth 317 

already established through triple collocation.  Note that this is distinct from the approach of 318 

Dong et al. (2020), who focused on minimizing errors rather than maximizing the correlation 319 

against the unknown truth. 320 

Finding analytical expressions for W1, W2, and W3 by searching for maxima of the 321 

analytical representation of Corr[Merged(t),Truth(t)] quickly becomes intractable.  A brute-force 322 

Monte Carlo approach, however, is well-suited to the problem.  Using a random number 323 

generator, we generate a time series Truth(t) with zero mean and unit variance, and, using (7)-(9) 324 

along with prescribed values of ρ1,Truth, ρ2,Truth, and ρ3,Truth, we construct artificial time series of 325 

X1(t), X2(t), and X3(t) that are fully consistent with this artificial truth. We then test all 326 
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331 

332 
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334 

335 

combinations [W1, W2, W3] and find the particular combination that maximizes 

Corr[Merged(t),Truth(t)].  This exercise determines the values of W1, W2, and W3 for the 

particular combination of ρ1,Truth, ρ2,Truth, and ρ3,Truth examined.  By design, the correlation 

between the merged dataset constructed with these values and the unknown truth equals or 

exceeds ρ1,Truth, ρ2,Truth, and ρ3,Truth in this idealized analysis. 

We illustrate the weights so generated in Figure 1.  Weights are computed for all 

combinations of ρ1,Truth, ρ2,Truth, and ρ3,Truth values in increments of 0.01; Figure 1 only shows the 

sensitivity of the weights to ρ1,Truth and ρ2,Truth for a few selected values of ρ3,Truth.  For 

presentation purposes, a 5-point boxcar smoother was applied to the fields to remove a small 

amount of sampling-related noise. 336 

337 

338 
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339 

Figure 1.  Optimal weights to apply to three time series (X1, X2, X3) in producing a merged 340 

dataset, as a function of the correlation between each time series and the unknown truth.  A full 341 

set of contours is shown for three selected values of ρ3,Truth: (a) 0.25, (b) 0.5, and (c) 0.75. 342 
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346 

We apply these functions directly to the calculation of our merged precipitation data.  At 

a given location, we first convert our logarithm time series LG, LI, and LS to corresponding 

standard normal deviate time series ZG, ZI, and ZS (for consistency with the analysis underlying 

Figure 1) and compute a merged time series, ZM(t): 347 

ZM(t) = WG ZG(t) + WI ZI(t) + WS ZS(t) . (11) 348 

We use the functions captured (in part) by Figure 1 to extract the weights WG, WI, and WS from 349 

the values of ρG,Truth, ρI,Truth, and ρS,Truth determined with (4)-(6).  (Note that ρX,Truth is the same 350 

for LX and ZX.)  Using weighted mean values (μave and σave
2) of the means and variances of the 351 

LG, LI, and LS time series, computed simply (and non-rigorously) here with 352 

μave  = WG μLG + WI μLI + WS μLS (12) 353 

σave
2  = WG σ2

LG + WI σ2
LI + WS σ2

LS ,     (13) 354 

where μLX and σLX
2 are the mean and variance, respectively, of the logarithmic time series LX, we 355 

expand ZM(t) into the merged precipitation estimate, Pmerged(t): 356 

Pmerged(t)  = exp( ZM(t) σave + μave ) .    (14) 357 

We will hereafter refer to the time series Pmerged(t) as the Merged precipitation data. 358 

359 

2.3  Validation Approach 360 

2.3.1  Global Validation Data 361 
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We use two independent global datasets to evaluate the improvements of the Merged data 

over each of the contributors.  The first is the time series of near-surface soil moisture retrievals 

provided by the Advanced Scatterometer (ASCAT) mission.  ASCAT is a real aperture radar that 

operates at C-band; ASCAT soil moisture retrievals (reflecting moisture conditions in the top 

centimeter of soil) are derived from measurements of the backscatter coefficient using a semi-

empirical change detection approach (Wagner et al., 2013).  The processing of the ASCAT data 

for the present paper (version H115, from the MetOp-A and MetOp-B European Meteorological 

Operational spacecraft; see EUMETSAT [2019]), including the application of quality controls, is 

the same as that described in detail by Reichle et al. (2021); here, however, we regrid the data to 

the 36-km EASE grid used for the precipitation merging.  An offline hydrological system 

(described in the next section) is used to transform the precipitation datasets into soil moisture 

datasets for direct evaluation against the ASCAT data. 

Note that we use ASCAT data here rather than the potentially more reliable SMOS data 

(Kerr et al., 2010) because SMOS and SMAP data (and thus SMOS and our SM2RAIN-based 

precipitation data) are not adequately independent.  Although the SMOS and SMAP 

measurements are collected from different space-borne platforms, they both use similar 

algorithms to convert brightness temperatures to soil moisture retrievals. 

The second global dataset is the CPC near-surface air temperature (T2M) dataset, which 

comprises station-based T2M measurements at 0.5°×0.5° resolution 

(https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html).  The data come in the 

form of daily minimum and maximum temperatures (Tmin and Tmax, respectively), which suits 

our purpose well, as we will be examining the correlation between precipitation and day-night 383 
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temperature difference, estimated here as Tmax - Tmin.  Prior to use, the CPC T2M data are 384 

regridded conservatively to the 36-km EASE grid. 385 

386 

2.3.2 SMAP Level 4 Hydrological Modeling System. 387 

The four precipitation datasets (Gauge/Analysis, IMERG, SM2RAIN-based, and 388 

Merged) are each used in turn to drive the Catchment land surface model (Koster et al., 2000; 389 

Ducharne et al., 2000) globally offline on the 36-km EASE grid over the warm seasons (May 390 

through September) of 2015-2018.  We use the modeling framework underlying the production 391 

of the SMAP Level 4 Version 5 product (an update of the framework underlying the Version 4 392 

product [Reichle et al., 2019] that includes, for example, an improved aerodynamic roughness 393 

length formulation), though here we run the system without the data assimilation component.  As 394 

mentioned earlier, the climatology of the Gauge/Analysis precipitation dataset is consistent with 395 

that of GPCP version 2.2; prior to running the other three precipitation datasets through the 396 

hydrological model, we scale them so that their (4-year) climatological monthly means agree 397 

with those of the Gauge/Analysis data at each grid cell.  This scaling does not affect our 398 

comparisons, as we are interested here in the impacts of the short-term time variability of the 399 

precipitation fluxes rather than on the impacts of their respective climatologies.  Importantly, this 400 

additional scaling makes our initialization approach more consistent with the subsequent 401 

simulation: we initialize the land model each May 1 with data from a SMAP Level 4 model-only 402 

long-term simulation on the 36-km EASE grid (i.e., a long-term simulation that uses the 403 

Gauge/Analysis data).   404 
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Note that the modeling system requires hourly precipitation data.  We disaggregate the 

pentad values for each precipitation dataset using high temporal resolution precipitation data 

from the GEOS forward processing (FP) analysis system (Lucchesi, 2018) in such a way as to 

conserve precipitation mass.  That is, for a given 5-day period and grid cell of a given 

precipitation dataset, the hourly precipitation values follow the sub-pentad time variability of the 

FP analysis, but their 5-day sum is forced to match the dataset’s original pentad total.  [Note that 

the scaling factor used is limited to a maximum of 10 but that any precipitation otherwise not 

included due to this cutoff is distributed within early overnight hours (midnight – 3AM local 

time) of the 5-day period to maintain mass conservation.]  See Reichle et al. (2017a) for a 

description of a similar strategy applied to the use of a daily rain gauge product in a full 

atmospheric reanalysis. 

Through these simulations, the Catchment LSM produces global fields of near-surface (0-

5 cm) soil moisture across the 2015-2018 warm seasons for each precipitation dataset.  We 

aggregate the instantaneous soil moistures to daily averages for direct comparison to the daily 

ASCAT data discussed above. 

2.3.3  Validation Metric. 

As noted in the introduction, we focus in this paper on evaluating the timing and relative 

magnitudes of the precipitation rates in the merged and contributor datasets rather than on 

evaluating their absolute magnitudes.  For this type of evaluation, the temporal correlation (as 

quantified by the Pearson’s correlation coefficient) against an independent dataset is the most 

appropriate metric, and accordingly, our validation efforts in Section 3.2 will focus on temporal 426 
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correlation.  This is indeed consistent with our use, in the Monte Carlo simulations underlying 

the construction of Figure 1, of time series correlation against an artificial truth as the target for 

determining optimal weights. 

For our ASCAT comparisons (Section 3.2.1), we will use anomaly correlations, that is, 

correlations computed after the mean seasonal cycles of the time series are removed.  

Specifically, we will compute the square of the anomaly temporal correlation between daily 

ASCAT soil moisture retrievals over the warm seasons (May-September) of 2015-2018 and the 

corresponding soil moistures produced under each precipitation forcing.  The idea is simple – 

because errors in the ASCAT data are completely independent of the errors in each of the 

contributor precipitation datasets (and completely independent of errors in the hydrological 

modeling system itself), higher agreement with the ASCAT data is an indication of higher 

precipitation accuracy.  The calculation of anomaly correlations (rather than raw correlations) 

makes sense in the context of the ASCAT data given that the precipitation inputs to the 

hydrological model are already scaled to monthly climatologies (section 2.3.2), as necessitated 

by a need for consistency with model initial conditions. 

We expect precipitation and temperature to be related for two distinct reasons: (i) the 

wetter soil induced by precipitation will lead (in soil moisture-limited evapotranspiration 

regimes) to increased evapotranspiration and thus to increased evaporative cooling, which lowers 

the temperature, and (ii) precipitation is associated with cloud cover, which reduces incoming 

solar radiation.  We thus examine (Section 3.2.2) temporal correlations between the different 

precipitation estimates and independent T2M measurements (Section 2.3.1).  For these 

comparisons, we have no specific reason to focus on the anomaly time series and will thus 

examine correlations computed on the raw time series; specifically, we will compute the square 449 
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of the temporal correlation coefficient between the pentad precipitation values and the 450 

corresponding 5-day average day-night surface air temperature differences. 451 

Note that in the figures, we will refer to the anomaly correlation between time series X 452 

and Y as anomCorr(X,Y) and to the raw correlation between them as Corr(X,Y). 453 

454 

3. Results455 

3.1  Relative Accuracy of Contributing Precipitation Datasets 456 

We apply the extended triple collocation approach (Section 2.2) to the Gauge/Analysis, 457 

IMERG, and SM2RAIN-based precipitation data (specifically, to the logarithms of the pentad-458 

averaged data) covering days 120-270 (roughly, May through September) of each year during 459 

2015–2018.  Equations (4)-(6) accordingly provide an estimate, at each grid cell, of the 460 

correlation between each logarithm time series and the unknown truth – that is, they provide an 461 

estimate of each dataset’s inherent accuracy.  Maps of the squares of these correlations (a 462 

measure of explained variance) are provided in Figures 2 and 3.  Naturally, when considering 463 

these and other maps in the study, we must remember that the May through September period 464 

considered here constitutes the “warm season” for the Northern Hemisphere but the cold season 465 

for the Southern Hemisphere, with potential implications for validation. 466 

467 
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468 

Figure 2.  a. Triple collocation-based estimates of the square of the temporal correlation 469 

between the Gauge/Analysis pentad precipitation data and the unknown truth.  White areas 470 

indicate where triple collocation-based estimates of accuracy were not possible given data 471 

availability (at least 100 samples from all contributors from which to compute correlations).  b. 472 

Number of gauges per 0.5°x0.5° grid cell in the raw CPCU gauge-based precipitation dataset 473 

during the studied period. Data are plotted here on the 36-km EASE grid; values can be non-474 

integers due to both the combining, through conservative regridding, of different grid cell 475 

density numbers into a single grid cell value and to the fact that the values shown represent time 476 

averages.  Gauge density in Africa and north of 62.5N is not shown, as the Gauge/Analysis 477 

dataset does not utilize rain gauges in these areas (see text).  The horizontal lines at 42.5N and 478 

62.5N delimit the area over which the tapered merging of gauge data and analysis data is 479 

performed (see Reichle et al. 2017a). 480 
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483 

Figure 3.  a. Triple collocation-based estimates of the square of the temporal correlation 484 

between the IMERG pentad precipitation data and the unknown truth.  White areas indicate 485 

where triple collocation-based estimates of accuracy were not possible.  b. As in (a), but for the 486 

SM2RAIN-based pentad precipitation data. 487 

488 
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Figure 2 focuses on the Gauge/Analysis data, with Figure 2a showing the values of 

ρG,Truth
2 and Figure 2b showing the distribution of rain gauge density underlying the 

Gauge/Analysis dataset during the studied period.  Not considering Africa and regions poleward 

of 62.5°N (since, as discussed in section 2.1.1, the gauge data are not used in these regions), we 

see that the ρG,Truth
2 values are clearly high only where rain gauges are present or are nearby.  

This, of course, is to be expected – precipitation data based on rain gauges cannot be accurate 

where rain gauges are not present.  The comparison in Figure 2, however, is nevertheless 

satisfying because no explicit information regarding gauge location was used in the triple 

collocation analysis.  The joint analysis of the three independent precipitation datasets thus 

effectively provides information on rain gauge density; stated another way, the consistency 

between Figures 2a and 2b serves as independent evidence that the triple collocation approach 

does provide information on the accuracy of the Gauge/Analysis dataset.  Note that in regions of 

high gauge density, ρG,Truth
2 can exceed 0.9, suggesting that the gauge data in these regions do 

capture well the large-scale areal averages. This is consistent with the findings of Koster et al. 

(2019), who inferred typical length scales of precipitation correlation of hundreds of kilometers.  

Figure 3 in turn focuses on the satellite-based products, with Figure 3a showing the 

estimated accuracy levels for the IMERG dataset and Figure 3b showing them for the 

SM2RAIN-based dataset.  Compared to Figure 2a, the field in Figure 3a is more spatially 

uniform – the accuracy of the IMERG data is less variable than that of the Gauge/Analysis data 507 

across the globe.  The ρS,Truth
2 field in Figure 3b shows that the SM2RAIN-based data are highest 508 

in semi-arid regions and are particularly low in areas with dense vegetation.  This serves as 509 

further evidence that the triple collocation procedure is extracting sensible estimates of 510 

precipitation accuracy from the three precipitation datasets – SMAP retrievals are known to be 511 
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inaccurate in areas of dense vegetation (Entekhabi et al., 2014), but this fact was not incorporated 512 

into the procedure.  Notice that the SM2RAIN-based data show particularly low values over the 513 

very high latitudes, and they show generally lower accuracy than the IMERG data across the 514 

globe, with a few exceptions (e.g., the Sahel). 515 

The triple collocation framework used here has an added side benefit.  The weights 516 

shown in Figure 1 represent those that produce the highest degree of correlation between the 517 

merged product (in terms of logarithms) and the unknown truth for a given set of ρX,Truth 518 

estimates.  In establishing these weights, we identify by default this highest possible correlation.  519 

In other words, given estimates of ρG,Truth, ρI,Truth, and ρS,Truth at a grid cell from (4)-(6), the 520 

analysis framework provides an estimate of the maximum level of accuracy attainable through 521 

the merging of the datasets.  Figure 4 shows these maximum attainable accuracies.  We see that 522 

across the globe – except in areas such as tropical forecasts and high latitudes, where at least one 523 

contributing dataset does not provide data, and in much of Africa and the Middle East, where all 524 

datasets are deficient, the potential for accuracy in the merged product is high – the square of the 525 

correlation between logarithms of the merged precipitation time series and the unknown truth 526 

generally exceeds 0.9. 527 

528 

529 
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530 

Figure 4. Triple collocation-based estimates of the maximum skill attainable from the merged 531 

precipitation dataset, expressed as the square of the temporal correlation between the merged 532 

time series and the unknown truth. White areas indicate where triple collocation-based estimates 533 

of accuracy were not possible.   534 

535 

Figure 5 shows the relevant differences:  the idealized skill levels of the Merged dataset 536 

(Corr2 versus unknown truth, from Figure 4) minus those for the Gauge/Analysis, IMERG, and 537 

SM2RAIN-based datasets (from Figures 2a and 3).  In other words, Figure 5 shows the idealized 538 

increase in skill over each contributing dataset attainable through the merging.  Figure 5 will 539 

prove especially useful for interpreting the results of our validation exercises.  If the triple 540 

collocation framework is working properly, the patterns in Figure 5 should be consistent with the 541 

patterns of increased validation skill obtained with the Merged data over each contributor.   542 

543 

544 
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545 

Figure 5.  Degree to which the merged precipitation dataset can improve over each of the 546 

individual contributors, expressed as the difference between the maximum accuracy (square of 547 

the temporal correlation coefficient) for the Merged data shown in Figure 4 minus the accuracy 548 

estimates provided for each contributor in Figures 2 and 3.  White areas indicate where triple 549 

collocation-based estimates of this improvement were not possible.  a. Potential improvement of 550 

the Merged dataset over the Gauge/Analysis dataset.  b. Potential improvement of the Merged 551 

dataset over the IMERG dataset.  c. Potential improvement of the Merged dataset over the 552 

SM2RAIN-based dataset. 553 
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We must emphasize, however, some caveats regarding the maps in Figures 2 through 5.  

Even with the use of logarithms, the Gaussian assumption underlying triple collocation is 

violated to some degree by the presence of zero precipitation values, by the potential non-

independence of Analysis and IMERG data in Africa and the high latitudes, and by the potential 

presence of significant seasonal cycles in the raw precipitation time series.  Also, the four warm 

seasons of evaluation (2015-2018) provide only 120 sample pentad pairs to generate each 

correlation in (1)-(3), so that sampling error will affect the accuracy metrics and the subsequent 

quantification of the weights.  (This will be discussed in more detail in Section 4.)  While the 

consistency, for example, between the Gauge/Analysis accuracy and rain-gauge density maps in 

Figure 2 is encouraging, we only claim here to provide a first-order indication of the relative 

accuracy levels of the different precipitation products. 

Approximate as they are, we use the ρG,Truth
2, ρI,Truth

2 and ρS,Truth
2 values shown in Figures 

2 and 3 in conjunction with the functional relationships underlying Figure 1 to compute the 

weights used for the Merged product (Figure 6).  The Gauge/Analysis data contribute the most to 

the Merged dataset in North America, Europe, and China, while the IMERG data contribute the 

most in northern Asia and Africa.  The SM2RAIN-based data contribute quite a bit less than 

either except in a few locations (e.g., the Sahel and southern Australia).  Of the three datasets, the 

IMERG dataset provides the most information in the global average (0.486, or 49%, as opposed 

to 38% for the Gauge/Analysis dataset and 13% for the SM2RAIN-based dataset).  As should be 

expected, the Gauge/Analysis dataset provides a particularly large fraction of the information in 

well-gauged areas and relatively little in areas of low gauge density (Figure 2b). 574 

575 

576 
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577 

578 

Figure 6.  Weights applied in the merging process to the (a) Gauge/Analysis dataset, (b) the 579 

IMERG dataset, and (c) the SM2RAIN-based dataset.  The white dots (two in North America and 580 

one in east Asia) indicate locations where sample precipitation time series will be displayed in 581 

Figure 7. 582 
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Figure 7 shows some sample time series (over 60 days during July and August 2017) to 

illustrate how the three datasets contribute to the Merged product.  Figure 7a shows results for a 

grid cell in the western US; here, the weights of the three contributors are roughly the same, and 

indeed, the three datasets tend to agree on the timing, if not the relative magnitudes, of the 

precipitation events.  Figure 7b shows results for a grid cell in the upper Midwest US.  Here, the 

weight used for the Gauge/Analysis data is close to one, and accordingly, the Merged time series 

follows the Gauge/Analysis time series closely.  Finally, Figure 7c shows results for a location in 

eastern Russia for which the IMERG data contributes the most to the Merged product and the 

Gauge/Analysis data provide a secondary correction.  These two contributing time series are, in 

any case, quite similar during the second half of the 2-month period. 592 

593 

Figure 7.  Sample time series of pentad precipitation rates for grid cells in: (a) the western US, 594 

(b) the upper Midwest US, and (c) eastern Russia.  See Figure 6 for specific locations.595 
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3.2  Evaluation of Products against Independent Data 

Figure 5 essentially says that the Merged dataset should be inherently more accurate than 

each of the contributing datasets.  This is not a surprise; the use of the triple collocation 

framework to derive the figure all but guarantees this idealized result.  A much more objective 

evaluation of the Merged dataset requires its comparison, along with that of the contributing 

datasets, against wholly independent data.  We provide two such comparisons in this section.  

We focus on comparisons against ASCAT estimates of soil moisture and against station-based 

observations of near-surface air temperature [Section 2.3.1]. 

3.2.1  ASCAT Soil Moisture Evaluations 

In four separate offline simulations, we force the global hydrological model with 

precipitation derived in turn from the Gauge/Analysis, IMERG, SM2RAIN-based, and Merged 

pentad datasets, using the same sub-pentad disaggregation for each [Section 2.3.2].  The near-

surface (0-5 cm) soil moisture contents generated in these simulations are now compared to 

ASCAT soil moisture estimates [Section 2.3.1].  While the ASCAT data are hardly free of error, 

these global data have the advantage of being suitably independent of the precipitation datasets 

being examined.  If the Merged data are found to agree best with the independent ASCAT data, 

we take that as evidence that the Merged data are indeed more accurate than each of the three 

contributors. 

Figure 8 shows the results in the form of difference maps: the ASCAT-based skill metric 

for the Merged data (the square of the anomaly temporal correlation between the ASCAT data 617 
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and the soil moistures produced under the Merged precipitation forcing; see section 2.3.3) minus 

that for each of the three contributing precipitation datasets.  Negative correlations, if they occur, 

are assumed to indicate a lack of skill and are set to zero before being squared.  Whited-out 

regions in the maps have inadequate precipitation data for the triple collocation analysis or have 

inadequate ASCAT data for the validation exercise (Reichle et al., 2021).  Positive differences in 

a map for a given contributor, of course, indicate that the Merged data validates better against the 

ASCAT data; negative differences indicate a degradation of skill. 624 

625 
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626 

Figure 8.  Degree to which the Merged dataset improves over each of the contributors when soil 627 

moistures generated with each dataset are compared to independent ASCAT measurements.    628 

(Skill is measured in terms of anomaly correlations; see Section 2.3.3.)  Negative correlations 629 

are zeroed prior to squaring.  White areas indicate areas for which comparisons were not 630 

possible due to limitations in the triple collocation analysis or to ASCAT data deficiencies.  (a) 631 

Improvement over the Gauge/Analysis data.  (b) Improvement over the IMERG data.  (c) 632 

Improvement over the SM2RAIN-based data. 633 
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Notice that in all three maps, the positive values of the difference strongly outweigh the 

negative values – the Merged data clearly appear more accurate than any of the three 

contributing datasets.  Furthermore, we find consistency between the difference maps in Figure 8 

and the idealized difference maps in Figure 5, at least in terms of spatial patterns.  Figure 5a 

suggests that the Merged data should perform better than the Gauge/Analysis data particularly in 

the Sahel, in the high latitudes of Asia, in south-central Asia, and in south-central Australia.  

Except for the high latitudes of Asia, this is confirmed by Figure 8a.  Figure 5b indicates that the 

Merged data should improve over the IMERG data in, for example, the easternmost edge of 

South America, eastern Asia, and the southwestern corner of Australia – expectations generally 

supported by the validation results in Figures 8b.  Finally, the expected improvements over the 

SM2RAIN-based data in the eastern US, South America, Europe, northern Asia, and southeast 

Asia (Figure 5c) also appear to a large degree in the validation results (Figures 8c).  To some 

extent, caution is needed in comparing Figures 5 and 8, since the former is focused on total 

correlation and the latter on correlations computed with mean seasonal cycles removed; still, the 

differences in these metrics appear to be largely consistent.  

While none of the contributors validate as well against the ASCAT data as do the Merged 

data, we note that the IMERG precipitation data appears to perform the best of the three 

contributors (with a global average of 0.015 for the difference metric), followed by the 

SM2RAIN-based data (average difference of 0.022) and the Gauge/Analysis data (average 

difference of 0.028).  The fact that the SM2RAIN-based data appears to perform better than the 

Gauge/Analysis data here is curious, given the opposite expectation indicated in Figure 5.  We 

have no clear explanation for this inconsistency, other than to say that the SM2RAIN-based 

precipitation dataset is derived from soil moisture retrievals, which may potentially give it some 656 
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advantage in a comparison focused on soil moisture.  Also, ASCAT data limitations eliminated 

from consideration in Figure 8 some regions (e.g., parts of the Amazon and the Congo) for which 

improvements of the Merged data over the SM2RAIN-based data were expected from Figure 5c 

to be particularly large.  Presumably, if we had been able to consider those regions in the 

ASCAT analysis, the global average of the difference metric for the SM2RAIN-based data 

would have been somewhat larger.   

With the Instrumental Variable approach (Su et al., 2014), the accuracy of soil moisture 

data can be quantified by analyzing it in conjunction with ASCAT data at different time lags 

(Reichle et al., 2021).  When we apply this approach (which itself is based on triple collocation) 

to our data here, the resulting relative skill levels associated with the different precipitation 

datasets are highly consistent with those shown in Figure 8 – the Merged data improves over the 

individual datasets to the same relative degree, following basically the same spatial patterns.  The 

Instrumental Variable results are provided as Figures S1-S3 in the Supporting Information. 

3.2.2  Station-Based Air Temperature Evaluations 

As noted in Section 2.3.3, a negative temporal correlation between precipitation and air 

temperature (T2M) can be expected given that wetter soils induce greater evaporative cooling 

and because precipitation periods are associated with increased cloudiness, which reduces the 

incoming solar radiation.  Both mechanisms particularly promote a negative correlation between 

precipitation and the day-night temperature difference.  We examine here the degree to which the 

precipitation datasets on their own (not run through the hydrological model) capture such a 

negative correlation. 678 
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Of course, a comparison like this is fraught with caveats, since temperature variations 

depend on other factors as well – advection of warm or cool air masses, impacts of aerosols and 

non-precipitating clouds on the radiation balance, and so on.  Perhaps more importantly, the 

coverage of station temperature measurements is far from uniform across the globe.  As will be 

seen, this latter issue may, in some regions, limit the usefulness of the comparisons of the 

Merged data results against those of the three contributors. 

With these caveats in mind, we present in Figure 9 the relevant differences:  the accuracy 

metric for the Merged dataset (the square of the temporal correlation between the pentad 

precipitation values and the corresponding 5-day average day-night surface air temperature 

differences; see section 2.3.3) minus that for each of the contributing datasets.  Positive 

correlations imply that the aforementioned mechanisms do not manifest themselves in the data 

and are thus zeroed before they are squared.  Overall, the results look promising.  In the 

temperature-based evaluation, the Merged data improve over the Gauge/Analysis data (Figure 

9a) in many of the same regions indicated in the ASCAT-based evaluation:  the Sahel, parts of 

central Australia, and south-central Asia.  The global mean difference is positive (0.010).  Setting 

aside momentarily the skill degradation in northern Asia (discussed further below), the general 

consistency between the ASCAT-based results (Figure 8a) and the temperature-based results 

(Figure 9a) supports the idea that the improvements shown are real, as does the comparison of 

the temperature-based results against the idealized improvements in Figure 5a. 697 

698 
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699 

Figure 9. Degree to which the Merged dataset improves over each of the contributors when each 700 

dataset is correlated against gridded near-surface air temperature (T2M) differences (daily 701 

maximum T2M minus daily minimum T2M).  Negative correlations are expected, so positive 702 

correlations are zeroed prior to squaring. White areas indicate areas for which comparisons 703 

were not possible due to limitations in the triple collocation analysis. (a) Improvement over the 704 

Gauge/Analysis data. (b) Improvement over the IMERG data.  (c) Improvement over the 705 

SM2RAIN-based data. 706 
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Figures 9b and 9c show an even stronger improvement of the Merged product over the 

IMERG and SM2RAIN-based products, respectively, using this metric.  Here, for reasons 

discussed further below, we emphasize not the magnitudes of these improvements but the 

general agreement between their spatial patterns and those seen for both the corresponding 

ASCAT-based results and the idealized analysis in Figures 5b and 5c.  For example, the T2M-

based results and idealized differences both show (as did the ASCAT-based results) a general 

improvement of the Merged data over the IMERG data in the neighborhood of Montana in the 

US as well as in China and the southwest corner of Australia.  The skill differences for the 

SM2RAIN-based data are large in the eastern US for both the T2M-based and idealized results 

(again, as they were for the ASCAT results), and similar agreement also appears over northern 

Asia. 

Some features of the T2M-based results, however, are not easily explained.  Again, the 

accuracy metric for the Merged dataset is consistently lower than that for the Gauge/Analysis 

data along the northern reaches of Asia (though keep in mind that the blue areas are artificially 

amplified here by the Mercator projection).  We can speculate on a partial explanation.  Given 

that very few stations in this area measure T2M (see, e.g., Figure 2 of Fan and van den Dool) 

[2008]), the temperature measurements underlying the calculation in many grid cells are largely 

based on individual point measurements, often from points lying outside the grid cell in question, 

and these point measurements are likely coincident with the point precipitation measurements 

contributing to the Gauge/Analysis data.  That is, in the construction of the global gridded air 

temperature and precipitation products, the data provided for many grid cells in northern Asia 

may – in effect – consist of collocated point measurements of precipitation and air temperature 

from a single remote location.  As a result, because the correlation between precipitation and air 729 
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temperature may very well be strong at point measurement sites, the representativeness error 730 

noted above for precipitation gauge data does not manifest itself as a degradation in our 731 

computed correlations.  732 

The Gauge/Analysis data thus have an advantage over the IMERG and SM2RAIN-based 733 

data:  for the temperature-based evaluation, a chief source of error in the Gauge/Analysis data 734 

does not limit the performance of these data.  We speculate that if the temperature data 735 

themselves were truly representative of local grid cell averages (rather than point values at 736 

potentially remote measurement stations) in the northern reaches of Asia, the Merged data might 737 

indeed appear more accurate there.  Again, though, this would only be a partial explanation, as 738 

the rain gauges contribute less and less information to the Gauge/Analysis product as one 739 

approaches 62.5N and none at all north of that latitude (see section 2.1.1).  Some other feature of 740 

high northern latitude meteorology (e.g., weather that is more strongly dominated by advection 741 

or a snow season with a later end date or an earlier onset date) may be muddying our analysis in 742 

this area; also, strong seasonal cycles in the high latitudes may have adversely affected our triple 743 

collocation analysis (see Section 2.2). 744 

This spatial representativeness argument may also help explain why the improvement of 745 

the Merged data over either the IMERG data or the SM2RAIN-based data in Figure 9 is so much 746 

larger than the improvement over the Gauge/Analysis data.  If a low density of both precipitation 747 

and T2M measurements does indeed allow the correlation calculation for the Gauge/Analysis 748 

data to bypass the ill effects of spatial representativeness error, this benefit will also be 749 

transferred preferentially to the Merged data, to the extent that the latter are derived from the 750 

former.  In other words, the improvements seen in Figures 9b and 9c are probably somewhat 751 

exaggerated in regions of low measurement density.  Such arguments, however, would not 752 
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explain why the improvement of the Merged data over the IMERG data is somewhat higher than 

that over the SM2RAIN-based data in the global average, in contradiction to expectations 

(Figure 5).  The SM2RAIN-based data’s correlations with T2M are particularly better than those 

of the IMERG data in the central US, India, southern Africa, and Australia.  Perhaps this is 

related to the fact that one of the two mechanisms underlying the expected correlation directly 

involves soil moisture, information that is directly built into the SM2RAIN-based data. 

For these reasons, and because temperature measurements are in fact absent in many 

parts of the globe (e.g., over much of the Southern Hemisphere), the CPC T2M analysis above 

arguably pales to that of our earlier ASCAT analysis as a means of evaluating the four 

precipitation datasets.  Even so, the T2M-based evaluation – particularly the consistency in the 

spatial patterns with the ASCAT-based evaluation and with the idealized differences in Figure 5 

– generally supports the idea that on a global scale, the Merged product is more accurate than 

each of the three contributors. 

4. Discussion

The three precipitation datasets contributing to the Merged dataset have independent 

errors.  Thus, to the degree that these datasets satisfy the other requirements of triple collocation 

(when processed as described, using logarithms of pentad totals), the Merged dataset should, at 

least according to theory, capture the time variability of the pentad rainfall better than any of the 

three contributors individually. Our ability to illustrate this conclusively, however, is necessarily 

limited in two important ways. 773 
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First, fully independent data are required for the validations, and, at least on the global 

scale, such data are rare.  Our global-scale evaluations in Section 3.2 are accordingly limited to 

the use of ASCAT soil moisture data and CPC air temperature data, with evaluations against the 

latter being particularly indirect.  Fortunately, these evaluations prove, on balance, to be 

successful, even if the Merged data do not perform better in every location on the globe.  

Local-scale evaluations against in-situ measurements could, of course, be used to 

supplement the global-scale evaluations.  In the course of our work, we compared the output of 

our four global hydrological simulations against in-situ soil moisture measurements – the same 

measurements Reichle et al. (2019) used to validate SMAP Level 4 products.  We relegate these 

results to the Supporting Information (see Figures S4 and S5) because they mainly reflect the 

fact that most of these in-situ measurements were taken over the continental US, a region for 

which the Merged dataset overwhelmingly reflects the Gauge/Analysis dataset (see weights in 

Figure 6).  Accordingly, these comparisons fully agree with expectations:  when validated 

against in-situ soil moisture data, the Merged dataset performs better (sometimes significantly 

so) than the IMERG and SM2RAIN datasets and only slightly better than the Gauge/Analysis 

dataset.  Across the globe, in-situ hydrometeorological measurements of quality and duration 

suitable for validation indeed tend to be taken in areas that also feature high rain gauge coverage, 

i.e., locations for which it would be difficult to illustrate conclusively the advantages of the 

Merged dataset.  This is a common limitation of such local-scale evaluations. 

The second important obstacle to the evaluation of our merging approach has to do with 

the length of the observational record and the associated uncertainty in the weights assigned to 

the three contributors.  Of the six years of SMAP data available to us, two were used to calibrate 

the SM2RAIN-based algorithm, leaving four years of data to use in the merging – a total of only 796 



44 

797 

798 

799 

800 

801 

802 

803 

804 

805 

806 

807 

808 

809 

810 

811 

812 

813 

814 

815 

816 

817 

120 warm-season (May-September) pentads.  As a result, the correlations in (1)-(3) will suffer 

from sampling error, and this error will be compounded when ratios of the correlations are taken 

in (4)-(6) to compute ρG,Truth, ρI,Truth, and ρS,Truth. 

To investigate the potential impacts of sample size, we now consider three measurement 

time series (X1, X2, X3) with independent errors and with known (prescribed) correlations against 

the time series, Truth(t), of actual values.  (We thus follow here the idealized framework 

underlying Figure 1.)  Using the known values of ρ1,Truth, ρ2,Truth, and ρ3,Truth, we first use (7)-(9) 

to construct sample sets of measurement time series of a given length.  These time series are then 

used in turn to estimate, with sampling error: (i) the correlations in (1)-(3), (ii) corresponding 

correlations against truth using (4)-(6), and (iii) the resulting weights to apply to each dataset 

using the algorithm underlying Figure 1.  Finally, we apply (7)-(9) to generate lengthy versions 

of X1, X2, and X3 (i.e., time series long enough so that sampling error is not an issue) and use the 

imperfect weights generated in step (iii) above to generate a lengthy, but imperfect, time series of 

the Merged data, which we then correlate against the known truth.  The process is repeated 1000 

times to obtain an average correlation against truth for the imperfect Merged time series.  

Figure 10 shows the results – for four different underlying sample sizes, it provides the 

average correlation against truth as a function of ρ1,Truth and ρ2,Truth.  (For illustration purposes, 

ρ3,Truth is taken to be 0.5 throughout.)  The upper left panel shows the average accuracies 

achieved with the Merged dataset when the sample size (time series length) underlying the 

estimation of the weights is 120, as it was for our calculations in Section 3.  The next two panels 

show results for sample sizes of 500 and 1000, respectively.  The lower right panel shows the 

accuracies obtained when the weight estimation is not limited by time series length.   818 
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Clearly, longer sample sizes bring the estimated accuracies closer to the optimal values in 

the lower right panel of the figure.  Notice, however, that even with a sample size of 120, 

substantial accuracy is still achieved.  Consider the example indicated by the small white dot in 

the panels, which represents the case for which ρ1,Truth, ρ2,Truth, and ρ3,Truth are all equal to 0.5.  

The lower right plot shows that with no sampling error, the average correlation of the Merged 

data against truth in this case would be about 0.71.  When we construct the Merged data with 

weights made sub-optimal by sampling error, this correlation does go down, but even with a 

sample size of 120 underlying the weights, the correlation of the Merged data against truth 

reduces to only 0.66, which is still well above 0.5, the correlation of each of contributor against 

truth.  Examples like this give us confidence that our merging process can be effective, even with 

such short time series lengths. 829 

830 

831 



46 

832 

Figure 10. Impact of sample size on the effectiveness of the merging procedure, as revealed by 833 

an idealized Monte Carlo analysis (see text).  Shown are the average correlations against truth 834 

of the merged data as functions of ρ1,Truth and ρ2,Truth (i.e., the prescribed correlations between 835 

time series X1 and X2, respectively, and the unknown truth); ρ3,Truth for the third time series, X3, is 836 

set to 0.5 for all plots.  Top left: results for the case when the weights for the merging are 837 

determined from time series with length 120.  Top right: Same, but for weights based on time 838 

series of length 500.  Bottom left: Same, but for weights based on time series of length 1000.  839 

Bottom right: Same, but for weights based on (effectively) infinite time series length.  The 840 

example indicated by the small white dot is discussed in the text. 841 

842 
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Note that up to this point in our study, we have not considered alternative data fusion 

methods.  Again, theory suggests that if the triple collocation assumptions are satisfied 

(regarding the normality of the underlying distributions, the constancy of the statistics describing 

these distributions, and so on), the weights we derive with our approach (assuming sufficiently 

long time series; see above) should indeed be optimal.  As already discussed, however, the 

assumptions underlying triple collocation are not perfectly satisfied in the real world, and thus 

the merged data are not guaranteed to be closer to the truth than each contributor.  One might 

reasonably ask if an alternative approach to deriving the weights – an approach not limited by 

these assumptions – could perform better.  Side-by-side analysis of the triple collocation 

approach with alternative advanced data fusion methods [e.g., that of Beck et al. (2017) or one 

involving, for example, Kalman filtering or machine learning] is beyond the scope of this study.  

However, it is straightforward to test our approach against a simple “consensus” approach, one in 

which all contributors are given equal weight in the merging.  Such simple averaging has proven 

effective in past studies.  Fritsch et al. (2000), for example, showed that consensus short-term 

weather forecasts constructed from forecasts produced by multiple systems proved superior to 

the individual contributing forecasts.   

We thus constructed a consensus precipitation product by applying equal weights (1/3) to 

the Gauge/Analysis, IMERG, and SM2RAIN-based precipitation products, and we then used this 

consensus product to drive the hydrological model.  The degrees to which the two merging 

approaches generate soil moistures that agree with the ASCAT observations (as measured with 

the squared anomaly correlation metric) are compared with the difference map in Figure 11, with 

positive differences indicating that the original (triple collocation-based) Merged dataset 

performs better than the simple consensus dataset.  Some negative differences appear in the map, 865 



48 

866 

867 

868 

869 

870 

871 

872 

873 

but overall, the map is dominated by positive differences.  The fact that the global average of the 

differences (0.0063) is smaller than the globally-averaged differences seen in Figure 8 (note the 

reduced range on the color bar in Figure 11) suggests that the simple consensus averaging 

approach does extract complementary skill from the three contributing datasets.  Importantly, 

though, the positive value of this difference (smaller, but of the same order as the averaged 

differences seen in Figure 8) supports the idea that our original merging approach produces 

weights that are indeed more optimal.  Perhaps, if the underlying time series were longer and the 

triple collocation-based weights were accordingly more accurate, the improvement indicated in 

Figure 11 would be even more extensive. 874 

875 

876 

Figure 11. As in Figure 8, but showing the degree to which the Merged dataset improves over a 877 

“consensus” merging of the Gauge/Analysis, IMERG, and SM2RAIN-based data in which each 878 

contributor is assigned equal weight (0.33).  White areas indicate areas for which comparisons 879 

were not possible due to limitations in the triple collocation analysis or to ASCAT data 880 

deficiencies. 881 

882 
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5. Summary

In this study, three fully independent 36-km, pentad precipitation datasets 

(Gauge/Analysis, IMERG, and SM2RAIN-based) were examined together in a triple collocation 

framework.  The analysis provides estimates of the skill (square of the temporal correlation) of 

each dataset against the unknown truth (Figures 2 and 3).  Given the limited sample size and 

limitations in satisfying certain triple collocation assumptions, these estimates represent, at best, 

first-order estimates of what is otherwise an unmeasurable property.  Even so, it is encouraging 

that the quantified skill distributions are broadly consistent with, for example, rain gauge density 

distributions and known limitations in SMAP retrievals. 

Using these estimates of inherent dataset skill, we combined the three pentad datasets into 

a single Merged product, applying weights that optimize the expected correlation between the 

merged product and the unknown truth.  In theory, this Merged dataset takes advantage of the 

particular strengths of each contributor and accordingly should be more accurate than each on its 

own.  To test this, we evaluated the relative accuracy of the Merged product and the three 

contributor datasets against two separate and fully independent global datasets: ASCAT soil 

moisture retrievals and station-based T2M measurements.  The Merged product clearly performs 

better than each of the contributors in the ASCAT comparisons (which involve output generated 

with a global offline model forced with each of the precipitation datasets).  The T2M 

comparisons are inherently more limited; even so, the Merged product again shows improved 

performance relative to each of the contributors.  Furthermore, the patterns in the improved 904 



50 

905 

906 

907 

908 

909 

910 

911 

912 

913 

914 

915 

916 

917 

918 

919 

920 

921 

922 

923 

924 

925 

performance are generally consistent with expectations from the triple collocation framework 

(Figure 5).  We thus conclude that the Merged data are in fact generally more accurate on a 

global scale than any of the three contributors, having taken advantage of the relative strengths of 

each. 

The generation of an improved pentad precipitation dataset should not be considered an 

end in itself.  The present work demonstrates that at a spatial scale of 36-km and a temporal scale 

of 5 days, the merged pentad product does take advantage of the strengths of each contributor.  

The raw versions of the contributors, however, provide information at higher spatial and 

temporal resolutions.  IMERG provides particularly high resolutions: half-hourly data at scales 

of 10-km.  An obvious next step is to disaggregate the optimized Merged pentad data using sub-

pentad, sub-36-km resolution precipitation information contained in, for example, the IMERG 

dataset to produce data that might be even more effective for hydrological simulation. 
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 Figure Captions 

1092 

Figure 1.  Optimal weights to apply to three time series (X1, X2, X3) in producing a merged 1093 

dataset, as a function of the correlation between each time series and the unknown truth. 1094 

A full set of contours is shown for three selected values of ρ3,Truth: (a) 0.25, (b) 0.5, and 1095 

(c) 0.75.1096 

Figure 2.  a. Triple collocation-based estimates of the square of the temporal correlation between 1097 

the Gauge/Analysis pentad precipitation data and the unknown truth.  White areas 1098 

indicate where triple collocation-based estimates of accuracy were not possible given 1099 

data availability (at least 100 samples from all contributors from which to compute 1100 

correlations).  b. Number of gauges per 0.5°x0.5° grid cell in the raw CPCU gauge-based 1101 

precipitation dataset during the studied period. (Data are plotted here on the 36-km EASE 1102 

grid; values can be non-integers due to both the combining, through conservative 1103 

regridding, of different grid cell density numbers into a single grid cell value and to the 1104 

fact that the values shown represent time averages.)  Gauge density in Africa and north of 1105 

62.5N is not shown, as the Gauge/Analysis dataset does not utilize rain gauges in these 1106 

areas (see text).  The horizontal lines at 42.5N and 62.5N delimit the area over which the 1107 

tapered merging of gauge data and analysis data is performed (see Reichle et al. 2017a). 1108 

Figure 3.  a. Triple collocation-based estimates of the square of the temporal correlation between 1109 

the IMERG pentad precipitation data and the unknown truth.  White areas indicate where 1110 

triple collocation-based estimates of accuracy were not possible.  b. Same, but for the 1111 

SM2RAIN-based pentad precipitation data. 1112 
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Figure 4. Triple collocation-based estimates of the maximum skill attainable from the merged 1113 

precipitation dataset, expressed as the square of the temporal correlation between the 1114 

merged time series and the unknown truth. White areas indicate where triple collocation-1115 

based estimates of accuracy were not possible.   1116 

Figure 5.  Degree to which the merged precipitation dataset can improve over each of the 1117 

individual contributors, expressed as the difference between the maximum accuracy 1118 

(square of the temporal correlation coefficient) for the Merged data shown in Figure 4 1119 

minus the accuracy estimates provided for each contributor in Figures 2 and 3.  White 1120 

areas indicate where triple collocation-based estimates of this improvement were not 1121 

possible.  a. Potential improvement of the Merged dataset over the Gauge/Analysis 1122 

dataset.  b. Potential improvement of the Merged dataset over the IMERG dataset.  c. 1123 

Potential improvement of the Merged dataset over the SM2RAIN-based dataset. 1124 

Figure 6.  Weights applied in the merging process to the (a) Gauge/Analysis dataset, (b) the 1125 

IMERG dataset, and (c) the SM2RAIN-based dataset.  The white dots (two in North 1126 

America and one in east Asia) indicate locations where sample precipitation time series 1127 

will be displayed in Figure 7.  1128 

Figure 7.  Sample time series of pentad precipitation rates for grid cells in: (a) the western US, 1129 

(b) the upper Midwest US, and (c) eastern Russia.  See Figure 6 for specific locations.1130 

Figure 8.  Degree to which the Merged dataset improves over each of the contributors when soil 1131 

moistures generated with each dataset are compared to independent ASCAT 1132 

measurements.  (Skill is measured in terms of anomaly correlations; see Section 2.3.3.)  1133 

Negative correlations are zeroed prior to squaring.  White areas indicate areas for which 1134 
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comparisons were not possible due to limitations in the triple collocation analysis or to 1135 

ASCAT data deficiencies.  (a) Improvement over the Gauge/Analysis data.  (b) 1136 

Improvement over the IMERG data.  (c) Improvement over the SM2RAIN-based data. 1137 

Figure 9. Degree to which the Merged dataset improves over each of the contributors when each 1138 

dataset is correlated against gridded near-surface air temperature (T2M) differences 1139 

(daily maximum T2M minus daily minimum T2M).  Negative correlations are expected, 1140 

so positive correlations are zeroed prior to squaring. White areas indicate areas for which 1141 

comparisons were not possible due to limitations in the triple collocation analysis. (a) 1142 

Improvement over the Gauge/Analysis data. (b) Improvement over the IMERG data.  (c) 1143 

Improvement over the SM2RAIN-based data. 1144 

Figure 10. Impact of sample size on the effectiveness of the merging procedure, as revealed by 1145 

an idealized Monte Carlo analysis (see text).  Shown are the average correlations against 1146 

truth of the merged data as functions of ρ1,Truth and ρ2,Truth (i.e., the prescribed correlations 1147 

between time series X1 and X2, respectively, and the unknown truth); ρ3,Truth for the third 1148 

time series, X3, is set to 0.5 for all plots.  Top left: results for the case when the weights 1149 

for the merging are determined from time series with length 120.  Top right: Same, but 1150 

for weights based on time series of length 500.  Bottom left: Same, but for weights based 1151 

on time series of length 1000.  Bottom right: Same, but for weights based on (effectively) 1152 

infinite time series length.  The example indicated by the small white dot is discussed in 1153 

the text. 1154 

Figure 11. As in Figure 8, but showing the degree to which the Merged dataset improves over a 1155 

“consensus” merging of the Gauge/Analysis, IMERG, and SM2RAIN-based data in 1156 

which each contributor is assigned equal weight (0.33).  White areas indicate areas for 1157 
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which comparisons were not possible due to limitations in the triple collocation analysis 1158 

or to ASCAT data deficiencies. 1159 




