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Supplementary Texts 33 

Text S1: 34 

To derive an observational uncertainty estimate for the SCF as a function of temperature 35 

(liquid/[liquid+ice] cloud frequency), we use error estimates from a CALIPSO-GOCCP 36 

validation study against in situ aircraft measurements16 as well as the undefined-phase cloud 37 

fraction. Cesana et al.(2016) show that the maximum disagreement fraction between CALIPSO-38 

GOCCP and five in situ aircraft flights is ~ 20 % (their Table 3). We choose to apply this 39 

maximum disagreement fraction of 20 % uniformly to the CALIPSO-GOCCP cloud phase ratio 40 

although Cesana et al.16 showed that the ice clouds in high and cold clouds were rarely 41 

misdiagnosed. In addition, we use the undefined-phase cloud fraction to derive a range of 42 

possible SCF as a function of the temperature by considering the undefined-phase clouds as being 43 

either all liquid or all ice. Finally, we assume that both uncertainty sources –from applying the 20 44 

% disagreement fraction and from considering all undefined-phase clouds as being either liquid 45 

or ice– are independent and add them in quadrature to derive the final uncertainty estimate. 46 

47 

Text S2: 48 

In brief, GISS-ModelE3 uses a diagnostic determination of cloud fraction as a function of 49 

grid-mean moisture and a condition-dependent sub-grid variance expressed as a threshold grid-50 

mean relative humidity (RH) for cloud formation. The stratiform liquid and ice cloud fractions 51 

are obtained using Smith (1990) and Wilson and Ballard (1999) probability density function 52 

(PDF) schemes. The stratiform cloud microphysics treatment is based on a modified two-moment 53 

microphysics scheme with prognostic precipitation (Gettelman and Morrison, 2015), in which 54 

cloud water and ice, rain, and snow mixing ratios and number concentrations are prognostic 55 

variables. Rain and snow both require other hydrometeors to already exist, unlike cloud droplets, 56 

which form via aerosol activation, and cloud ice, which can form from aerosol and cloud droplet 57 

freezing, homogeneously and heterogeneously. Typically, snow and rain hydrometeors are larger 58 
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and fall faster than cloud particles. Finally, the cumulus category realized for a given environment 59 

is a function of dynamically determined entrainment and its cloud phase is based on a 60 

temperature threshold. Compared to Cesana et al. (2019), the GISS-ModelE3 version used here 61 

includes the following updates pertinent to our findings: depositional growth of stratiform snow, 62 

neglected in the original scheme12, is treated; the Bergeron enhancement employed in the original 63 

scheme12, which transfers water directly from cloud droplets to cloud ice, is omitted and the 64 

process instead only mediated through the vapor phase, as in nature; at supercooled temperatures, 65 

heterogeneous ice nucleation occurs only in the immersion mode, using the temperature 66 

dependence of Demott et al. (2010). Another update is that these GISS-ModelE3 simulations 67 

have finer layering in the middle and upper troposphere, and a higher top at 0.002 hPa. The 68 

primary structural difference between the Phys version and the Tun1-3 configurations is an 69 

alternative formulation for convective entrainment. For the findings presented here, the impact of 70 

the entrainment change is merely indirect, in that it coincidentally enables the overall 71 

climatological skill requirement to be met using developers'-choice default values of uncertain 72 

stratiform microphysical coefficients, rather than those determined by the objective approach for 73 

Tun1-3. 74 

Text S3: 75 

We modified a few other elements of the lidar simulator to make it more consistent with 76 

GISS-ModelE3. First, to be consistent with the definition of effective radius (Foot, 1988) we 77 

modified the default bulk ice density from 500 to 917 kg/m3, which is used for all frozen 78 

hydrometeors. This modification reduces and increases the lidar simulator cloud fraction at the 79 

top and the bottom of the high clouds (not shown). Then, the ice particle shape in the lidar 80 

calculation is set to nonspherical, which also increases the cloud fraction of ice clouds (not 81 

shown). Finally, we slightly modified the discrimination line used to distinguish ice and liquid 82 

cloud pixels in the CALIPSO-GOCCP and lidar simulator cloud phase diagnostic (Cesana and 83 

Chepfer, 2013) to classify ice particles with a large total attenuated backscatter (ATB) that follow 84 
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the ice parameterized line but are located below  the discrimination line (see supplementary Fig. 85 

10a). These occurrences may be more frequent in GISS-ModelE3 than in the ESM used by 86 

Cesana and Chepfer (2013) because GISS-ModelE3 has a higher vertical resolution and includes 87 

contribution from snow. 88 

Text S4: 89 

The first case study was derived from observations during the Atmospheric Radiation 90 

Measurement (ARM) West Antarctic Radiation Experiment (AWARE) (Silber et al., 2019). We 91 

note that greater ice formation rates in GISS-ModelE3 Phys than estimated from observations 92 

(Silber et al., 2020) correspond to less liquid water optical depth than observed, which we 93 

obtained by changing the ice nucleation scale factor parameter from 0.1 to 8. This modification 94 

allows us to probe the simulator capability to “see through” optically thinner liquid layers, which 95 

are common over polar regions (Silber et al., 2020). The second case study corresponds to the 96 

Small Particles in Cirrus (SPARTICUS) case (Muhlbauer et al., 2014), which represents an anvil 97 

cirrus cloud system at midlatitudes over the Southern Great Plains (SGP). Note that we did not 98 

change any model cloud parameters for the SPARTICUS case.  99 

Text S5: 100 

We quantify ESM cloud feedbacks (Fig. 4) using an International Satellite Cloud Climatology 101 

Project (ISCCP)-derived radiative kernel method (Zelinka et al., 2016). The cloud feedback is 102 

separated into contributions from low (at pressures ≥ 680 hPa, roughly 3 km) and non-low (at 103 

pressures < 680 hPa) clouds and further decomposed into amount, altitude, optical depth, and 104 

residual contributions (Supplementary Fig. 11 and Tables 1 and 2). The amount, altitude and 105 

optical depth contributions quantify the feedback generated by changes in cloud fraction, altitude 106 

and optical depth, respectively, while keeping the other two parameters constant in the cloud top 107 

pressure and optical depth ISCCP bin space. The ISCCP-derived radiative kernel method and its 108 

shortcomings are described in Zelinka et al. (2012b). The main shortcoming of this method comes 109 
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from the residual when decomposing the cloud feedback into amount, altitude and optical depth 110 

contributions. One must be careful when analyzing the different contributions if the residual is of 111 

the same order of magnitude. 112 

Here we aim to characterize the atmospheric contributions to cloud feedbacks by prescribing 113 

the SST in the control experiment, based on monthly observations, and by applying a uniform 114 

warming of 4K in the perturbed experiment (Webb et al., 2017). While the atmospheric-only 115 

cloud feedbacks (i.e., using prescribed SST perturbation) do not capture the effect of increased 116 

CO2 and SST-atmosphere coupling, they are representative of the global cloud feedbacks 117 

determined from coupled atmosphere‐ocean CO2‐forced simulations (Ringer et al., 2014). The 118 

cloud feedbacks are computed for the constrained configuration of the GISS-ModelE3, Phys (Fig. 119 

4, Supplementary Table 1 and Fig. 11), but also for the three other configurations, Tun1-3 120 

(Supplementary Table 2), to analyze the robustness of the feedbacks in a larger pool of models. 121 

We note that the cloud fraction seen by the ISCCP simulator is consistent with the cloud fraction 122 

seen by the radiation and the lidar simulator, meaning that when precipitation is neglected in the 123 

radiation and the lidar simulator, its contribution to the ISCCP simulator is also neglected. 124 

The CMIP5 and CMIP6 cloud feedback values are from Zelinka et al. (2020) and are 125 

computed using different kernels than those used this study but produce very similar results 126 

(Zelinka et al., 2012a). 127 

The ECS values in Supplementary Table 3 are from Cesana and Del Genio (2021) and Zelinka 128 

et al. (2020). For the CMIP5 and CMIP6 multimodel means (Fig. 4 and Supplementary Table 3), 129 

all the results from each modeling center are first averaged, such that each modeling center 130 

contributes one data point to the multimodel means to improve model independence. 131 

  132 
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Supplementary Figures 133 

 134 

Figure S1: Total, ice, liquid and undefined-phase cloud profiles (from top to bottom) in the liquid-135 

topped mixed-phase cloud in the Antarctic case. The first column corresponds to the cloud water content 136 

from the native GISS-ModelE3 while the second, third and fourth columns correspond to cloud fraction 137 

from the lidar simulator outputs with and without precipitation and the difference, respectively. 138 

 139 

 140 

 141 

  142 
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Figure S2: Same as Figure S1 for the stratiform cirrus case over the southern great plains. Note that there 143 

are no undefined-phase clouds in this case.   144 

 145 

 146 

 147 

  148 
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Figure S3: Zonal profiles (x axis, latitude, N; y axis, altitude, km) of the lidar simulator GISS-ModelE3 149 

outputs without precipitation (a), the difference between with and without (b), the difference between with 150 

large-scale frozen precipitation and without precipitation (c) and the difference between with large-scale 151 

rain and without precipitation (d). Note that no changes occur between panel b and c in the high levels and 152 

that the color scale of panel d is smaller than that of panel c. 153 

 154 

 155 
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Figure S4: Zonal profiles (x axis, latitude, N; y axis, altitude, km) of CALIPSO-GOCCP observations 156 

and the lidar simulator GISS-ModelE3 outputs with precipitation (top) and the difference between with and 157 

without precipitation for the four different GISS-ModelE3 configurations: Phys and Tun1 to 3, from left to 158 

right. 159 

  160 

 161 

  162 
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Figure S5: Zonal profiles (x axis, latitude, N; y axis, altitude, km) of CALIPSO-GOCCP observations 163 

(top) and GISS-ModelE3 bias of the total, ice, liquid and undefined-phase cloud fractions for the four 164 

different GISS-ModelE3 configurations with precipitation using the lidar simulator, from the second row to 165 

the bottom row, Phys and Tun1 to 3. 166 

 167 

 168 

 169 

  170 
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Figure S6: Effect of the precipitation on the relation between temperature (y axis, °C) and frequency 171 

supercooled condensate fraction (SCF, x axis). This figure emphasizes the variability of the relationship 172 

among the GISS-ModelE3 different configurations with (solid) and without (dotted) precipitation (the 173 

specific names of each version are shown in the legend). The CALIPSO-GOCCP observation frequency 174 

SCF is shown in black (2007-2016 Nighttime v2.9).  175 

 176 

 177 

  178 
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Figure S7: Zonal altitude (km, left) and temperature (˚C, right) profiles of frequency SCF. The 179 

CALIPSO-GOCCP observations are shown on the top row (2007-2016 Nighttime v2.9) while the lidar 180 

simulator GISS-ModelE3 outputs with and without precipitation correspond to the middle and bottom 181 

rows, respectively. The black and green dashed lines correspond to the 50 % liquid and ice iso contours of 182 

the observations and the simulations, respectively.  183 

 184 

 185 

  186 
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Figure S8: Zonal mean of net, SW and LW cloud radiative effect at the top of the atmosphere. The 187 

net, LW and SW CRE are represented in black, red and blue with (solid lines) and without (dotted lines) the 188 

effect of large-scale precipitation for GISS-ModelE3 Phys. The area-weighted global averages are shown in 189 

the legend. 190 

 191 

 192 

 193 

194 
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Figure S9: Schematic of the effect of making precipitation visible to the radiation scheme in GISS-195 

ModelE3. In response to global warming, ice crystals transition to water droplets globally. However, 196 

depending on the region of the globe, cloud properties may respond differently to global warming. For 197 

example, in the tropics (left), the amount and optical depth of non-low clouds (at heights > 3 km) decrease, 198 

a process that is enhanced by making precipitation visible to radiation since cloud ice becomes scarcer and 199 

produces less snow. As a result, both cloud ice and snow decrease, contributing to strengthen the SW 200 

positive feedback (less SW radiation reflected back to space) and weaken the LW positive feedback (more 201 

surface LW cooling). Over the Arctic (right), the cloud amount and optical depth increase while the snow 202 

amount decreases, for the reasons mentioned above. As a consequence, adding precipitation slightly offset 203 

the increase in cloud amount and optical depth seen by radiation, thereby weakening the SW negative 204 

feedback (less SW radiation reflected back to space) with negligible effect in the LW.  205 

206 
  207 
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 208 

Figure 10: Phase diagram for the (a) SGP cirrus cloud case and Antarctica mixed-phase cloud case 209 

using GISS-ModelE3. The color shading represents the number of cloudy pixels as a function of the 210 

perpendicular attenuated total backscatter (ATBper, y-axis, km-1 sr-1) and the attenuated total backscatter 211 

(ATBtot, x-axis, km-1 sr-1) as in Cesana and Chepfer (2013). The solid black line corresponds to the original 212 

discrimination line used in the lidar simulator while the dashed black line is the modified version used in 213 

GISS-ModelE3 to account for ice paarticles with a large ATB signature, e.g., the pixels between the two 214 

black lines in the upper panel. 215 

 216 

 217 

  218 
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Figure S11: Effect of precipitation on cloud feedbacks (left to right) for different types of feedbacks 219 

for GISS-ModelE3 Phys. The first row represents zonal means of standard net, LW and SW cloud 220 

feedbacks (Wm-2K-1; left to right) for all (black), non-low (blue) and low (red) clouds. The second, third 221 

and fourth rows show further decomposition into total (black), altitude (purple), optical depth (orange) and 222 

amount (green) contributions for all, non-low and low clouds, respectively. The simulations with and 223 

without large-scale frozen precipitation are represented by solid and dotted lines, respectively. Note that the 224 

corresponding area-weighted global averages are shown in Supplementary Table 1. 225 

 226 

 227 
 228 

 229 
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Supplementary Tables 231 

232 
Table S1: Effect of snow on cloud feedback. Global mean net, LW and SW total cloud feedbacks (Wm-233 

2K-1) and their non-low and low contributions further divided into altitude, amount and optical depth 234 

components for GISS-ModelE3 (configuration Phys) using Zelinka et al.(Zelinka et al., 2016) kernels along 235 

with amip and amip-p4K experiments. Note that the zonal means of the altitude, amount and optical depth 236 

contributions for all, non-low and low clouds are shown in Figure S11. Differences that are smaller or equal 237 

to the internal variability are shown in grey. 238 

 239 

  Net LW SW 

  Ctrl No_pcp ∆ Ctrl No_pcp ∆ Ctrl No_pcp ∆ 

 

All 

total 0.26 0.14 0.12 0.44 0.47 -0.03 -0.19 -0.33 0.14 

altitude 0.36 0.29 0.07 0.42 0.35 0.07 -0.06 -0.06 0 

amount 0.16 0.11 0.05 -0.15 -0.09 -0.06 0.31 0.19 0.12 

Optical depth -0.26 -0.28 0.02 0.16 0.17 -0.01 -0.42 -0.44 0.02 

           

Non 

low 

total -0.14 -0.28 0.14 0.52 0.55 -0.03 -0.66 -0.83 0.17 

altitude 0.2 0.12 0.08 0.21 0.13 0.08 -0.02 -0.01 -0.01 

amount -0.08 -0.14 0.06 0.07 0.14 -0.07 -0.16 -0.28 0.12 

Optical depth -0.25 -0.26 0.01 0.24 0.28 -0.04 -0.49 -0.54 0.05 

           

Low total 0.4 0.42 -0.02 -0.08 -0.08 0 0.48 0.5 -0.02 

altitude 0 0 0 0.01 0.01 0 0 0 0 

amount 0.39 0.41 -0.02 -0.08 -0.09 0.01 0.47 0.5 -0.03 

Optical depth 0.02 0.02 0 0 0 0 0.02 0.02 0 

 240 

  241 
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Table S2: Effect of snow on cloud feedback across all configurations. Same as Table 1 but averaged 242 

over the four GISS-ModelE3 configurations (Phys and Tun1-3). Note that, as in the GISS-ModelE3 phys 243 

configuration used in the main manuscript, the total net cloud feedback roughly doubles when the 244 

precipitation is seen by radiation. 245 

 246 

 247 

  Net LW SW 

  Ctrl No_pcp ∆ Ctrl No_pcp ∆ Ctrl No_pcp ∆ 

 total 0.21 0.11 0.10 0.46 0.46 -0.01 -0.25 -0.35 0.10 

All altitude 0.34 0.27 0.06 0.40 0.33 0.07 -0.06 -0.06 -0.01 

 amount 0.15 0.12 0.03 -0.14 -0.10 -0.03 0.28 0.22 0.06 

 Optical depth -0.28 -0.29 0.01 0.17 0.19 -0.02 -0.45 -0.48 0.03 

           

 total -0.18 -0.28 0.10 0.52 0.52 0.00 -0.70 -0.80 0.10 

Non low altitude 0.17 0.11 0.07 0.18 0.11 0.07 -0.01 -0.01 -0.01 

 amount -0.06 -0.07 0.02 0.06 0.09 -0.03 -0.12 -0.16 0.04 

 Optical depth -0.27 -0.28 0.01 0.30 0.36 -0.06 -0.57 -0.64 0.06 

           

 total 0.38 0.39 -0.01 -0.06 -0.06 0.00 0.45 0.45 -0.01 

Low altitude 0.01 0.01 0.00 0.01 0.01 0.00 -0.01 -0.01 0.00 

 amount 0.37 0.38 0.00 -0.07 -0.07 0.00 0.44 0.45 -0.01 

 Optical depth 0.03 0.03 0.00 0.00 0.00 0.00 0.02 0.03 -0.01 

 248 

  249 
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Table S3: List of CMIP5 (left) and CMIP6 (right) models used in this study along with their 250 

equilibrium climate sensitivities. The models marked with a star include the effect of large-scale 251 

precipitation in their radiation schemes. The modeling center mean is shown on the rightmost column of 252 

each side. 253 

 254 
CMIP5 Models ECS (K)   CMIP6 Models ECS (K)   

 Model 

Mean 

Center 

Mean 

  Model Mean Center Mean 

ACESS1.0 3.85 3.69  ACCESS-CM2* 4.66 4.66 4.28 

ACCESS1-3* 3.53   ACCESS-ESM1-5 3.89 3.89  

BCC-CSM1-1-m 2.89 2.87  BCC-CSM2-MR 3.02 3.14  

BCC-CSM1-1 2.84   BCC-ESM1 3.26   

BNU-ESM 4.04   CAMS-CSM1-0 2.29 2.29  

CanESM2 3.70   CanESM5 5.64 5.64  

CCSM4 2.94   CESM2* 5.15 4.95  

CSIRO-Mk3-6-0* 4.09   CESM2-FV2* 5.16   

CNRM-CM5 3.25   CESM2-WACCM* 4.68   

GFDL-ESM2G 2.43 2.95  CESM2-WACCM-FV2* 4.8   

GFDL-ESM2M 2.44   CNRM-CM6-1 4.9 4.67  

GFDL-CM3 3.99   CNRM-CM6-1-HR 4.33   

GISS-E2-R 2.12 2.22  CNRM-ESM2-1 4.79   

GISS-E2-H 2.31   E3SM-1-0* 5.31 5.31  

HadGEM2-ES* 4.58   EC-Earth3* 4.33 4.33  

INMCM4 2.08   EC-Earth3-Veg* 4.33   

IPSL-CM5A-LR 4.13 3.62  GFDL-CM4 3.89 3.27  

IPSL-CM5B-MR 4.11   GFDL-ESM4 2.65   

IPSL-CM5B-LR 2.61   GISS-E2-1-G 2.71 2.75  

MIROC5 2.71 3.68  GISS-E2-1-H 3.12   

MIROCESM 4.64   GISS-E2-2-G 2.43   

MPI-ESM-MR 3.45 3.51  HadGEM3-GC31-LL* 5.55 5.45  

MPI-ESM-P 3.46   HadGEM3-GC31-MM* 5.44   

MPI-ESM-LR 3.63   UKESM1-0-LL* 5.36   

MRI-CGCM3 2.61   INM-CM4-8 1.83 1.88  

NorESM1-M 2.81 2.90  INM-CM5-0 1.92   

NorESM1-ME 2.98   IPSL-CM6A-LR 4.56 4.56  

    MIROC-ES2L 2.66 2.63  

Multimodel Mean 3.29   MIROC6 2.6   

Multimodel STD 0.69   MPI-ESM-1-2-HAM  2.95 2.99  

Multimodel Mean precip* 4.07   MPI-ESM1-2-HR 2.98   

Multimodel STD precip* 0.53   MPI-ESM1-2-LR 3.03   
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Multimodel Mean no LS precip 3.1   MRI-ESM2-0 3.13 3.13  

Multimodel STD no LS precip 0.53   NorCPM1 3.03 3.03 2.69 

    NorESM2-LM* 2.56 2.53  

    NorESM2-MM* 2.49   

    SAM0-UNICON* 3.72 3.72  

        

    Multimodel Mean 3.76   

    Multimodel STD 1.16   

    Multimodel Mean precip* 4.42   

    Multimodel STD precip* 1.02   

    Multimodel Mean no LS precip 3.37   

    Multimodel STD no LS precip 1.05   

  255 
  256 
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