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1. Abstract
Exposure to heat exacerbated by an increase in urbanization as well as increasing 
global temperatures has become a growing concern for cities and their residents. 
Excess heat can cause increased heat-related morbidity, mortality, and energy 
costs. Vulnerability to heat-related illnesses is oftentimes correlated to 
demographics, socioeconomic status, and pre-existing health conditions. The City 
of San Diego, California boasts 1.4 million residents and, like many other major 
cities, has experienced increases in heat-related hospitalizations and mortality. The
burden of urban heat is also not equal amongst communities; areas with lower 
income and communities of color bear a disproportionate burden. In partnership 
with the City of San Diego, and American Geophysical Union’s (AGU) Thriving 
Earth Exchange, the DEVELOP team used Landsat 8 Operational Land Imager 
(OLI) and Thermal Infrared Sensor (TIRS), and ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) imagery to identify areas 
of highest heat based on land surface temperature from 2015-2020. Our analyses 
showed that health demographics such as obesity and cardiovascular health were 
the strongest indicators for heat vulnerability. In addition, various inputs (land 
use/land cover, tree canopy, and building intensity derived from the City of San 
Diego data along with albedo from Landsat 8) were used in the Integrated 
Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model to 
investigate changes in cooling rates in current and future scenarios for the city. 
The model results showed that cooling is expected to occur due to a 5% increase in
tree canopy. The City of San Diego can use these results to inform the development
of the Climate Resilient San Diego plan and prioritize at-risk communities for 
cooling interventions.

Key Terms
InVEST urban cooling model, Landsat 8 TIRS, ECOSTRESS, ecosystem services, 
heat mitigation, vulnerability, urban heat island

2. Introduction

2.1 Background Information
Urban Heat is a public health hazard that impacts all cities. Excess urban heat 
exacerbated by extreme heat events has become the leading cause of weather-
related deaths, outpacing both floods and wildfires (Weinberger et al., 2017). 
Outside of mortality, urban heat can cause heat-related illnesses including 
heatstroke, exhaustion, and amplified respiratory and cardiovascular issues as well
as high energy costs (Wald, 2019). Cities in the United States are expected to see 
increases in temperatures through the twenty-first century and thus increased heat
strain on their populations (Krayenhoff et al., 2018). 

The City of San Diego is located on the southern California coast. It is home to 1.4 
million people, making it the second-largest city in California and eighth largest in 
the United States. San Diego features a Mediterranean climate according to the 
Köppen climate classification and receives just over 10 inches of precipitation a 
year. While the annual mean temperature is only 63°F (17°C), the city can still be 
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subject to extreme heat events (EHE) with temperatures exceeding 104°F (40°C), 
particularly in late summer. 

The city's planning department is currently working on a climate adaptation and 
resiliency plan entitled “Climate Resilient San Diego” (Climate Resilient SD) which 
describes the measures required to increase local capacity to adapt, recover and 
thrive amidst a changing climate. These adaptation measures include cooling 
interventions for vulnerable communities. Vulnerable communities are defined by 
the City's Climate Equity Index which takes into account 35 indicators (such as 
persons over 75) to measure equity across the city based on nationwide best 
practices.

In recent years the city has seen increasing urbanization and thus increasing 
impervious surfaces which result in greater absorption of incoming solar radiation 
compared to the surrounding unbuilt landscape. This in turn magnifies San Diego’s
urban heat island (UHI) and exacerbates heat stress throughout the city (Guirguis, 
2018). Climate records support that urban temperatures are increasing (Taha, 
2017). Furthermore, climate projection models indicate that coastal areas, like San
Diego, can expect 2-3°C (3.5-5.5°F) increases in temperature by mid-century. This 
would result in as much as 1-2 million additional people being exposed to extreme 
heatwaves in San Diego from increasing temperatures as well as population 
growth (Vahmani et al., 2019). The increasing urban temperatures are concerning 
as they exacerbate the aforementioned health and energy concerns. 

Urban heat has been shown to have economic and racial disparities in San Diego. 
Dialesandro et al. (2021) showed that the lowest income neighborhoods were 
found to be 2.5°C warmer compared to the wealthiest in San Diego with Latino 
neighborhoods being over 2°C warmer than white neighborhoods. While these 
studies provide critical information on UHI disparities they differ from this project 
in several ways.  They utilized data at the block group and zip code resolution to 
draw conclusions at the county and metro area, while this project focuses on City 
of San Diego itself (Figure 1). Other studies have showed that it is important to 
include analysis utilizing specific sociodemographic and health variables since they
reveal social vulnerability at an enhanced level compared to other vulnerability 
analysis done at broader scales such as the county and census tract level (Cooley, 
2012). In addition, these studies used remotely sensed data from Landsat 8 
Operational Land Imager (OLI) for mapping heat but they did not analyze 
nighttime temperature. 
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Figure 1. Study area of the City of San Diego, California (Basemap created with
Sentinel-2 data; June 17th, 2019)

2.2 Project Partners & Objectives
The City of San Diego is developing its Climate Resilient SD plan. They are seeking
information related to heat risk and vulnerability to identify priority areas for 
cooling interventions such as increasing urban tree canopy. This project will use 
factors such as daytime and nighttime land surface temperature and 
socioeconomic variables (including age above 65, age above 65 and living alone, 
cardiovascular disease, asthma, hypertension, access to health insurance, 
language spoken, poverty) to inform decision-making tools and expand the city’s 
current Climate Equity Index.

The city is seeking high-resolution data of temperature and vulnerability 
throughout the city to better understand the distribution of heat risk. In addition, 
the partners want to better understand the impact of increased tree canopy on 
temperatures throughout the city.  This project used the Integrated Valuation of 
Ecosystem Services and Tradeoffs (InVEST) urban cooling model to generate 
results that highlight opportunities for prioritization of UHI heat mitigation. 
Insights from this study will guide climate adaptation and resiliency goals for their 
Climate Resilient SD plan.
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3. Methodology

3.1 Data Acquisition 
We acquired remotely-sensed data for the study period (1 May – 30 September, 
2015-2020) and study area (City of San Diego) from Landsat 8 OLI using Google 
Earth Engine (GEE). Daytime land surface temperature (LST) and albedo were 
both derived from the Landsat 8 OLI imagery. Nighttime LST and 
evapotranspiration (ET) were acquired using data from the ISS ECOSTRESS and 
filtered by a time period of 2018-2020 June to September (ECOSTRESS had June 
2018 launch) from the NASA Application for Extracting and Exploring Analysis 
Ready Samples (AppEEARS) (Table A1). 

Additional datasets included socioeconomic and sociodemographic data from the 
2018 American Community Survey (ACS), health data from the Centers for Disease
Control and Prevention (CDC) 500 Cities dataset, city and community boundaries, 
building outlines, and reference datasets from the San Diego open data portal, a 
collaboration between San Diego Geographic Information Source (SanGIS) and 
San Diego Association of Governments (SANDAG).

3.2 Data Processing
3.2.1 Land Surface Temperature (LST)

We calculated Daytime LST from the Landsat 8 Surface Reflectance Tier 1 Product.
Daytime LST was derived by first filtering available cloud-free imagery between 
May 1st and September 30th for the years of 2015-2020. This resulted in 42 
available images. The script calculated for each image’s normalized difference 
vegetation index (NDVI) to calculate emissivity (E) (Shen et al., 2016), which was 
then used with the brightness temperature (BT) to calculate LST (Equation 1).
 
     LST=BT /(1+(0.0000115∗BT /0.01438)∗log (E ))¿                                                    

(Equation 1)

3.2.2 UHI Magnitude Identification / Urban Heat Maps
The median LST value from the study period was used to create the urban heat 
maps. Urban heat islands are defined by the deviation in temperature from 
geographically similar undeveloped areas free of anthropogenic influences. To 
understand the magnitude of the UHI, we first identified reference areas that 
represented our study area but had not been urbanized. These sites included the 
Torrey Pines State Natural Reserve in Northern San Diego, Mission Trails Regional
Park, and the Tijuana River Preserve south of the city proper. The UHI magnitude 
was calculated by taking the difference between the mean LST of a local area and 
the mean LST of the reference areas. iThen we quantified the temperature 
disparities throughout the thermal environment in San Diego and provided input 
rural reference temperature and UHI magnitude for the InVEST model.

3.2.3 InVEST Model input data
The InVEST model took a number of required and optional inputs (Table A2).  
While the optional inputs were explored, the results were not used in the analysis 
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and there is still considerable investigation to be done to fully understand and 
utilize this part of the model. See supplemental InVEST Urban Cooling Model 
Guide for a more thorough discussion.  We acquired the remaining data: building 
outlines, tree canopy, and land use/land cover from the City of San Diego’s Open 
Data Portal and the Regional Data Warehouse, a partnership between the San 
Diego Association of Governments (SANDAG) and SanGIS. The InVEST urban 
cooling model relies heavily on land use land cover (LULC) classification and the 
associated parameters. The resolution of the LULC input determines the specificity
of the associated parameters: shade, green area, albedo, and building intensity.

3.2.4 Evapotranspiration (ET) - InVEST Input
We manually chose the 26 ET rasters with 10% or less cloud coverage from 2018-
2020 which were processed in ArcGIS Pro. We created a median raster to 
summarize evapotranspiration for the full study period by inputting the rasters in 
the ‘Cell Statistics’ tool in the Spatial Analyst toolbox and selecting the ‘median’ 
function.  The output was a single raster where each pixel is the median 
evapotranspiration value across the full study period. We converted the ET values 
from W m-2 to mm day-1 and normalized the values before using them as an input 
for InVEST. The unit conversion was done using a conversion factor in the Food 
and Agriculture Organization of the United Nations (FAO) Irrigation and Drainage 
Paper No. 56, Table 1 (Allen et al. 1998) where 0.408 mm day-1 = 1 MJ m-2 d-1, 
shown by Equation 2 below.

ET A  [mm day -1] = ET B  [W m -2] * 0.0864 [MJ day -1]/[W]* 0.408 [mm day -1]/[  MJ day -1  m-2 ]

(Equation 2)

where ETA and ETB are the numerical values of the evapotranspiration rate in unit 
of [mm day-1] and [W m-2] respectively

3.2.5 Albedo
The albedo of a surface is critical for understanding how much incoming energy is 
either absorbed and transformed into heat or reflected into the atmosphere. Each 
LULC classification has a unique albedo value between 0 and 1, where 0 is 
complete absorption and 1 is 100% reflectance (no absorption). We calculated the 
median albedo with a script from the NASA DEVELOP spring 2020 Philadelphia 
Health & Air Quality project using Equation 3 from Olmedo et al., 2016. We 
exported the median albedo raster as a TIFF file and brought it into ArcGIS Pro for
processing. The Zonal Statistics as Table tool combined albedo information with 
the LULC vector layer which generated the input for the biophysical table.

3.2.6 Building Intensity 
Building Intensity (BI) is the normalized ratio of the floor area to the land area per 
land use category. It represents the level of urban development; downtown areas 
would have a high BI while rural areas would have a BI close to 0.  To calculate BI, 
we acquired building outlines from SanGIS and used the Summarize Within tool in 
ArcGIS Pro to sum the area of the building outlines per each land use category. We
manually assigned an average number of floors to each land use category based on
the NASA DEVELOP fall 2020 Sacramento Urban Development Appendix B which 
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was derived from US average building measurements. The total building outline 
area per land use was multiplied by the average number of floors per that land use 
category to get the total floor area then divided by the total area of that land use 
category to get building intensity. These values were then normalized. 

3.2.7 Shade 
Shade was also generated for the InVEST urban cooling model biophysical table 
input. The shade values were generated from a tree canopy feature class provided 
by the City of San Diego. In ArcGIS Pro, we used the Summarize Within tool to find
the sum of the tree canopy per each land use category. Dividing by the total land 
use area produced a percent tree canopy result that was used as the shade input 
for the biophysical table. 

3.2.8. Heat Risk
Heat risk was assessed at two levels. Both census block group and census tract 
data came from the American Community Survey with the addition of data from 
the Center for Disease Control (CDC) 500 cities data project for census tract which
provides census-tract level estimates of chronic disease risk factors, and health 
outcomes. These include asthma, hypertension, cardiovascular heart disease, 
chronic obstructive pulmonary disease (COPD), obesity, and diabetes. We used this
shapefile to extract nighttime LST, and daytime LST per census tract, which we 
then joined in the attribute table. We applied the same process to social-economic 
data at the block group level but did not include health indicators, poverty 
percentage, or lack of health insurance percentage due to lack of availability 
(Table A3).

3.3 Data Analysis
3.3.1 InVEST Urban Cooling Model
The InVEST urban cooling model generates a heat mitigation index (HMI) based on
the cooling capacity (CC)of each cell (as defined by the local environmental 
properties within the cell) and its proximity to green areas. For daytime, the CC-
day is a function of shade, albedo, and evapotranspiration index (ETI) (equation 3).
ETI is defined as the ET rate of the cell divided by the maximum ET rate in the 
study area. Note that all three variables in equation 3 take on values between 0 
and 1. For nighttime, the CC-night is a function of building intensity (equation 4) 
since nighttime temperatures are driven by heat release from buildings and 
impervious surfaces (Ferreira and Duarte, 2019). A third CC associated with the 
cell (CC-PG) is generated by InVEST related to proximities to green areas. It has 
been shown that green areas must be bigger than 2 hectares to have a cooling 
effect on the air around them (MacDonald et al. 2016; Zardo et al. 2017). CC-PG is 
the sum of the cooling contributions from all nearby green areas with each 
contribution depending on the CC of the green area and the distance from the cell. 
The daytime (nighttime) HMI is equal to the larger of the CC-day (CC-night) and 
CC-PG. With the above definitions, HMI takes on values between 0 and 1.  

CC−day=(0.6∗shade )+ (0.2∗albedo )+(0.2∗ETI )
(Equation 3) Cooling capacity for daytime.

CC−night=1−Building Intensity
(Equation 4) Cooling capacity for nighttime.
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The ability to model scenarios is dependent on the determination of the albedo and
shade which depends on resolution of the LULC layer. The LULC layer provided by
the city had 100 categories but the categories were often based on economic and 
not biophysical characteristics such as automobile dealerships, service stations, or 
casinos. While these distinctions help with the ability to model different scenarios 
such as increasing shade at elementary schools but not high schools this also 
created problems for defining the physical characteristics of these categories 
especially for categories that had very small areas such as freeways under 
construction. For this reason, the median albedo was used instead of mean albedo.

Due to the arid climate, it is only feasible to plant trees in areas where irrigation is 
accessible. For the city, this means road right of way and public spaces such as 
parks and schools. In addition, the city partners with non-profits who facilitate and 
incentivize the process of planting trees in residential areas. To model a 5% 
increase in tree canopy (from approximately 12% to 17%) the shade values in the 
biophysical table (Table A11) were increased for road right of way, public spaces, 
and residential categories. In addition, there were small changes in commercial as 
well.  It’s important to note that while increasing shade represents an increase in 
tree canopy, this does not affect the prevalence or influence of “green spaces”. In 
addition, since nighttime HMI is dependent only on building intensity and no land 
use change was modeled, nighttime model runs only represent existing conditions.

The daytime 5% tree canopy change output was analyzed by looking at the 
difference in temperature between the existing conditions model run and the five 
percent increase model run. The model outputs a temperature raster 
(Tairnom )which is calculated using the equation 5, where Tairref is the reference 
temperature and UHIMax is the maximum UHI magnitude in the study area . Since
the values for the reference air temperature and the UHIMax stay the same for the
existing conditions model run and the five percent increase run, the difference in 
temperature represents the difference in HMI (Equation 5).

Tairnom=Tairref +(1−HMI )∗UHIMax
 

(Equation 5)

3.3.2 Heat Exposure and Vulnerability
With the aforementioned model parameters, we created three indices at both the 
census tract and census block group level for identifying regions that are more 
vulnerable to heat: 1) a Heat Risk Index 2) Heat Vulnerability Index and 3) Heat 
Exposure Index. Our Heat Exposure Index used daytime and nighttime LST values 
with daytime LST values being given a weight half of that of nighttime LST values 
since research suggests that nighttime temperatures are better predictors of heat-
related health outcomes than daytime temperatures (Hajat et al., 2005; Schwartz 
et al., 2005; Zhang et al., 2012).  We used the following equation (Equation 6) to 
calculate exposure, where mDLSTi and mNLSTi are the mean daytime and 
nighttime LST values, respectively, for the census tract. The resulting map (Figure 
2B) was then ranked by quintile, and classified as very low, low, medium, high and 
very high priority areas.
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Exposure=
mDLST∗0.5+mNLST

1.5

(Equation 6)
   

Figure 2: Maps of heat vulnerability (2A), exposure (2B) and risk (2C) at the census
tract level for the City of San Diego, California. 

The Heat Vulnerability Index is calculated using Principal Component Analysis 
(PCA). Both social variables and health variables are used at census tract level 
(Figure 2A). For the census block group (Figure A4), only the social variables are 
used since health data are not available from CDC at the census group blocks.  
PCA is a statistical unsupervised method that reduces the dimensionality of a data 
set by grouping them into linearly uncorrelated principal components that aim to 
explain most of the data’s variance. Because of this, PCA can be used to identify 
spatial clusters of key factors driving heat vulnerability. Using R, we ran a PCA on 
our Heat Vulnerability Index by first transforming the input variables to z-scores 
(mean of 0, standard deviation of 1) to be able to compare the variables which 
originally had different units and ranges. PCA was done using the principal-
function in base R with a varimax rotation. Only principal components that had 
eigenvalues greater than one were retained (Kaiser, 1960). Components also were 
required to cumulatively explain approximately 70% of data variance and where 
the slope is leveling off in the scree plot (Glorfeld, 1995). Based on these criteria 
and literature, we used four principal components for both the census tract and 
census block group. Since PCA only detects patterns among input variables, we 
further evaluated whether the sign, positive or negative, of each component 
produced by the PCA represented the best current scientific understanding of the 
real-world relationship between that variable and heat vulnerability-our outcome 
variable of interest.  We then calculated scores for each component and census 
tract or census block group. Factor scores for each component and census tract 
were calculated by weighing the z-score of each variable by the 16x4 matrix 
product of the inverse correlation matrix of the data and the loadings resulting 
from the PCA. The resulting factor scores were summed to a single score. The 
same was done at the census block group level but instead using an 8x4 matrix. To 
visualize heat vulnerability, the overall vulnerability index scores were then ranked
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by quintile, and classified as very low, low, medium, high, and very high priority 
areas (Figure 2A).

Our Heat Risk Index uses normalized values of the Heat Exposure Index and Heat 
Vulnerability Index and applies Equation 7.  We visualized the results of our heat 
risk index scores by ranking them by quintile, and classifying them as very low, 
low, medium, high, and very high priority areas for both the census tract (Figure 
2C) and census block group (Figure A5) level. These final percentile risk index 
scores are used to identify areas in San Diego with higher heat risk relative to each
other.

      Risk = Exposure x Vulnerability                                          
(Equation 7)

4. Results & Discussion

4.1 Analysis of Results
4.1.1 UHI/Hotspot Identification
The City of San Diego is on average 4.1°C (7.3°F) (Figure A8) warmer in the 
daytime than undisturbed areas or natural landscape patches such as Torrey Pines 
State Natural Reserve. Throughout the city, temperatures ranged from 20°F cooler
in the area's canyons such as Los Penasquitos Canyon near Sorrento Valley and 
coastal areas near Del Mar and La Jolla to over 30°F near Kearney Mesa and 
Miramar. Consistently throughout the city the warmest temperatures were areas 
of high impervious surface, low tree canopy, and barren land such as the case near
Miramar and the United States Armed Force Base. The coolest areas were those 
that had a similar surface complexion as the reference sites (i.e., low amounts of 
buildings, and roads, tree canopy), as well as areas close to the bay and the Pacific 
Ocean. 

During the nights, the City of San Diego is on average roughly 3°F warmer than 
areas that were used as reference sites (Figure A9). Throughout the city 
temperatures ranged from –12°F cooler in areas such as Scripps Ranch community
area and Carmel Valley by Los Penasquitos Canyon to 10°F warmer in areas such 
as Miramar near the military based as well as Mid City: Normal Heights and North
Park (Figure A9). While nighttime temperatures have smaller disparities, areas of 
low tree canopy and higher impervious surface were common traits of nighttime 
hotspots throughout the city. 

4.1.2 Heat Vulnerability- Principal Component Analysis
The PCA run on the census tract level, which included social and health indicators, 
had 83% of the variance explained with four principal components while the 
census block group dataset had 84% of the variance explained. The first two 
principal components for the census tract explained 60% of the variance with the 
first component explaining 34% of the variance and including all the health 
indicators (i.e., hypertension, chronic obstructive pulmonary disease, coronary 
heart disease, asthma, diabetes, and obesity) which all had a strong positive 
loading (Figure A1). In other words, census tracts that had high populations with 
hypertension would likely have high populations with chronic obstructive 
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pulmonary disease and so on. The second principal component included percent of 
population over 25 years old without a high school diploma, Latinx population, 
people with no health insurance, limited English proficiency, and percent people 
below the Federal Poverty Level. The last two principal components, PC3 and PC4, 
proportionally explained 13% and 10% of the variance respectively. 

For the census block group’s PCA (Figure A2), the first two principal components 
explained 54% of the variance in the data. The first principal component contained 
positive loadings for percent of population over 25 years old without a high school 
diploma, Latinx population, and limited English proficiency. This reaffirms that 
there is a strong correlation among these variables since the census block group 
data did not include health indicators, poverty, or no access to health insurance. 

4.1.3 Heat Scores
Heat exposure and social vulnerability had similarities and differences throughout 
San Diego. Namely, numerous areas had both high exposure and high vulnerability
ratings; however, many areas had high exposure and low vulnerability ratings such
as areas in the Navajo Community area. For areas of high heat exposure, the 
communities' areas of Mira Mesa, Mid-City: Normal Heights, College Area, and 
Skyline-Paradise Hills were the most impacted. The census tract with the highest 
heat exposure is 06073013103 and its associated census block group, 
060730131031, also had the highest exposure (Table A4, Table A8). Areas of 
lowest exposure were Carmel Valley, Del Mar Mesa, and La Jolla/ University City. 

Heat vulnerability at the census tract level (Figure 2 B) was highest in the 
community areas of Southeastern San Diego, Encanto Neighborhoods, Mid City: 
Normal Heights, and MidCity Eastern Area. In addition, at the census tract level, 
we found the southern communities of Otay Mesa-Nestor and San Ysidro to also 
have high vulnerability. Vulnerability at the block group level reflected that of the 
census tract analysis except for the Otay Mesa-Nestor and San Ysidro community 
areas not measuring as highly vulnerable. The census tract with the highest 
vulnerability is 06073010013 while the census block group with the highest 
vulnerability is 060730009003 (Table A5, Table A9).  Both the census tract’s 
associated census block groups and the census block group’s associated census 
tract were not in the top 10 for heat vulnerability. This discrepancy could be 
because the analysis of census block groups did not include health, access to 
healthcare, and poverty indicators. 

Our heat risk scores at both the census tract (Figure 2C) and block group (Figure 
A5) levels showed the communities with the highest heat risk were located in Mid 
City: City Heights and Eastern Area (Figure A6 and A7). These regions had high 
populations of people of color, people with no high school education, and people 
with health problems along with high heat exposure. For example, census block 
group 060730022012, located in Normal Heights, had a high Latinx population, a 
high population of people who are isolated and over 65, and a high population with
no high school education. Its associated census tract, 06073002201, had a high 
obesity population and high poverty population. At both the census block group 
and census tract, there was high daytime and nighttime land surface temperature. 
The one exception in the agreement between the two levels of analysis was the 
Rancho Bernard and San Ysidro neighborhoods which were high risk at the census 
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tract level but not of that at the block group level. This discrepancy can be 
explained by the lack of poverty, no access to health insurance, and health 
indicators at the census block group level (Figure A3 and A4). Because of this, our 
census block group with the highest heat risk did not match up with the census 
tract with the highest heat risk. At the census block group, the highest score was 
060730022011, located in City Heights, which had a high people of color 
population, a high population of limited English proficiency, and a high population 
of no high school education. Its associated census tract, 06073002201, had higher 
than average values for the health, poverty and no access to health insurance 
indicators (Table A5, Table A6). 

4.1.4 InVEST Model Results
The heat mitigation index output for daytime existing conditions generally shows 
what is expected given our knowledge of the model (Figure 3). Natural areas show 
up blue and green while more developed areas are shown red-orange to yellow. 
While open water was classified as a “green area” there is not an extensive cooling
effect visible from the coast. This is due to the low values for water for the 
variables that determine cooling capacity. There is no shade over open water and 
shade weighted 0.6 so has the biggest influence on CC, albedo is low since water is
dark and absorbs energy instead of reflecting it, and ET data is not available over 
water. The community planning areas of Southeastern San Diego, Mid-City Normal
Heights, Encanto, and North Park in the central part of San Diego all had low heat 
mitigation index values. In the northern portion of San Diego, the Mira Mesa 
Community planning area also had low heat mitigation index values (Figure 3).

Nighttime HMI (Figure A10) is driven entirely by building intensity. This is 
apparent as areas with one-story homes in the northern area of the city have a 
much higher heat mitigation index than areas closer to downtown. Similar to 
daytime values the community planning areas of Southeastern San Diego, Mid-City
Normal Heights, Encanto, and North Park in the central part of San Diego, and the
Mira Mesa Community planning area also had low heat mitigation index values for 
nighttime (Figures A10 and A11).
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Figure 3: Daytime HMI (left) and Daytime HMI zoomed in on the San Diego
Bay/downtown area (right) in San Diego for summer months (May 1 - September

30). Created with InVEST Urban Cooling Model

Additionally, there are differences in HMI between streets, freeways, residential 
neighborhoods, and commercial corridors (Figure 3). Roads tend to have a low 
cooling capacity since they have low shade, low albedo, and low ET. We can also 
see the difference between residential and commercial areas as commercial 
corridors tend to have a lower HMI.

Modeling the 5% tree canopy increase was completed by increasing the shade 
parameter for residential areas, road right of way, public spaces such as parks and
schools, and minimally for commercial areas (Figure A13). This subsequently 
increased the HMI in these areas resulting in an overall temperature decrease of 
0.35 degree Celsius or 0.6-degree Fahrenheit.

Evaluating the difference in daytime LST normalized and 1 – Day HMI provides a 
tool to understand if high temperatures occur where low HMI is modeled and vice 
versa. Red areas are where HMI underestimates cooling and blue areas are where 
it over estimates cooling (Figure A12). The ability for heat mitigation in areas 
along the coast and natural areas tend to be underestimated by the model. This 
enforces our observation that the InVEST model cannot capture the cooling effect 
of the ocean. Simultaneously this is a relatively narrow band along the coast 
approximately 400 m wide. The blue areas show where the modeled HMI 
overestimates cooling. This primarily occurs in developed areas. On average the 
HMI seems to overestimate cooling as the mean difference is negative.
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4.2 Uncertainties/ Limitations

4.2.1 PCA Analysis
Our PCA for both census tract and census block group had a negative loading for 
our “Over 65” variable but a positive loading for out “Over 65 and Isolated” 
variable. Although it is expected that those who are living alone and over 65 would 
be more vulnerable, it would be expected that those who are over 65 would also be
vulnerable. The “Over 65” variable possibly had a negative loading due to not 
having a variable in the PCA that could explain more of its variance, in this case a 
variable that looked at those who live alone. We do not expect this negative loading
to be much of an issue since PC 4 only accounted for 10% and 14% of the variance 
in the census tract and census block group respectively. Furthermore, our scores 
for the vulnerability index gave equal weights to the variance in each principal 
component instead of assigning weights based on the variance. It could be that 
some social and health variables have a larger impact on vulnerability than others 
and so should be weighted more heavily when assessing vulnerability. Also, it is 
important to note that the lack of heat morbidity and mortality data prevented 
further investigation into the impacts of heat of populations throughout San Diego.

4.2.2 UHI identification
Work from others (Hajat et al., 2005; Schwartz et al., 2005; Zhang et al., 2012) 
explores the differences between day and nighttime temperatures in a UHI 
context. In this study we weighted nighttime temperatures twice as high as 
daytime, but this ratio could be tinkered with to get a better understanding of the 
temporal patterns associated with heat risk. Similarly, how one defines “night” 
may be important. Here, we used 11 PM to 4 AM as our night time span. However, 
the coolest times of day, and thus greatest indicator of urban heat are generally 
associated with dawn, which always happens after 4 AM regardless of season. This
is important because the largest disparities between built and unbuilt areas may 
be associated with daytime, rather than nighttime temperatures. This becomes 
exacerbated when weighting occurs.

4.2.3 InVEST Urban Cooling Model
We used default values for parameters Green Area Maximum Cooling Distance 
(GAMCD) of 400 m and Air Temperature Maximum Blending Distance (ATMBD) of 
500 m (McDonald et al., 2016; Zardo et al., 2017) an. The GAMCD determines the 
extent of the cooling effect of land uses labeled as green areas. This may change 
with climate, vegetation type, and air mixing dynamics. 

The coastal location of San Diego introduced substantial error since InVEST is not 
equipped to account for the cooling effect of large bodies of water. Water has a 
very low cooling capacity according to the InVEST equations which does not reflect
the moderating effect oceans have on the surrounding air temperature. In addition,
evapotranspiration data is not available over water, which resulted in a cooling 
capacity of effectively zero for the ocean. Since some investigation has shown that 
ET over water is minimal, the impact on the overall results of the project is 
negligible. However, this lack of data amplified the error associated with the 
deficiency in the InVEST Model to account for the cooling effect of large water 
bodies.
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We made decisions on how to relate the generalized building values to the land 
classifications, these were subjective decisions on what categories should fit 
where. In addition, the data used to determine the generalized building values 
were from Sacramento and used standard floor heights so the process of attaining 
the building intensity values came from allot of assumptions. 

4.3 Future Work
Though we present a quantitative spatial analysis of urban heat hotspots and 
vulnerability in the City of San Diego, here we suggest several additional steps to 
expand the impact of our study. The InVEST model and vulnerability analyses can 
be applied across the San Diego metro or county-wide. The 2018 population of the 
City of San Diego was only ~43% of the total population of the county. The same 
heat exposure and vulnerability can be found in San Diego’s suburbs, and heat 
exposure increases with distance from the ocean. 

Our heat risk aims to predict which regions are more at risk to require hospital 
visits due to extreme heat. However, we did not have data on heat morbidity and 
mortality. Since we did not have data on our dependent variable, we used Principal
Component Analysis on our social and health indicators, an unsupervised learning 
statistical method. Principal Component Analysis looks at variables that are 
correlation via an unobserved variable, in this case that unobserved variable is 
assumed to be heat morbidity and mortality. For future replications, it would be 
best to observe relationships of social, health, and environmental variables with 
heat morbidity and mortality, if that data is available.

InVEST inputs and default values have the opportunity to be refined and updated 
to better reflect the current conditions of the city. In addition, analyzing the 
intermediate outputs could provide insights into different components of the 
model.  Lastly, model validation and statistical analysis is important to 
understanding how well the model is performing. Model validation could occur in a
number of ways; there are scripts on GitHub provided by other users that could be 
utilized or the air temperature results could be compared to in situ air temperature
measurements from weather stations. Additional work can be done to develop a 
method to estimate evapotranspiration over water.

5. Conclusions
This study demonstrates that the City of San Diego has substantially higher 
temperatures than areas of unbuilt landscape. The temperatures were seen to be 
cooler with closer proximity to the ocean. Nighttime LST was found to exhibit less 
of a gradient of temperatures further away from the ocean.  In particular the 
community planning areas of Normal Heights, Eastern Area, and College Area 
experienced the warmest temperatures throughout the city. Areas that had lower 
heat risk tended to have lower amounts of impervious surfaces, less infrastructure,
and higher tree canopy. 

There were differences between areas of risk and heat exposure, meaning that 
higher heat areas do not necessarily correlate to higher vulnerability. Certain 
demographic groups including Latino and those without a high school diploma had 
higher exposure to both day and nighttime temperature. Our PCA allowed us to 
more closely examine the factors that put residents at risk. We found that in 
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particular health indicators including cardiovascular disease, obesity, and diabetes
were the most important factor in explaining which residents are most at risk. At 
the block group level in the absence of available health data, percent Latino, 
percent high school diploma and English language proficiency were the most 
important factors. 

We also provide insight into the distribution of heat mitigation throughout the 
urban landscape. By introducing these metrics, we were better able to quantify the
impacts of major bodies of water and urban green areas greater than two hectares 
and increasing tree canopy scenario. This is important because it demonstrates not
only how increasing tree canopy will reduce city temperatures, but also explores 
the role of water and open green spaces. Much of the work completed on InVEST 
highlights the limitations of the model and the need to develop the model and the 
inputs with a question or objective in mind so that the inputs can be tailored to the 
information that is being sought. The methods and workflow for the InVEST model 
may be used by future DEVELOP projects and the partners to better understand 
the cooling capacity of increased tree canopy. In addition, we discuss the errors 
and uncertainties which may help future teams develop their models and inputs. 
The InVEST model can be applied by our project partners to the greater San Diego
metro area to get a better understanding of the cooling capacity of the landscape 
throughout the region. 
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7. Glossary
Albedo – the fraction of light that is reflected by a surface
Cooling Capacity (CC) – a measure of a system’s ability to remove heat
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) – satellite mission that aims to measure how the terrestrial 
biosphere changes in response to environmental changes such as water availability
Evapotranspiration – the sum of evaporation of water from land and other 
surfaces and through transpiration by plants
Heat Exposure— the magnitude of heat energy in a given area
Heat Mitigation Index (HMI)– an index to estimate temperature reduction by 
vegetation
Heat Risk— product of heat risk and vulnerability, takes into account temperature
and pre-existing medical conditions and socioeconomic factors
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Heat Vulnerability— a numerical value that takes into account temperature and 
pre-existing medical conditions and socioeconomic factors. 
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – a suite
of models used to map and value the goods and services from nature that benefit 
human life
Land Surface Temperature (LST) – the temperature of the surface of the Earth
Operational Land Imager (OLI) – sensor aboard the Landsat 8 satellite that 
measures visible, near-infrared, and shortwave infrared wavelengths
Thermal Infrared Sensor (TIRS) – sensor aboard the Landsat 8 satellite that 
measures both Earth’s surface temperature and atmosphere temperature
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9. Appendices
Appendix A

Table A1: Platforms and sensors used for analysis.

Platform &
Sensor

Parameters Use

Landsat 8 
OLI/TIRS

Surface reflectance, 
Albedo, daytime LST
 

Between 2015-2020, the 
thermal band and surface 
reflectance were used to 
calculate the land surface 
temperature during daytime 
hours, albedo, and daytime LST 
were all inputs for the InVEST 
model.
 

ISS- ECOSTRESS
 

Evapotranspiration, 
Nighttime land 
surface temperature
 

Nighttime measurements of 
land surface temperature were 
gathered from ECOSTRESS to 
enhance the partners’ 
understanding of urban heat 
dissipation and consequent 
neighborhood-level health 
concerns. Evapotranspiration 
rates were gathered from 
ECOSTRESS for use in the 
InVEST model.
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Table A2: Summary of Inputs to InVEST Urban Cooling Model.

Input Description Source

Land 
Use/Land 
Cover 

Code that defines the land use 
of that area, the municipal data 
used 100 different categories 
[raster]

City of San Diego 
(Online GIS 
Repository)

Biophysical 
Table

A table containing physical 
characteristics per land use 
code (and associated 
description) present in the 
LULC raster [csv]

Compiled by team

Shade Derived from tree canopy, 
represents percent shaded area
per land use [0-1]

City of San Diego 
(Online GIS 
Repository)

Albedo Represents percent of energy 
reflected from surface per land 
use [0-1]

Landsat 8 OLI

Building 
Intensity

Represents the intensity of 
development, a normalized 
value of the ratio of floor area 
to land area per land use [0-1]

City of San Diego 
(Online GIS 
Repository)
Generalized 
Building Values 
table (Sacramento 
Urban Development 
fall 2020, Appendix 
B)

Evapotranspi
ration 

Normalized evapotranspiration 
values in mm [raster]

ISS ECOSTRESS ET

AOI Vector polygon delineating area
of interest and aggregation 
boundaries of census block 
groups

City of San Diego 
(Online GIS 
Repository)

Green Area 
Maximum 
Cooling 
Distance

Default used of 400m [m] Model 
Documentation

Reference Air
Temperature

Rural reference temperature, 
mean LST was used from 
chosen reference areas 
[degrees C]

Landsat 8 OLI
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Magnitude of 
Urban Heat 
Island Affect

Magnitude of the UHI Effect: 
Difference between rural 
reference temperature and the 
maximum temperature 
observed in the city. (average 
was used since surface 
temperatures fluctuate more 
than air) [degrees C]

Landsat 8 OLI

Air 
Temperature 
Maximum 
Blending 
Distance

Air Temperature Maximum 
Blending Distance: Used default
value 500 [m]

Model 
Documentation

Table A3: Overview of American Community Survey (ACS) sociodemographic data
and Center for Disease Control (CDC) 500 cities health data used, area division,

date, source, and retrieval method.

Dataset Area Division Date/Time Source Retrieval

Total 
Population
B01001_001

Census tract 2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

Ethnic 
Minority 
(Non-White)
B03002_001

Census tract
Census block 
group 

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

Below Poverty
Line
B17021_002

Census tract 2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

Without High 
School 
Diploma
B15003_002-
016  

Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

65 Years and 
Older
B01001_020-
25
B01001_044-
49

Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

65 Years and 
Older, Living 
Alone
B09020_015
B09020_018

Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R
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Percent Latino Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

Percent Asian Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

Percent Black Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

 Household 
Language by 
Household 
Limited 
English-
Speaking 
Status
C16002:

Census tract
Census block 
group

2018, 5-year 
estimate 
(2014-2018)

ACS Tidycensus 
package in R

500 Cities: 
Census Tract-
level Data 
(GIS Friendly 
Format)

2018 release 
Census Tract

2018 Center for 
Disease 
Control and 
Prevention 
(CDC)

CDC Website
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Table A4: Heat Exposure Score table of top ten scoring census tracts (CTs).

GEOID
Vari
able
s

0
6

0
7

3
0

1
3

1
0

3

0
6

0
7

3
0

0
2

2
0

2

0
6

0
7

3
0

0
2

3
0

2

0
6

0
7

3
0

0
2

2
0

1

0
6

0
7

3
0

0
2

7
0

7

0
6

0
7

3
0

0
1

3
0

0

0
6

0
7

3
0

0
8

3
4

9

0
6

0
7

3
0

0
2

4
0

2

0
6

0
7

3
0

0
1

6
0

0

0
6

0
7

3
0

0
2

3
0

1

Daytim
e LST  
(° F)

98.4 112.
4

112.
1

111.
7

112.
0

110.
3

110.
3

110.
6

110.
3

111.
1

Nightti
me LST
(° F)

74.3 59.7 59.8 60.0 59.5 60.4 60.2 59.8 59.8 59.1

Heat 
Exposu
re 
Score

98.8 96.0 95.9 95.9 95.6 95.4 95.3 95.2 95.0 95.0
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Table A5: Heat Vulnerability Score table of top ten scoring census tracts (CTs).

GEOID

V
a
r
i
a
b
l
e
s

0
6

0
7

3
0

1
0

0
1

3

0
6

0
7

3
0

1
0

0
0

5

0
6

0
7

3
0

0
2

2
0

2

0
6

0
7

3
0

1
0

1
0

3

0
6

0
7

3
0

0
5

0
0

0

0
6

0
7

3
0

0
3

1
0

1

0
6

0
7

3
0

0
3

3
0

5

0
6

0
7

3
0

0
3

5
0

2

0
6

0
7

3
0

0
4

9
0

0

0
6

0
7

3
0

1
7

0
1

4

Hypertensio
n (%)

32 30.9 31.3 32.6 29.8 36.4 32.7 30.3 30 48.7

Pulmonary 
Disease (%)

7.5 6.7 7.6 7 7.3 6.2 6.9 7.1 6.8 7.9

Heart 
Disease (%)

7.7 7.1 7 7.4 6.6 6.5 5.9 6.1 6.4 12.3

Asthma (%) 9.7 9.2 9.5 8.8 9.7 9.8 10.6 10.3 9.8 7.2
Diabetes (%) 16.7 15.6 15.4 14.7 14.7 14.5 14.4 14.3 14.3 14.1
Obesity (%) 31.5 28.6 27.6 28.4 32.1 28.5 30.6 31.4 31.1 15.8
No Health 
Insurance 
(%)

16.6 14.0 23.3 9.15 24.2 18.2 12.5 20.0 19.2 1.83

Poverty (%) 29.2 28.6 39.6 18.0 37.7 20.0 36.5 36.7 27.3 5.15
No HS 
Diploma (%)

53.5 38.7 46.6 33.5 43.4 19.2 37.5 39.1 45.0 4.16

Limited 
English 
Proficiency 
(%)

28.8 27.8 31.9 16.0 33.8 4.42 18.6 16.9 17.7 2.39

Latinx 
Population 
(%)

97.1 93.6 72.3 71.1 85.3 59.5 60.1 80.8 85.9 6.87

Black 
Population 
(%)

0.9 0.5 5.4 4.9 4.9 32.2 25.8 10.1 3.4 1.4

Asian 
Population 
(%)

0.1 2.9 12.5 3.38 0.9 2.7 7.45 2.0 1.3 6.0

Non-White 
(%)

11.9 14.8 43.7 27.7 34.3 64.7 58.5 50.4 35.4 11.0

Over 65 (%) 18.5 21.7 18.8 13.8 14.2 16.1 18.7 13.6 12.3 75.3
Over 65 and 
Alone (%)

1.4 3.7 17.0 1.7 11.9 4.1 9.3 0 12.3 8.2

Heat 
Vulnerability
Score

9.3 8.2 8.0 7.3 7.3 7.3 7.0 6.9 6.9 6.7
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Table A6: Heat Risk Score table of top ten scoring census tracts (CTs).

GEOID
V
a
r
i
a
b
l
e
s

0
6

0
7

3
0

0
2

2
0

2

0
6

0
7

3
0

1
3

1
0

3

0
6

0
7

3
0

0
2

3
0

2

0
6

0
7

3
0

0
2

7
0

7

0
6

0
7

3
0

1
7

0
1

4

0
6

0
7

3
0

1
0

0
1

3

0
6

0
7

3
0

0
2

2
0

1

0
6

0
7

3
0

0
2

4
0

2

0
6

0
7

3
0

0
3

1
0

1

0
6

0
7

3
0

0
2

7
1

2

Hypertension 
(%)

31.3 28.1 29.2 28.1 48.7 32 27.4 26.4 36.4 31.9

Pulmonary 
Disease (%)

7.6 5.7 7 6.6 7.9 7.5 6.2 6.1 6.2 6.5

Heart Disease
(%)

7 5.6 5.8 5.1 12.3 7.7 4.6 4.8 6.5 6.4

Asthma (%) 9.5 9 9.9 10 7.2 9.7 10.1 9.8 9.8 9.6
Diabetes (%) 15.4 11.8 13.9 12.8 14.1 16.7 11.4 11.8 14.5 13
Obesity (%) 27.6 26.1 27.2 28 15.8 31.5 29 28.1 28.5 25.7
No Health 
Insurance (%)

23.3 10.4 21.0 22.1 1.8 16.6 16.8 24.2 18.2 5.5

Poverty (%) 39.6 14.2 31.3 33.2 5.1 29.2 42.1 29.7 20.0 26.2
No HS 
Diploma (%)

46.6 35.0 49.9 41.9 4.2 53.5 42.7 46.9 19.2 22.6

Limited 
English 
Proficiency 
(%)

31.9 17.5 28.9 22.5 2.4 28.8 25.3 22.9 4.4 17.6

Latinx 
Population 
(%)

72.3 75.8 63.2 58.3 6.9 97.1 47.2 68.5 59.5 38.1

Black 
Population 
(%)

5.4 3.0 4.1 9.9 1.4 0.9 22.7 14.3 32.2 25.8

Asian 
Population 
(%)

12.5 5.1 23.0 21.4 6.0 0.1 20.5 12.8 2.7 16.2

Non-White 
(%)

43.7 26.8 51.7 51.8 11.0 11.9 55.1 44.6 64.7 62.6

Over 65 (%) 18.8 17.3 10.2 9.2 75.3 18.5 6.9 10.6 16.1 22.0
Over 65 and 
Alone (%)

17.0 0 14.8 10.1 8.2 1.4 16.8 9.0 4.1 8.7

Daytime LST 
(° F)

112.
4

98.4 112.
1

112.
0

108.
1

105.
1

111.
7

110.
6

105.
1

106.
4

Nighttime 
LST   (° F)

59.7 74.3 59.8 59.5 60.4 59.0 60.0 59.8 60.2 60.4

Heat Risk 
Index

0.76 0.71 0.68 0.61 0.61 0.57 0.56 0.55 0.53 0.52
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Table A7: Difference to the mean table of top ten scoring census tracts’ social and
health indicators (CTs).

GEOID
V
a
r
i
a
b
l
e
s

0
6

0
7

3
0

0
2

2
0

2

0
6

0
7

3
0

1
3

1
0

3

0
6

0
7

3
0

0
2

3
0

2

0
6

0
7

3
0

0
2

7
0

7

0
6

0
7

3
0

1
7

0
1

4

0
6

0
7

3
0

1
0

0
1

3

0
6

0
7

3
0

0
2

2
0

1

0
6

0
7

3
0

0
2

4
0

2

0
6

0
7

3
0

0
3

1
0

1

0
6

0
7

3
0

0
2

7
1

2

Hypertension 
(%)

9.5 6.3 7.4 6.3 26.9 10.2 5.6 4.6 14.6 10.1

Pulmonary 
Disease (%)

3.7 1.8 3.1 2.7 4.0 3.56 2.3 2.2 2.3 2.6

Heart Disease
(%)

3.0 1.6 1.8 1.1 8.3 3.7 0.6 0.8 2.5 2.4

Asthma (%) 2.3 1.8 2.7 2.8 0.04 2.5 2.9 2.6 2.6 2.4

Diabetes (%) 8.0 4.4 6.5 5.4 6.7 9.3 4.0 4.4 7.1 5.6

Obesity (%) 9.7 8.2 9.3 10.1 -2.1 13.6 11.1 10.2 10.6 7.8

No Health 
Insurance (%)

14.7 1.8 12.3 13.5 -6.8 8.0 8.2 15.7 9.7 -3.1

Poverty (%) 26.3 0.9 18.0 19.9 -8.2 15.9 28.8 16.4 6.7 12.9
No HS 
Diploma (%)

34.0 22.4 37.3 29.3 -8.4 40.9 30.1 34.3 6.6 10.0

Limited 
English 
Proficiency 
(%)

24.5 10.1 21.5 15.1 -5.0 21.5 18.0 15.5 -2.9 10.2

Latinx 
Population 
(%)

41. 45.0 32.4 27. -
23.9

66.3 16.3
9

37.6 28.6 7.3

Black 
Population 
(%)

-0.5 -2.9 -1.8 3.9 -4.6 -5.0 16.7 8.4 26.3 19.9

Asian 
Population 
(%)

-1.5 -8.9 8.9 7.3 -8.0 -
13.9

6.5 -1.2 -
11.3

2.2
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Non-White 
(%)

11.6 -5.8 19.2 19.3 -
21.5

-
20.6

22.5 12.6 32.1 30.0

Over 65 (%) 0.3 -1.2 -8.3 -9.2 56.8 0.03 -
11.5

-7.8 -2.3 3.5

Over 65 and 
Alone (%)

7.5 -9.5 5.3 0.6 -1.3 -8.1 7.3 -0.5 -5.4 -0.8
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Table A8: Heat Exposure Score table of top ten scoring census block groups
(CBGs).

GEOID
Vari
able
s

0
6

0
7

3
0

1
3

1
0

3
1

0
6

0
7

3
0

0
2

2
0

2
1

0
6

0
7

3
0

0
1

3
0

0
2

0
6

0
7

3
0

0
2

7
0

7
4

0
6

0
7

3
0

0
2

2
0

1
2

0
6

0
7

3
0

0
2

3
0

2
3

0
6

0
7

3
0

0
2

2
0

2
2

0
6

0
7

3
0

0
1

7
0

0
1

0
6

0
7

3
0

0
1

3
0

0
5

0
6

0
7

3
0

0
9

3
0

1
1

Dayti
me 
LST

98.4 114.
8

112.
6

113.
3

112.
5

112.
9

113.
2

110.
4

110.
5

109.
8

Nightti
me 
LST

74.3 60.0 60.4 60.0 60.2 60.0 59.7 61.1 61.0 61.2

Expos
ure 
Score

82.4 78.0 77.8 77.8 77.6 77.6 77.6 77.5 77.5 77.4
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Table A9: Heat Vulnerability Score table of top ten scoring census block groups
(CBGs).

GEOID
Variab
les

0
6

0
7

3
0

0
0

9
0

0
3

0
6

0
7

3
0

0
2

7
0

9
1

0
6

0
7

3
0

0
2

7
1

2
3

0
6

0
7

3
0

0
2

2
0

1
1

0
6

0
7

3
0

0
0

9
0

0
5

0
6

0
7

3
0

0
2

5
0

1
3

0
6

0
7

3
0

0
0

9
0

0
6

0
6

0
7

3
0

0
3

0
0

1
1

0
6

0
7

3
0

0
3

3
0

5
1

0
6

0
7

3
0

0
2

7
0

8
3

No HS Diploma 
(%)

2.0 58.
2

33.
0

35.
4

0 30.
7

12.
7

1.9 25.
1

45.
3

Limited English 
Proficiency (%)

11 26 27 32 13 28 5 14 23 31

Latinx Population
(%)

23.
6

57.
5

46.
1

28.
8

15.
1

53.
9

38.
8

17.
7

30.
4

42.
0

Black Population 
(%)

28 30 39 33 24 17 14 57 41 30

Asian Population 
(%)

10.
2

9.0 3.2 31.
0

4.9 16.
2

3.3 12.
6

21.
3

20.
4

Non-White (%) 50.
6

49.
4

67.
6

77.
6

36.
3

51.
3

43.
4

85.
8

69.
0

63.
0

Over 65 (%) 1.7 2.7 6.9 9.9 2.4 3.2 3.2 26.
3

16.
9

9.4

Over 65 and 
Alone (%)

100 37 21 8 100 41 100 7 8 0

Heat 
Vulnerability 
Score

6.3 6.1 5.9 5.8 5.4 5.0 4.9 4.9 4.9 4.9
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Table A10: Heat Risk Score table of top ten scoring census block groups (CBGs).

GEOID

Vari
able
s

0
6

0
7

3
0

0
2

2
0

1
1

0
6

0
7

3
0

0
0

9
0

0
3

0
6

0
7

3
0

1
3

1
0

3
1

0
6

0
7

3
0

0
2

2
0

1
2

0
6

0
7

3
0

0
2

7
0

8
3

0
6

0
7

3
0

0
1

8
0

0
3

0
6

0
7

3
0

0
0

9
0

0
5

0
6

0
7

3
0

0
2

4
0

2
1

0
6

0
7

3
0

0
0

9
0

0
6

0
6

0
7

3
0

0
2

7
1

2
3

No HS 
Diploma (%)

35.4 2.0 46.5 51.3 45.3 17.3 0 43.2 12.7 33.0

Limited 
English 
Proficiency 
(%)

32 11 24 18 31 0 13 20 5 27

Latinx 
Population 
(%)

28.8 23.6 92.2 67.8 42.0 10.6 15.1 67.7 38.8 46.1

Black 
Population 
(%)

33 28 0 11 30 40 24 20 14 39

Asian 
Population 
(%)

31.0 10.2 0.5 8.9 20.4 28.6 4.9 8.6 3.3 3.2

Non-White 
(%)

77.6 50.6 16.2 29.9 62.9 77.6 36.3 42.0 43.4 67.6

Over 65 (%) 9.9 1.7 15.0 3.4 9.4 7.3 2.4 6.0 3.2 6.9

Over 65 and
Alone (%)

8 100 0 48 0 0 100 30 100 21

Daytime 
LST 
(° F)

111.
3

108.
8

98.4 112.
5

112.
9

110.
2

108.
0

112.
3

108.
7

106.
3

Nighttime 
LST 
(° F)

60.0 60.6 74.3 60.2 58.8 60.7 60.6 59.6 60.6 60.8

Heat Risk 
Index

0.6 0. 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.
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Table A11: InVEST biophysical table current conditions input.

luco
de

lulc_desc shad
e

kc albe
do

green
_area

building_i
ntensity

0 No data 0 0 0 0 0
1000 Spaced Rural Residential 0.20 1 0.15 0 0.04
1090 Spaced Rural Residential

Without Units
0.55 1 0.13 0 0.06

1110 Single Family Detached 0.18 1 0.15 0 0.25
1120 Single Family Multiple-

Units
0.18 1 0.15 0 0.28

1190 Single Family Residential
Without Units

0.27 1 0.15 0 0.09

1200 Multi-Family Residential 0.19 1 0.14 0 0.81
1280 Single Room Occupancy

Units (SRO's)
0.10 1 0.19 0 0.36

1290 Multi-Family Residential
Without Units

0.17 1 0.14 0 0.62

1300 Mobile Home Park 0.09
5

1 0.19 0 0.85

1401 Jail/Prison 0.00
70

1 0.23 0 0.61

1402 Dormitory 0.20 1 0.14 0 0.40
1403 Military Barracks 0.09

3
1 0.18 0 0.40

1404 Monastery 0.35 1 0.15 0 0.39
1409 Other Group Quarters 0.18 1 0.15 0 0.69

31



Facility
1501 Hotel/Motel (Low-Rise) 0.19 1 0.14 0 0.62
1502 Hotel/Motel (High-Rise) 0.16 1 0.15 0 1.00
1503 Resort 0.28 1 0.13 0 0.42
2001 Heavy Industry 0.01

8
1 0.14 0 0.28

2101 Industrial Park 0.14 1 0.16 0 0.24

2103 Light Industry - General 0.10 1 0.17 0 0.24
2104 Warehousing 0.07 1 0.18 0 0.26
2105 Public Storage 0.08

1
1 0.18 0 0.30

2201 Extractive Industry 0.04
7

1 0.18 0 0.0021

2301 Junkyard/Dump/Landfill 0.00
96

1 0.16 0 0.0057

4101 Commercial Airport 0.00
66

1 0.18 0 0.065

4102 Military Airport 0.00
19

1 0.2 0 0.026

4103 General Aviation Airport 0.00
53

1 0.17 0 0.028

4104 Airstrip 0.00
53

1 0.17 0 0.028

4111 Rail Station/Transit Center 0.11 1 0.15 0 0.066
4112 Freeway 0.08

3
1 0.15 0 0.00081

4113 Communications and
Utilities

0.08
1

1 0.15 0 0.044

4114 Parking Lot - Surface 0.09
3

1 0.14 0 0.033

4115 Parking Lot - Structure 0.10 1 0.17
8

0 0.50

4116 Park and Ride Lot 0.12 1 0.15 0 0.079
4117 Railroad Right of Way 0.07

7
1 0.14 0 0.0064

4118 Road Right of Way 0.11 1 0.15 0 0.0041
4119 Other Transportation 0.03

5
1 0.18 0 0.10

4120 Marine Terminal 0.00
061

1 0.15 0 0.22

5001 Wholesale Trade 0.07
7

1 0.17 0 0.66

5002 Regional Shopping Center 0.10 1 0.18 0 0.78
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5003 Community Shopping
Center

0.08
3

1 0.14 0 0.61

5004 Neighborhood Shopping
Center

0.09
8

1 0.13 0 0.60

5005 Specialty Commercial 0.19 1 0.14 0 0.59
5006 Automobile Dealership 0.04

1
1 0.15 0 0.50

5007 Arterial Commercial 0.06
5

1 0.15 0 0.91

5008 Service Station 0.09
5

1 0.14 0 0.12

5009 Other Retail Trade and
Strip Commercial

0.07
4

1 0.16 0 0.17

6001 Office (High-Rise) 0.14 1 0.16 0 0.42
6002 Office (Low-Rise) 0.18 1 0.14 0 0.21
6003 Government Office/Civic

Center
0.12 1 0.16 0 0.33

6101 Cemetery 0.22 1 0.17 1 0.035
6102 Religious Facility 0.15 1 0.15 0 0.31
6103 Library 0.21 1 0.14 0 0.30
6104 Post Office 0.06

9
1 0.16 0 0.36

6105 Fire/Police Station 0.14 1 0.15 0 0.24
6108 Mission 0.47 1 0.13 0 0.17
6109 Other Public Services 0.18 1 0.16 0 0.26
6501 UCSD/VA Hospital/Balboa

Hospital
0.17 1 0.17 0 0.43

6502 Hospital - General 0.12 1 0.16 0 0.45
6509 Other Health Care 0.14 1 0.15 0 0.39
6701 Military Use 0.05

7
1 0.15 0 0.066

6702 Military Training 0.00
39

1 0.12 0 0.0034

6703 Weapons Facility 0.01
1

1 0.14 0 0.014

6801 SDSU/CSU San
Marcos/UCSD

0.24 1 0.15 0 0.28

6802 Other University or
College

0.19 1 0.14 0 0.24

6803 Junior College 0.11 1 0.17 0 0.28
6804 Senior High School 0.09

2
1 0.17 0 0.11

6805 Junior High School or
Middle School

0.07
3

1 0.17 0 0.11
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6806 Elementary School 0.09
6

1 0.15 0 0.12

6807 School District Office 0.12 1 0.16 0 0.20
6809 Other School 0.15 1 0.15 0 0.14
7201 Tourist Attraction 0.19 1 0.15 0 0.037
7202 Stadium/Arena 0.03

1
1 0.14 0 0.084

7203 Racetrack 0.03
1

1 0.14 0 0.084

7204 Golf Course 0.16 1 0.19 1 0.0018
7205 Golf Course Clubhouse 0.19 1 0.15 0 0.070
7206 Convention Center 0.08

1
1 0.17 0 0.70

7207 Marina 0.04
5

1 0.15 0 0.016

7208 Olympic Training Center 0.19 1 0.15 0 0.037
7209 Casino 0.19 1 0.14 0 0.59
7210 Other Recreation - High 0.13 1 0.16 0 0.055
7211 Other Recreation - Low 0.02

7
1 0.12 0 0.0035

7601 Park - Active 0.16 1 0.17 1 0.011
7603 Open Space Park or

Preserve
0.11 1 0.17 1 0.00038

7604 Beach - Active 0.04
2

1 0.22 0 0.0033

7605 Beach - Passive 0.00
78

1 0.15 0 0.00074

7606 Landscape Open Space 0.27 1 0.14 1 0.0085
7607 Residential Recreation 0.28 1 0.15 0 0.036
7609 Undevelopable Natural

Area
0.15 1 0.13 1 0.000033

8001 Orchard or Vineyard 0.29 1 0.15 1 0.0012
8002 Intensive Agriculture 0.08 1 0.18 1 0.014
8003 Field Crops 0.08

7
1 0.16 1 0.0035

9101 Vacant and Undeveloped
Land

0.03
8

1 0.13 0 0.0040

9200 Water 0 1 0.17 1 0
9201 Bay or Lagoon 0.00

032
1 0.09

8
1 0.00066

9202 Lake/Reservoir/Large
Pond

0.06
7

1 0.13 0 0.00029

9501 Residential Under
Construction

0.06
0

1 0.20 0 0.049

34



9502 Commercial Under
Construction

0.04
7

1 0.17 0 0.24

9503 Industrial Under
Construction

0.02
7

1 0.19 0 0.050

9504 Office Under Construction 0.12
5789

1 0.16 0 0.15

9505 School Under Construction 0.21 1 0.21 0 0.0013
9506 Road Under Construction 0.05

0
1 0.15 0 0.032

9507 Freeway Under
Construction

0.08
3

1 0.15 0 0.00081

9700 Mixed Use 0.04
5

1 0.17 0 0.34

Figure A1: Principal component analysis correlation map of social and health
indicators.
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Figure A2: Principal component analysis for social indicators for census block
groups.
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Figure A3: Heat exposure by census block group. Created with 2016-2020 average
daytime urban heat island (UHI) magnitude (Landsat 8 imagery) and average

night-time urban heat island magnitude (ECOSTRESS imagery) in the City of San
Diego.
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Figure A4: Heat vulnerability by census block group. Note that this was computed
using social variables only.
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Figure A5: Heat risk by census block group. Note that the vulnerability index was
computed using social variables.
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Figure A6:  Map of highest risk census tracts.

Figure A7: Map of top 10 highest risk block groups. 
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Figure A8: Daytime temperature departure from reference site LST (F°). Created
with 2016-2020 average daytime urban heat island (UHI) magnitude (Landsat 8

imagery).
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Figure A9: Nighttime temperature departure from reference site LST (F°). Created
with 2018-2020 average night-time urban heat island magnitude (ECOSTRESS

imagery) in the City of San Diego.
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Figure A10: Nighttime Heat Mitigation Index San Diego Bay/Downtown Area for
summer months (May 1 – September 30) nighttime cooling capacity in San Diego,

CA, 2021 (created with InVEST Urban Cooling Model).
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Figure A11: Nighttime Heat Mitigation Index Zoomed in on San Diego
Bay/Downtown Area for summer months (May 1 – September 30) nighttime cooling

capacity in San Diego, CA, 2021 (created with InVEST Urban Cooling Model).
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Figure A12: Difference in Daytime LST (Normalized) and 1 – Daytime Heat
Mitigation Index daytime cooling capacity in San Diego, CA, 2021 (created with

InVEST Urban Cooling Model).
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Figure A13: Change in temperature due to modeled 5% overall increase in tree
canopy.
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