
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021 1

Decentralized Control Synthesis for Air Traffic
Management in Urban Air Mobility

Suda Bharadwaj, Steven Carr, Natasha Neogi and Ufuk Topcu

Abstract— Urban air mobility (UAM) refers to air trans-
portation services within an urban area, often in an on-
demand fashion. We study air traffic management (ATM) for
vehicles in a UAM fleet, while guaranteeing system safety
requirements such as traffic separation. Existing ATM methods
for unmanned aerial systems such as UTM utilize alternative
approaches which do not provide strict safety guarantees. No
established infrastructure exists for providing ATM at scale for
UAM. We provide a decentralized, hierarchical approach for
UAM ATM that allows for scalability to high traffic densities
as well as providing theoretical guarantees of correctness with
respect to user provided safety specifications. Our main contri-
butions are two-fold. First, we propose a novel UAM ATM ar-
chitecture that divides control authority between vertihubs that
are each in charge of all UAM vehicles in their local airspace.
Each vertihub also contains a number of vertiports that are
in charge of UAM vehicle takeoffs and landings. The resulting
architecture is decentralized and hierarchical, which not only
enables scalability, but also robustness in the event of any
individual vertihub or vertiport no longer being operational.
Second, we provide a contract-based correct-by-construction
reactive synthesis approach that provably guarantees safety
properties with respect to user-provided safety specifications in
linear temporal logic. We demonstrate the approach on large-
volume UAM air traffic data.

Index Terms— Air traffic management, reactive synthesis,
system safety.

I. INTRODUCTION

A. Urban air mobility setting

Currently, major metropolitan areas endure pressure on
their transportation infrastructure, manifesting as traffic
jams or commuter delays which can negatively impact
productivity [19]. As population and congestion increase
in these urban and suburban areas, mobility challenges
are expected to intensify. One proposed solution is the
introduction of urban air mobility (UAM) which refers to
urban air services to carry passengers and cargo across
metropolitan areas. Recent advances in electric vertical
take-off and landing (eVTOL) aircraft have the potential
to revolutionize UAM and make it commercially feasible
in the near future [1].

Manuscript submitted on May 12, 2021
This work was partially supported by AFRL FA9550-19-1-0169,

AFOSR FA9550-19-1-0005, DARPA D19AP00004.
S. Bharadwaj, S. Carr and U. Topcu are at the Department of

Aerospace Engineering and Engineering Mechanics at the University
of Texas at Austin, email: {suda.b,stevencarr,utopcu}@utexas.edu

N. Neogi is at NASA-Langley Research Center, Hampton, VA,
USA, email: natasha.a.neogi@nasa.gov

UAM can not only help cities from an economic stand-
point by allowing for faster movement of goods and people,
but also has the potential to add to the public good
by allowing for expedited public health services like air
ambulances. However, establishing a framework, which
allows for safe, orderly, and efficient flights in what will
be a complex, high-traffic environment with competing
requirements and priorities, remains crucial for UAM to
be practically realized.

In this paper, we develop a method for scalable air traffic
management (ATM) for UAM with provable guarantees
of safety properties.

B. Challenges in air traffic management for UAM
UAM presents challenges that cannot yet be handled in

existing ATM approaches. Current and next generation
ATM services, as described in [12], [34], are designed
to manage scheduled flights between established airports
located in or near cities separated by a significant distance
and occurring at conventional flight altitudes (e.g., above
10 000 ft). UAM will require management for on-demand,
high-volume, short-range flights in close proximity to
urban airspace (e.g., below 10 000 ft) with increasingly
autonomous aircraft. Since these vehicles will be operating
in urban airspaces with high traffic densities, they need
to be able to operate with smaller separation standards
than current ATM services can accommodate (e.g., closely
spaced altitude separation). Any traffic management sys-
tem for UAM will also need to be able to handle un-
predictable situations in a safe manner without overly
compromising the performance of the entire system.

Currently, there is no established infrastructure for
traffic management of a UAM-like environment. A traffic
management system for small unmanned aerial systems
(UAS) called UTM (UAS Traffic Management) has been
proposed, and takes a federated approach to ensuring
airspace access [30]. This approach may enable the in-
corporation of multiple safety oriented services [25] such
as aircraft separation [26] and geo-fencing [27]. However,
there may be concerns in this approach with respect to
scalability, in terms of the size of UAM vehicles as well as
UAM traffic density. There is a growing need to explore
the design of an ATM system architecture capable of safely
and efficiently managing UAM operations.

Guaranteeing global satisfaction of safety properties for
UAM operations has the following key challenges

2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

• The setting encompasses multiple service providers
and stakeholders, each with potentially competing
priorities and requirements. Consequently, the full
state of the entire fleet of vehicles is unlikely to be
controlled or even observed by a single entity.

• UAM will operate in a complex and diverse airspace
environment(e.g., Class G [13], Class B etc.) that
must support both conventional operations using
legacy aircraft as well as emerging operations. There-
fore verifying safety of such an evolving system at
design-time is not practical.

• While a centralized solution process allows for easier
verification of correctness, the resulting state space
explosion entailed in synthesis, especially under the
projected traffic demands, makes a centralized solu-
tion computationally untenable.

Removing reliance on full state-information for con-
trol requires a version of distributed synthesis. However,
except for a few restricted classes of architectures, the
distributed synthesis problem is undecidable [32]. The
decidable versions of the problem lack practical solutions
due to their non-elementary complexity [31]. Significant
effort in runtime monitoring in this area is focused on
providing efficient solutions by exploiting the structure of
the system [11], [15] or the specification [4], [17].

C. UAM ATM architecture

We propose a decentralized, hierarchical UAM ATM
architecture for provably correct operations. We divide
up the responsibilities of an ATM architecture for UAM
into two broad classes

1. Pre-flight authorization: receiving flight requests with
little notice, identifying a safe route, and authorizing
the departure.

2. Dynamic airspace management: managing routes and
in-flight aircraft in response to an unpredictable
environment stemming from the on-demand trip
scheduling.

Pre-departure planning and de-conflicting flight routes
before take-off have been studied extensively in the litera-
ture [20], [22], [37]. More recently, there have been efforts
in applying these works in an on-demand UAM setting
[18]. In this work, we primarily focus on the latter case
of guaranteeing safety during dynamic flight operations.
We will assume the existence of an assured scheduler that
is able to give pre-flight authorization for routes given
passenger requests.

In our proposed UAM ATM architecture, we leverage
the geographical location of infrastructure to divide the
region into sectors that are each overseen by vertihubs.
Each vertihub controls the flow of vehicles in and out of
its sector. Within the purview of a vertihub are several
vertiports that control individual vehicle takeoff and
landing. Such an architecture is similar to how airspace in
the Terminal Radar Approach Control is managed, but is
more general in its approach to tackling balkanization.

The UAM setting is unique as most flights will be on-
demand and hence will require a controller that can react
to an unpredictable environment and provide guarantees
of safety and liveness. Reactive synthesis [8] is a natural
candidate to produce such controllers. A user (such as
a regulatory body) can specify specifications in linear
temporal logic for the operations of each vertihub and ver-
tiport in the system. The task is to synthesize controllers
for each vertihub and vertiport separately, guaranteeing
that, together, the joint operation of the global system
satisfies the conjunction of all specifications while still
guaranteeing progress for the vehicles. In order to ensure
that each controller does not impede the ability of other
controllers to satisfy their requirements, we introduce a
contract-based synthesis method which we formulate as a
Generalized Reactivity(1) (GR(1)) [9] synthesis problem
that can be solved efficiently [3], [36]. Hence, our proposed
solution architecture is scalable without sacrificing any
safety or liveness guarantees.

D. Related work
Some preliminary work is being done in cooperative

ATM for next generation air traffic management [29],
but this work considers a scheduled approach for large
passenger aircraft and cannot handle management for
on-demand flights. Similarly, work has been done on
distributed control for ATM of small unmanned aerial
systems (UAS) [16], but this work relies on cloud based
architectures that do not currently satisfy strict aviation
safety requirements. Hybrid control approaches have been
applied [35], however scalability proves to be an issue.

To the best of our knowledge, this is the first approach
to controller synthesis with safety guarantees for large-
scale UAM ATM operations. Formally verified tools such
as DAIDALUS [26] provide safety guarantees at lower
levels of operations, however, they do not handle the fleet-
level operations. The most similar approach to the one
presented in this paper is runtime enforcement [14], [33]
of a specified property, in which a synthesized module
detects and alters the behavior of the system in a way
that maintains the desired property. An existing approach
called shielding [10], [21] uses reactive synthesis and
assumes that the shield has full knowledge and control of
the whole system — in this case the entire UAM system
and the vehicles it handles.

A technique for synthesizing quantitative shields for
multi-agent systems in a fully centralized manner was
presented in [5]. All these approaches rely on restrictive
assumptions on runtime communication (i.e., full network
coverage) and the extent of awareness and control author-
ity of the shield (e.g., the shield can affect any agent in the
network instantaneously). This requirement was relaxed
in [7] where a local shield was synthesized for each sector
with contracts between neighbors to guarantee global
correctness. However, the approach was formulated only
for specific safety properties (e.g., minimum-separation)
and not more general properties such as liveness as is

BHARADWAJ et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 3

done here. We do not consider quantitative properties or
optimality of behavior in this work, as the primary focus
is the guarantee of specifications.

The work in this paper directly extends [7] by gen-
eralizing the class of allowable safety properties to any
property in the GR(1) [9] fragment of linear temporal
logic. Furthermore, the work in [7] was limited to very
specific vehicle behaviors, and could not handle take-
off or landing requests. In this work, we introduce ver-
tiport controllers that operate in the sector regions to
additionally handle take-off and landing requests. The
induced hierarchical structure allows for separation of
concerns between the vertihub and vertiport controllers.
A decentralized, hierarchical approach for ATM was
proposed in [37], but unlike the setting in this paper,
cannot handle temporal logic specifications. Hence, we
are able to systematically synthesize controllers for ATM
that can guarantee complex temporal requirements unlike
conventional ATM approaches such as [37].

E. Contributions of the paper
This work is the first that considers a hierarchical,

decentralized synthesis procedure for UAM air traffic
management. We break down our contributions as follows:

• We design an architecture that allows a user (such
as a regulatory body interested in guaranteeing safe
operations) to specify safety requirements for the
operations at each vertihub and vertiport.

• The architecture allows the controller for each ver-
tihub and vertiport to be synthesized separately,
hence avoiding the state-space explosion of centralized
synthesis.

• We use contracts to guarantee that the joint interac-
tions of all the individual controllers still satisfy all
the safety requirements, and that vehicles will still
make progress towards their goals.

• We provide high-fidelity simulations on large-volume
projected UAM traffic data to showcase the applica-
bility of our proposed architecture.

II. PROBLEM SETTING AND PRELIMINARIES

Consider an environment consisting of an operating
space and a network formed from a series of k UAM
vertiport hubs labeled V1, · · · , Vk. A UAM vertiport hub
(henceforth referred to as a vertihub) consists of a group-
ing of multiple vertiports, each of which may have multiple
takeoff/landing pads. A vertihub is responsible for man-
aging requests by UAM vehicles (henceforth referred to
as vehicles) to either land at or take off from a desired
vertiport in its region or pass through to a neighboring
region. Each vertiport inside a vertihub is in charge of
taking off and landing vehicles at its landing pads. An
example of such an environment is illustrated in Figure 1a.
Note that vertihub control regions need not be circular.

Example 1: The vertihub controller for region V6 in
Figure 1a controls the operational area defined by V6 −
(V6 ∩ V5). The area of overlap H56 = V5 ∩ V6 is the

region where the handoff takes place, wherein the vertihub
controller of the region the vehicle is about to enter takes
responsibility for the vehicle. Hence, V6 can force vehicles
incoming from V5 to loiter in the handoff region H56 until
it is safe to allow them to enter.

The number of vehicles allowed inside each vertihub is
upper bounded both by the separation standards between
the vehicles as well as with the complexity of the airspace
(e.g., intersection with general aviation traffic etc.). Ver-
tihubs cannot accept vehicles (i.e., accept a handoff) if
the additional vehicle exceeds the maximum operational
capacity or induces a conflict. Furthermore, vertiports
cannot allow vehicles to take-off if it will violate the
maximum operational capacity of the vertihub, and must
force incoming vehicles to loiter if all of their pads are
occupied. In order to avoid violating airspace requirements
and to avoid build up of loitering vehicles (which can delay
vehicles desiring to pass through or create safety issues), a
vertiport must coordinate with its corresponding vertihub.
We model the vertihub controller and vertiport controllers
as reactive systems.

Definition: We consider a finite set I (O) of Boolean
inputs (outputs). The input alphabet is ΣI = 2I, the
output alphabet is ΣO = 2O, and Σ = ΣI × ΣO. The
set of finite (infinite) traces over Σ is denoted by Σ∗

(Σω), and we define Σ∞ = Σ∗ ∪ Σω. A reactive system
is a tuple D = (Q, q0,ΣI,ΣO, δ, λ), where Q is a finite
set of states, q0 ∈ Q is the initial state, ΣI is the input
alphabet, ΣO is the output alphabet, δ : Q×ΣI → Q is the
complete transition function, and λ : Q ×ΣI → ΣO is the
output function. Given an input trace σI = x0x1 . . . ∈ Σ∞

I ,
a reactive system D produces an output trace σO =
D(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞

O with qi+1 = δ(qi, xi)
for all i ≥ 0. The set of words produced by D is denoted
L(D) = {σI ‖ σO ∈ Σ∞ | D(σI) = σO}.

Ensuring the safety of the takeoff and landing operations
at vertiports that share the same airspace must be bal-
anced with bounding the delays experienced by vehicles.
Furthermore, vehicles cannot loiter indefinitely due to
energy constraints. Hence, vertihubs must additionally
guarantee a finite upper bound on the delays experienced
by vehicles. All of these requirement guarantees (and
others) can be expressed as temporal logic specifications
that controllers must satisfy.

Definition: A linear temporal logic (LTL) specification
ϕ defines a set of allowed traces L(ϕ) ⊆ L(D) for the
reactive system D. A reactive system D is winning with
respect to specification ϕ iff L(D) ⊆ L(ϕ) and is denoted
D |= ϕ. Given a set of propositions AP, a formula in LTL
describes a language in (2AP)ω. LTL extends Boolean logic
by the introduction of temporal operators such as © (next
time), G (always), F (eventually), and U (until).

Informally, the main problem addressed in this paper
is designing controllers for vertihubs and vertiports that
guarantee all safety and progress requirements, assuming
they have been correctly captured in the design pro-
cess. More formally, the task of computing a satisfying
controller in reactive systems involves constructing the

4 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

V1

V2

H13
V3

H35

V4

V5

V6

H56

(a) Example UAM operating environment

D1 D3

D2

D5

D4

D6

e12

e13

e23

e24

e34

e35

e45

e56

(b) Connectivity graph

Fig. 1: (a) Green circles correspond to the region of a ver-
tihub. UAM vehicles (blue and black) move between origin-
destination vertiports in the environment. (b) The corre-
sponding connectivity graph GD of the vertihub controllers
D modeling the sectors V . Each edge eij corresponds to Di
and Dj being connected, i.e., the outputs of Di are inputs to
Dj and vice versa.

function λ and can be typically framed as computing the
winning strategy of a game.

Definition: A game structure is a tuple G =
(Q, q0,Σ, δ,Acc), where

• Q is a finite set of states, q0 ∈ Q the initial state,
• Σ = (ΣI ×ΣO) is the alphabet of actions available to

the environment and the controller respectively,
• δ : Q × Σ → Q is a complete transition function,

that maps each state, input (environment action) and
output (controller action) to a successor state.

• Acc : (Q × Σ× Q)
ω → B is the winning condition of

the game.
At every state q ∈ Q (starting with q0), the environment

chooses an input σI ∈ ΣI, and then the controller chooses
some output σO ∈ ΣO. These choices define the next
state q′ = δ(q, (σI, σO)), and the process then contin-
ues from q′. This order of moves ensures that at each
step the controller’s action reacts to the current action
of the environment. The resulting (infinite) sequence
π = (q0, σI,0, σO,0, q1)(q1, σI,1, σO,1, q2) . . . is called a play,
where q0 is the initial state, and for every i ≥ 0 we
have that qi+1 = δ(qi, σI,i, σO,i). A play π is winning if
Acc(π) = >.

We consider winning conditions expressed from a frag-
ment of LTL specifications called Generalized Reactivity 1
(GR(1)), which is common in a variety of practical appli-
cations [2], [6], [23], [24]. A GR(1) winning condition is de-
fined by sets of states SI, SO ⊆ Q, Ei ⊆ Q for i = 1, . . . ,m
and Fj ⊆ Q for j = 1, . . . , n, and consists of all plays π
such that if π ∈ GSI ∩ GFEi for all i = 1, . . . ,m, then
π ∈ GSO∩GFFj for all j = 1, . . . , n. Intuitively, for a play
π to be winning, whenever the environment satisfies the

assumptions GSI,GFE1, . . . ,GFEm, then the controller
must satisfy all the guarantees GSO,GFFj , . . . ,GFFn. By
abuse of logical operators, we abbreviate GR(1) conditions
as (

GSI ∧
m∧
i=1

GFEi

)
=⇒

GSO ∧
n∧

j=1

GFFj

 .

Definition: A strategy for the controller is a function
ρO : Prefs(G) × ΣI → ΣO which maps a prefix of a run
(the history of the play so far) and an action of the
environment to an action of the controller. A strategy
for the environment is a function ρI : Prefs(G) → ΣI
that maps the prefix of the play so far to an action of
the environment. We denote the sets of all strategies for
the controller and for the environment by MO and MI
respectively.

Every pair of strategies ρO ∈ MO for the controller
and ρI ∈ MI for the environment define a play, de-
noted by Π(ρO, ρI). More precisely, Π(ρO, ρI) = π =
(q0, σI,0, σO,0, q1)(q1, σI,1, σO,1, q2) . . . ∈ L(G) where for
every i ≥ 0, σI,i = ρI(π[0, i]) and σO,i = ρO(π[0, i], σI,i).
Similarly, we define the set of plays starting at a state g
that are consistent with ρO, denoted L(D, ρO, g).

Given a game structure D and a winning condition ϕ for
the agent, the synthesis problem is to generate a strategy
ρO ∈ MO for the controller such that for every strategy
ρI ∈ MI for the environment it holds that Π(ρI, ρO) ∈ ϕ,
i.e., all resulting plays satisfy ϕ. In such cases we say that
ρO satisfies ϕ, denoted ρO |= ϕ.

III. UAM ATM ARCHITECTURE

In this section, we introduce our novel reactive system
architecture for UAM ATM. We first define the reactive
controller models for the individual components in the
architecture. We then construct the composition of all
the controllers and present the formal synthesis prob-
lem statement. In the following section, we present our
contract-based synthesis method for decentralized reactive
synthesis of vertiport hubs and vertiport controllers.

A. Controller models
Vertihub controller: We model the controller of each verti-

hub Vi as a reactive system Di = (Qi, q0i ,ΣIi ,ΣOi , δi, λi)
with input and output variables Ii and Oi respectively.
The specific instantiation of such a controller is problem-
specific, however, we present an illustrative example.

Example 2: Consider the environment in Figure 1a with
vehicles moving between origin-destination vertiports.
Each region Vi is a vertihub with corresponding vertihub
controller Di where

• The state space Qi is the number of vehicles currently
in the airspace of Vi, as well as the current delay time
of any loitering vehicles in the airspace.

• q0i is the starting airspace configuration of aircraft in
Vi.

• The input alphabet is given by ΣIi = 2Ii . Ii is the set
of input variables and corresponds to requests for the

BHARADWAJ et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 5

hub controller and the number of available landing
slots in the region. We divide the requests into the
following: landing, pass-through, take-off.

• The output alphabet is given by ΣOi
= 2Oi . Oi is

the set of output variables and corresponds to the
following actions: allow vehicles to pass through, send
vehicles to a vertiport in the region to land, or force
vehicles to loiter until it is safe to allow them to enter.
We note that the output can allow multiple requests
to be granted simultaneously.

• The transition function δi increments or decrements
the number of vehicles and their corresponding delay
times in the region based on the environment inputs
and the resulting controller output.

Together, all k vertihub controllers form a connected
system which we define as set of reactive systems D =
{D1, . . .Dk} with a corresponding connectivity graph GD.
We define a connectivity graph as a directed graph with
each vertex corresponding to a reactive system. We say
two reactive systems are connected if they share an edge in
the graph. We define the set of reactive systems Dj ∈ D,
i 6= j that share an edge with Di as connect(Di).

Example 3: In Figure 1a, overlapping operational re-
gions share an edge in the corresponding directed graph
in Figure 1b and therefore the corresponding reactive sys-
tems are connected. We say that connect(D1) = {D2,D3}.

Note that a hub controller forcing vehicles to loiter in
the handoff region affects the connected hub controller.
For example, in Figure 1a, D5 forcing a vehicle loiter in
H56 affects the airspace of D6 and will as a result limit
the number of vehicles that D6 can accept. These handoffs
necessitate the use of contracts between hubs to guarantee
the global system behaves as desired.

Vertiport controller: We assume without loss of generality
that all regions Vi contain m vertiports. We model
the vertiport controller corresponding to region Vi as a
reactive system Sj

i = (Qj
i , q

j
0i
,Σj′

Ii ,Σ
j
Oi
, δji , λ

j
i) with Qj

i

being the state space and qj0i being the initial state. The
input alphabet Σj′

Ii is defined to be Σj′

Ii = Σi
Ij ×ΣOi

. This
construction allows for the output of Di to form part of
the input for Si

j for j = 1, . . . ,m.
Figure 2 illustrates the relationship between hubs and

vertiport controllers as well as the architecture of the
composition.

Example 4: Continuing the running example based on
Figure 1a, each vertiport controller in the region Vi

has a corresponding set of input variables denoted Iji
and a resulting alphabet Σj

Ii . This input corresponds to
vehicles requesting to land that have been cleared by the
corresponding vertihub controller Di and vehicles desiring
to take off at one of its pads. Hence, the output of Di forms
part of the input of Si

j for j = 1, . . . ,m. The output of
the vertiport controller is the accepted or rejected take-off
and landing requests as well as the number of remaining
available landing pads which will then form part of the
input to the hub controller.

In order for the reactive hub controller to be able to

guarantee liveness properties, such as an upper bound on
delay for all agents (a requirement), it needs to know
the maximum time the vertiport controller will occupy
a landing slot, i.e., it needs to know the worst case
length of time a landing slot will be unavailable. Such an
interaction between vertiport controller and hub controller
is an example of a contract and will be formally detailed
in section IV.

B. Controller composition
As mentioned previously, the inputs and outputs of

the vertihub and vertiport controllers are linked. In this
section, we formalize this notion by constructing the
composition of controllers. We first define the composition
of the m vertiport controllers Sj

i for all j = 1, . . . ,m
corresponding to hub controller Di. Formally, the vertiport
controllers {S1

i , . . . ,Sm
i } in region Vi can be composed as

Si = S1
i ◦ . . . ◦ Sm

i . The resulting composition is also a
reactive system Si = (Qi, q0i ,ΣIi ,ΣOi

, δi, λi) defined as
follows:

• the set Qi =
⊗

j Qj
i of states is formed by the product

of the states of all vertiports Si
j ∈ Si.

• The initial state q0 is formed by the initial states qj0i
of all Sj

i ∈ Si.
• The input alphabet ΣIi is given by ΣIi =

⊗m
j=1 Σ

j′

Ii .
• The output alphabet ΣOi , of the joint system Si is

given by ΣOi
=
⊗m

j=1 Σ
j
Oi

.
• The transition function δi updates, for each vertiport

controller Sj
i ∈ Si, the Qj

i part of the state in
accordance with the transition function δji .

• The output function λi labels each state with the
union of the outputs of all Si

j ∈ Si according to λj
i .

Next, we define the composition of the joint vertiport
controllers Si Formally, we compose the two systems in
serial fashion in the following way: Di ◦ Si := Vi =
(Q̂i, q̂0i , Σ̂I,ΣOi

, δ̂i, λ̂i), with
• states Q̂i = Qi × Qi, q̂0i = (q0i , q0i),
• input alphabet Σ̂I = ΣIi × ΣOi

,
• transition function

δ̂i((qi, qi), σ̂I) = (δi(qi, σIi), δi(qi, (σOi , σIi))),

• and output function

λ̂i((qi, qi), σ̂I) = λi(qi, (σIi , λi(qi, σi))).

Note that, by construction, the output alphabet of the
composition ΣOi is the same as that of the hub controller.

Finally, the global system V = {V1 . . .Vk} is the com-
position of all Vi and the definition proceeds analogously
to the composition of the vertiports. The architecture of
the defined composition in an example environment with
two hub controllers is illustrated in Figure 2. We remark
that the global composition is of the form of a multi-agent
reactive system as studied in [5].

In the next 2 subsections, we define the properties that
we want the global system to satisfy and formally define

6 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

V2

S1
1

S1
2

V1

S2
1

(a)

ΣI

S1
1

S1
2

S2
1

S1

S2

D1

D2

ΣO1

ΣO2

ΣI1

ΣI2

V 1

V 2

V

(b)

Fig. 2: (a) Example region space with three vertiports and two operating regions with corresponding vertihubs and (b)
Architecture of the composition of reactive systems.

the synthesis problem. In Section IV, we present our syn-
thesis procedure for the vertiport and hub controllers and
prove the global system stemming from their composition
will satisfy all required properties.

C. Specifications
Recall that each hub controller is required to satisfy a

user provided specification. Formally, the specification for
hub controller Di must be of the form

ϕDi
= GSi ∧ GFPi (1)

where Si, Pi ⊆ Qi.
Similarly, each vertiport controller must also satisfy its

own user-provided specification, and is defined the same
way. For vertiport controller Sj

i we have ϕSj
i
= GSj

i ∧GFP
j
i

where Sj
i , P

j
i ⊆ Qj

i .
For each region Vi, we denote the conjunction of all

the vertiport specifications ϕSj
i

for j = 1, . . . ,m with
the corresponding vertihub specification ϕDi

as ϕi :=

ϕDi

∧(
ϕS1

i
∧ . . . ∧ ϕSm

i

)
.

Example 5: A simple example of a specification in the
form of (1) can be G (fewer than N vehicles in region) ∧
GF(vehicle request is granted). Informally, such a specifi-
cation requires that no more than N vehicles be in the
region at any given time and that always eventually any
vehicle is allowed to pass-through or land in the region if
they request it, i.e., they cannot be made to wait forever.

D. Synthesis Problem
Now we define the basic requirements that the overall

composed system must satisfy: namely it should enforce
correctness with respect to a given user specification.
Informally, this translates to enforcing safety while guar-
anteeing progress.

Given (1) environment structure with k vertihubs,
(2) m corresponding vertiports for each hub, (3) hub
connectivity graph GD, and (4) GR(1) specifications
ϕD1

, . . . , ϕDk
for each vertihub and vertiport specifications

ϕSj
i

for all i = 1, . . . , k and j = 1, . . . ,m synthesize
a set of hub controllers D = [D1, . . . ,Dk] and their
corresponding vertiport controllers Si

j for all i = 1, . . . , k

and j = 1, . . . ,m such that the global composition of all
controllers is winning with respect to

∧
i=1...k ϕi. Formally,

synthesize hub and vertiport controllers such that:(
D1 ◦

(
S1
1 ◦ . . . Sm

1

))
◦ . . .

(
Dk ◦

(
S1
k ◦ . . . Sm

k

))
|=

∧
i=1...k

ϕi

(2)
In the next section, we present the decentralized

contract-based synthesis framework to generate the con-
trollers.

IV. DECENTRALIZED CONTROLLER SYNTHESIS
FRAMEWORK

We first formalize the notion of assume-guarantee con-
tracts, then we demonstrate the incorporation of these
contracts as a GR(1) winning condition to a two-player
game, which we solve using reactive synthesis [9], [28].

A. Assume-guarantee contracts

We employ a decentralized synthesis process, whereby
each controller is synthesized without an awareness of
the specification and implementation details of both the
vehicles in the fleet, as well as the controllers in connected
vertihubs. However, a vertihub controller’s outputs impact
the controllers of its neighboring vertihubs. In order to
ensure that controllers don’t hinder each others’ abilities
to satisfy their local specifications, every controller must
additionally satisfy contract specifications for each neigh-
boring vertihub. Similarly, all vertiport controllers also
impact the implementation of their corresponding vertihub
controllers. Therefore, the vertiport controllers must also
satisfy contract specifications with their hub controller and
vice versa.

These contract specifications take the form of assume-
guarantee contracts. Informally, a vertihub controller gives
a guarantee of satisfying a contract specification with a
neighboring vertihub controller. This guarantee is used
as an assumption for the synthesis of the neighboring
controller and vice-versa. These contract specifications
are taken into account in the synthesis process for all
controllers.

BHARADWAJ et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 7

In this setting, we introduce two classes of contracts:
contracts between connected vertihub controllers and con-
tracts between a vertihub and its corresponding vertiport
controllers.

Vertihub controller contracts: An assume-guarantee con-
tract for a vertihub controller Di with connected hub
controller Dj is a tuple φ

Dj

Di
= (A

Dj

Di
, B

Dj

Di
) where

• A
Dj

Di
is an assumption on the outputs of Dj as it

pertains to Di expressed as a specification in the form
shown in Equation (1).

• B
Dj

Di
is a specification also in the form shown in

Equation (1) which Di must guarantee on the outputs
pertaining to Dj .

Similarly, the contract for Dj with Di is denoted φDi

Dj
=

(ADi

Dj
, BDi

Dj
).

Example 6: Consider Figure 2. An example of a con-
tract that D1 will make with D2 is an upper bound
on the length of time D1 can refuse to accept vehicles
from D2 when requested. Such a contract is expressed as
φD1

D2
= (AD1

D2
, BD1

D2
) where AD1

D2
= BD1

D2
= G (delay ≤ T)

for some integer value T . Hence, the controller D1, in
addition to satisfying its local specifications, must also
guarantee BD1

D2
, i.e., it does not keep an aircraft from D2

waiting for more than T timesteps. In order to help satisfy
the additional specification, D1 makes the assumption
AD1

D2
that D2 will satisfy BD2

D1
. Recall that the user given

specification for D1 is denoted ϕD1 . Under this contract,
the augmented requirement ϕ′

D1
for D1 is

ϕ′
D1

:= AD1

D2
=⇒ ϕD1 ∧BD1

D2

Simply, if the assumption on D2 holds, then the original
specification must be satisfied in addition to contract
specification BD1

D2
. The same procedure follows for D2.

Vertiport controller contracts: Each vertihub controller
must also make contracts with the vertiport controllers
in its region. The procedure follows analogously as in
the previous section as we assume that all outputs from
the individual controllers are pairwise disjoint. Hence,
we can form separate contracts with each vertiport con-
troller. Formally, we define a contract between a vertihub
controller Di and one of its vertiport controllers Sj

i as
φDi

Sj
i

= (ADi

Sj
i

, BDi

Sj
i

) where (ADi

Sj
i

, BDi

Sj
i

) are, analogous to
the hub contracts, the assumptions and guarantees on
the vertiport controller respectively, expressed as temporal
logic specifications of the form in (1).

Symmetric contracts: We say contracts between two
reactive systems Di and Dj denoted by φ

Dj

Di
and φDi

Dj
are

symmetric if ADj

Di
= BDi

Dj
and ADi

Dj
= B

Dj

Di
.

Informally, this means that the assumptions Di makes
on the outputs of Dj corresponds to the guarantees Dj

gives on its own outputs. All the contracts we will use
in the synthesis procedure will be symmetric as this will
guarantee that the assumptions each reactive system make
on the outputs of other systems will actually hold.

Joint winning condition: The addition of the contract
specifications to the original user-provided specifications

modifies the winning condition presented in (2). The
following lemma presents the modified winning condition
for hub controller Di when contracts are incorporated.

Lemma 1: For a set of vertihub controllers D, hub
connectivity graph GD, the winning condition for con-
troller Di ∈ D with the set of vertiport controllers Sj

i for
j = 1, . . . ,m is given by

ϕ′
i :=

 m∧
j=1

ADi

Sj
i

∧
Dj∈J

ADi

Dj
=⇒ ϕDi

∧BDi

Si

∧
Dj∈J

BDi

Dj

(3)

where J = connect(Di).
Note that (3) is in the same form as the specifications
in (1) which allows us to use efficient GR(1) synthesis
techniques [9]. We state this formally in the following
lemma.

Lemma 2: The winning condition in (3) is GR(1).
Remark: We note that the values in the assume-

guarantee contracts are heavily dependent on the topology
of the environment and the connections (see Fig. 3). For
example, a hub with many connecting hubs may not be
able to guarantee quick transit of vehicles through its
regions. Generating these contracts automatically based
on the given graph GD is a subject of future work. In this
paper, the contract values are chosen manually.

B. Controller synthesis

We first present an overview of the synthesis procedure.
Informally, we avoid the centralized synthesis problem by
creating a series of smaller synthesis problems that are
connected through the architecture introduced in Section
III and the contract specifications introduced in Section
IVA. The synthesis procedure for a vertihub controller Di

consists of the following steps:
1) First, we synthesize all the vertiport controllers Sj

i for
j = 1, . . . ,m operating under Di. For each controller
Sj
i we construct a game Gj

i with the acceptance
condition given by the user-provided specification
ϕSj

i
. We then augment the acceptance condition to

include the contract specification φDi

Sj
i

.
2) As shown in Lemma 2, the winning condition stem-

ming from augmenting ϕi with the contract specifi-
cations is a GR(1) condition. We solve each game Gj

i

using GR(1) reactive synthesis [9].
3) We compose the joint vertiport controllers to form Si.

We construct a game Gi from the given specification
ϕDi

for the vertihub controller Di, again augmenting
the acceptance condition with the vertiport contract
specifications φ

S1
i

Di
∧ . . . ∧ φ

Sm
i

Di
. We now additionally

augment the acceptance condition with contract spec-
ifications φ

Dj

Di
from all connected vertihub controllers

Dj ∈ connect(Di). Similar to before, this results
in another GR(1) acceptance condition and we can
compute a winning strategy.

4) The process is repeated for each hub controller.

8 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

Game construction: Recall that computing the output
function λi corresponding to the reactive system Di is
framed as finding the winning strategy obtained from
solving a game. The game construction is identical for
the vertiport and vertihub controllers, just with different
specifications and contracts. For brevity, we present the
game construction for the synthesis for vertihub controller
Di.

Let ϕDi = GSi ∧ GFPi with Pi, Si ∈ Qi be the
user-provided specification for reactive system Di =
(Qi, q0i ,ΣIi ,ΣOi

, δi, λi). The corresponding game G is
constructed as follows: G = (Q, q0,Σ, δ,Acc) where Q =
Qi, q0 = q0i , Σ = (ΣIi × ΣOi

), δ = δi, and Acc is
the winning condition presented in Equation (3). The
task is to synthesize a strategy ρ that maps the current
state qi and environment input σi to an action σ0 such
that for all possible input sequences σi ∈ Σ∗

Ii we will
have Acc(π) = >. From Lemma 2, we know that Acc is
a GR(1) winning condition. Hence, we are able to use
the techniques in [9] in order to efficiently synthesize a
strategy ρ : Q × ΣIi → ΣOi . Setting the output function
λi corresponding to hub controller Di to be the winning
strategy ρ for game G as defined above leads to the
following lemma.

Lemma 3: Di |= ϕi if ρ |= ϕ′
i and(∧m

j=1 A
Di

Sj
i

∧
Dj∈J ADi

Dj

)
holds.

Proof: The proof relies on the game construction having
an identical state space as the reactive system and the
definition of ϕ′

i being both the original user-provided
specification ϕi as well as the contract specification. Since
the game strategy satisfies ϕ′

i, then the same strategy must
also satisfy ϕ iff the assumptions made on neighboring
vertihubs and interior vertiports are satisfied. Informally,
the lemma states that the hub controller Di satisfies its
given specification ϕi if the synthesized strategy ρ from the
game G is winning with respect to the contract augmented
specification ϕ′

i and the contract assumptions hold.
Remark: The above lemma is only a statement of

sufficiency. This is because the contract specifications that
form ϕ′

i are not unique. If ρ 2 ϕ′
i, for a particular set of

contracts, this does not mean there does not exist a λi

such that Di |= ϕ.

C. Correctness
In this section we present the correctness result that

states that if there exists a set of controllers synthesized
using the construction detailed earlier, they must be win-
ning with respect to the conjunction of all user provided
specifications.

Theorem 1: If there exists a set of controllers D =
[D1, . . . ,Dk] with corresponding vertiport controllers Sj

i

for j = 1, . . . ,m and i = 1, . . . , k such that Di |= ϕ′
i where

ϕ′
i is given in Equation (3), then the controllers must also

satisfy Equation (2).
We remark that this construction guarantees correctness

if there exists a set of winning strategies in the game
construction, leading to a proof by construction using

S1
1

S1
2

S2
1

D1

D2

Orig-
Dest
requests

Requests

Availability

Requests

Availability

V

Loiter

Loiter

Land allocation

Land allocation

Pass

Pass

Fig. 3: Implementation of the architecture in Figure 2 for UAM
ATM case study.

Lemmas 2, 3. However, since the game acceptance con-
dition is augmented with contract-induced specifications,
the construction cannot always guarantee that such a
controller exists.

V. CASE STUDY SIMULATION

A. Simulation setting
We demonstrate our approach on large-volume UAM

air traffic data. The data used in the simulation was
generated by NASA Langley in conjunction with partners
performing UAM demand studies, and is in a format
compatible with the Mission Planner Algorithm [18] de-
veloped at NASA Langley. The data contains simulated,
timestamped on-demand requests for origin-destination
trips. The dataset includes the position of 1000 vertiports
which serve as the origin-destination pairs. In practice, the
vertihub placement and size will correspond to physical
infrastructure and we thus treat them as given inputs to
the controller synthesis problem. Requests are spawned
when the timestamp corresponding to a trip request in
the data is reached. Each vertihub handles the requests
of the UAM vehicles as they come into range (defined by
the circles in Fig. 5). Note that increasing the number of
vertihubs leads to the balkanization of the airspace.

Each vehicle has a process flow from take-off to landing
(Fig. 4). As a vehicle enters the range of a vertihub, it
sends the vertihub controller a request to either land or
pass through. Then the vertihub controller sends one of
three commands:

1) If permission is granted to pass-through, the vehicle
(green) flies to the next vertihub and requests access.

2) If permission is granted to land, the vehicle (yellow)
approaches the requested vertiport and sends a
landing request to the vertiport controller.

3) If neither permission is granted, the vehicle loiters
(orange) and repeats its request.

In order to demonstrate the qualitative behavior of
the global system, we examine the procedure with mul-
tiple operating vertihubs in three different settings where
the vehicles are operating in: (i) an airspace covered
by vertihubs that have many overlapping regions – the
many intersecting regions of control require a vehicle to

BHARADWAJ et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 9

Launch

Flight

Within range?

Loiter

Assigned?

Approach Land

Yes

No

Request

Land

No

Pass-through

Fig. 4: Process flow for an individual vehicle - during flight it
checks whether it is in range of a vertihub. Once within range,
the vehicle loiters and creates a request to either land or pass-
through. The colors in the figure are used in the simulations
to represent the current status of the vehicle.

receive many permissions to complete its mission. (ii)
sparsely interacting vertihubs – an airspace with only
a few overlapping regions of control. Vehicles passing
through these vertihubs negotiate few permissions. (iii)
closely linked vertihubs – a special condition where the
overall airspace has few overlapping regions of control but
the overlapping regions are physically close together. In
this scenario, the vehicles’ missions compel them to pass
through these regions simulating congestion a potential
bottleneck.

All vertihub controllers must satisfy the following spec-
ifications: (1) landing or pass-through requests must be
approved in less than T steps and (2) there can be
no more than N vehicles in the region of the vertihub.
All vertiport controllers must satisfy the following: no
more than M vehicles can land at any given time. The
landing time is treated as an environment input and can
vary based on the vehicle and weather conditions. The
contract between the vertiport and vertihub states that
a vertiport may not allow a vehicle to take off for up
to L steps and must clear a landing spot in at most
K steps. The vertihub controllers have contracts with
connected controllers agreeing to let vehicles loiter in
their regions for t < T timesteps. These contracts allow
vertihub controllers to land or let vehicles pass through
while incoming vehicles loiter in neighboring regions.
The resulting video simulations for each setting can be
seen in https://u-t-autonomous.github.io/Decentralized-
UAM-Traffic-Management/. Also included in the link are
further comparisons with different physical architectures
for vertihub placement - in particular we compare scenario
(i) when the airspace is covered by double the number
of the vertihubs. The average loiter time for vehicles in
setting (i) was approximately 3% less per vehicle for the
environment with more vertihubs, however, we note that

(a)

Fig. 5: Screenshot of the simulation environment - Operating
regions for each vertihub controller and their ranges are
indicated by blue circles. Green agents are in flight mode,
orange agents are loitering, yellow agents are allocated for
landing/passing-through and red agents are those that have
landed. If a vertihub controller circle is red, then it will accept
no more agents until the agents inside have landed or have
been accepted to pass through to another region.

this is not true in general and will depend on the specific
network topology and specifications.

B. Qualitative Results
Figure 6 contains an example of the allocation behavior

for multiple agents approaching a single vertihub. Initially
the vertihub is informed by the vertiports that there are
no slots available for landing (see 2 in Fig. 6a). Subsequent
to an agent landing (1 lands), an additional slot opens (see
3 in Fig. 6b). Finally, the vertihub allocates a slot to a
requesting vehicle (4 becomes 5 in figure 6c).

For each simulation setting, the vertihub interactions
affect how vehicles are allocated and subsequently where
they loiter. In the case of (i), allocation bottlenecks tend to
occur upon vehicle launch – as a vehicle launches it waits
for permission to move and thus bottlenecks are limited by
the operating number of vehicles in the vertihub. For (ii),
there are significantly fewer bottlenecks but they mostly
occur as vehicles either enter or exit a region. For (iii)
we observe the cascading of allocations in each region –
to allocate vehicles in the top region, the vehicles in the
middle region must clear and similarly for the middle-lower
region interactions.

C. Synthesis time
We present the synthesis times for the vertihub and

vertiport controllers in Table I. There is an exponential
increase in the synthesis time as the number of verti-
ports in each region is increased. The state space of the
controllers does not depend on the number of vehicles,
allowing us to simulate datasets involving large numbers
of vehicles. The centralized synthesis method in [6] could
not be run even in the smallest case as the state space
is too large. A decentralized, hierarchical procedure is
necessary to handle systems of the necessary size and
complexity that UAM will require. Other decentralized

https://u-t-autonomous.github.io/Decentralized-UAM-Traffic-Management/
https://u-t-autonomous.github.io/Decentralized-UAM-Traffic-Management/

10 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

(a) Landing (b) Free slot (c) Allocated

Fig. 6: Time sequence of a UAV landing (1) at a vertiport, which opens up a free slot for the vertihub (2 → 3). The hub then
allocates another UAV (4 → 5) to land at a free slot in one of the vertiports.

techniques such as [7] can only handle very restrictive
classes of specifications and could not be used to generate
controllers in this setting.

We note that since the synthesis for each vertihub
is independent of one another once the contracts are
generated, the synthesis procedure for the global system
is trivially parallelizable.

VI. CONCLUSION

We introduced a novel UAM ATM architecture for high
volume operations in urban environments. We show that
by using contract-based reactive synthesis we can achieve
correctness guarantees in a scalable fashion that is not
attainable via centralized synthesis. Controllers can be
synthesized independently of one another as long as they
satisfy additional contract specifications. These contract
specifications guarantee that individual controllers will
not impede the ability of connected systems to satisfy
the desired emergent properties while satisfying their
own specifications. Hence, the global connected system
is theoretically guaranteed to be correct with respect
to all user-provided temporal logic requirements. For
future work, we aim to: (1) investigate the automated
generation of assume-guarantee contracts based on a given
network structure, (2) use the designed framework as
an operating envelope in which to optimize for metrics
such as loiter times while always guaranteeing safety
requirements, (3) directly include resource-constrained
planning in the presented UAM ATM framework, and
(4) perform airspace design exploration for vertihub and
vertiport infrastructure placement.

ACKNOWLEDGEMENT

The authors would like to thank Ali Husain and Dr.
Bruce Porter from SkyGrid Inc. for inspiring discussions.
They would also like to thank Mr. Rick Butler, Dr. George
Hagen, Mr. Jeffrey Maddalon and Mr. Nelson Guerreiro
for their insight.

TABLE I: Synthesis times for vertihub/vertiport controllers

No. of vertiports /
No. of landing

pads

No. of states in
controller

(|Qi|)

Synthesis
time (s)

Vertihub
3 2.1× 104 22.75
4 2.7× 106 1272.95
5 3.4× 108 14300.65

Vertiport
2 6.1× 102 0.45
4 4.3× 104 19.12
8 1.9× 108 12403.86

REFERENCES

[1] Flight plan 2030: An air traffic management concept for urban
air mobility. EmbraerX (2019)

[2] Alonso-Mora, J., DeCastro, J.A., Raman, V., Rus, D., Kress-
Gazit, H.: Reactive mission and motion planning with deadlock
resolution avoiding dynamic obstacles. Auton. Robots 42(4),
801–824 (2018)

[3] Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of
reactive controllers for multi-agent systems. In: International
Conference on Computer Aided Verification. pp. 251–269.
Springer (2016)

[4] Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal
Methods in System Design 48(1-2), 46–93 (2016)

[5] Bharadwaj, S., Bloem, R., Dimitrova, R., Konighofer, B., Topcu,
U.: Synthesis of minimum-cost shields for multi-agent systems.
In: 2019 American Control Conference (ACC). pp. 1048–1055
(2019)

[6] Bharadwaj, S., Dimitrova, R., Topcu, U.: Synthesis of surveil-
lance strategies via belief abstraction. In: 2018 IEEE Conference
on Decision and Control (CDC). pp. 4159–4166 (2018)

[7] Bharadwaj, S., Carr, S., Neogi, N., Poonawala, H., Chueca,
A.B., Topcu, U.: Traffic management for urban air mobility.
In: NASA Formal Methods - 11th International Symposium,
NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings.
pp. 71–87 (2019)

[8] Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and re-
active synthesis. In: Handbook of Model Checking, pp. 921–962.
Springer (2018)

[9] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa�ar,
Y.: Synthesis of reactive (1) designs. Journal of Computer and
System Sciences 78(3), 911–938 (2012)

[10] Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield
synthesis. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 533–548.
Springer (2015)

[11] Cassar, I., Francalanza, A.: On implementing a monitor-oriented
programming framework for actor systems. In: Integrated For-
mal Methods - 12th International Conference, IFM 2016, Reyk-

BHARADWAJ et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 11

javik, Iceland, June 1-5, 2016, Proceedings. LCNS, vol. 9681,
pp. 176–192. Springer (2016)

[12] Cook, A.: European air traffic management: principles, practice,
and research. Ashgate Publishing, Ltd. (2007)

[13] FAA: Order JO 7400.9Y Air Traffic Organization Policy (2014)
[14] Falcone, Y.: You should better enforce than verify. In: Runtime

Verification - First International Conference, RV 2010, St.
Julians, Malta, November 1-4, 2010. Proceedings. pp. 89–105
(2010)

[15] Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.:
Runtime verification of component-based systems in the BIP
framework with formally-proved sound and complete instrumen-
tation. Software and System Modeling 14(1), 173–199 (2015)

[16] Foina, A.G., Sengupta, R., Lerchi, P., Liu, Z., Krainer, C.:
Drones in smart cities: Overcoming barriers through air traffic
control research. In: 2015 Workshop on Research, Education
and Development of Unmanned Aerial Systems (RED-UAS).
pp. 351–359 (2015)

[17] Francalanza, A., Seychell, A.: Synthesising correct concurrent
runtime monitors. Formal Methods in System Design 46(3),
226–261 (2015)

[18] Guerreiro, N.M., Butler, R.W., Maddalon, J.M., Hagen, G.E.:
Mission planner algorithm for urban air mobility–initial perfor-
mance characterization. In: AIAA Aviation 2019 Forum. p. 3626
(2019)

[19] Harriet, T., Poku, K., Emmanuel, A.K.: An assessment of
traffic congestion and its effect on productivity in urban Ghana.
International Journal of Business and Social Science 4(3) (2013)

[20] Hong, Y., Choi, B., Lee, K., Kim, Y.: Conflict management con-
sidering a smooth transition of aircraft into adjacent airspace.
IEEE Transactions on Intelligent Transportation Systems 17(9),
2490–2501 (Sep 2016)

[21] Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L.,
Könighofer, R., Topcu, U., Wang, C.: Shield synthesis. Formal
Methods in System Design 51(2), 332–361 (2017)

[22] Liu, Z., Sengupta, R.: An energy-based flight planning system
for unmanned traffic management. In: 2017 Annual IEEE In-
ternational Systems Conference (SysCon). pp. 1–7 (April 2017)

[23] Maoz, S., Ringert, J.O.: Gr(1) synthesis for ltl specification
patterns. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. pp. 96–106. ESEC/FSE
2015, ACM, New York, NY, USA (2015)

[24] Moarref, S., Kress-Gazit, H.: Reactive synthesis for robotic
swarms. In: Formal Modeling and Analysis of Timed Systems -
16th International Conference, FORMATS 2018, Beijing, China,
September 4-6, 2018, Proceedings. pp. 71–87 (2018)

[25] Moore, A., Balachandran, S., Young, S.D., Dill, E.T., Logan,
M.J., Glaab, L.J., Munoz, C., Consiglio, M.: Testing enabling
technologies for safe UAS urban operations. In: Proceedings
of the 2018 Aviation, Technology, Integration, and Operations
Conference. No. AIAA-2018-3200, Atlanta, Georgia (June 2018)

[26] Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle,
A., Consiglio, M., Chamberlain, J.: Daidalus: Detect and avoid
alerting logic for unmanned systems. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC). pp.
5A1–1–5A1–12 (Sep 2015)

[27] Neogi, N., Cuong, C., Dill, E.: A risk based assessment of a small
UAS cargo delivery operation in proximity to urban areas. In:
Proceedings of the 37th Digital Avionics Systems Conference
(DASC). London, England, UK (September 2018)

[28] Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1)
designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) Verification,
Model Checking, and Abstract Interpretation. pp. 364–380.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

[29] Prevot, T., Callantine, T., Lee, P., Mercer, J., Battiste, V.,
Johnson, W., Palmer, E., Smith, N.: Co-operative air traffic
management: a technology enabled concept for the next genera-
tion air transportation system. In: 5th USA/Europe Air Traffic
management Research and Development Seminar, Baltimore,
MD (June 2005)

[30] Prevot, T., Rios, J., Kopardekar, P., Robinson, J.E., Johnson,
M., Jung, J.: UAS Traffic Management (UTM) concept of
operations to safely enable low altitude flight operations. In:
Proceedings of the 2018 Aviation, Technology, Integration, and
Operations Conference. No. AIAA-2016-3292, Washington, DC
(June 2016)

[31] Schewe, S.: Synthesis of distributed systems. Ph.D. thesis,
Saarland University, Saarbrücken, Germany (2008)

[32] Schewe, S.: Distributed synthesis is simply undecidable. Infor-
mation Processing Letters 114(4), 203 – 207 (2014)

[33] Schneider, F.B.: Enforceable security policies. ACM Trans. Inf.
Syst. Secur. 3(1), 30–50 (2000)

[34] Swenson, H., Barhydt, R., Landis, M.: Next generation air trans-
portation system (ngats) air traffic management (atm)-airspace
project. Tech. rep., Technical report, National Aeronautics and
Space Administration (2006)

[35] Tomlin, C., Pappas, G., Lygeros, J., Godbole, D., Sastry, S.,
Meyer, G.: Hybrid control in air traffic management systems.
IFAC Proceedings Volumes 29(1), 5512–5517 (1996)

[36] Wolff, E.M., Topcu, U., Murray, R.M.: Efficient reactive con-
troller synthesis for a fragment of linear temporal logic. In: 2013
IEEE International Conference on Robotics and Automation.
pp. 5033–5040. IEEE (2013)

[37] Zhang, W., Kamgarpour, M., Sun, D., Tomlin, C.J.: A hier-
archical flight planning framework for air traffic management.
Proceedings of the IEEE 100(1), 179–194 (Jan 2012)

Suda Bharadwaj received B.Sc. and B.E de-
grees in applied mathematics and aerospace
engineering from the University of Sydney,
NSW, Australia, in 2014. In 2016, he received
an M.S. degree in aerospace engineering from
the University of Texas at Austin, TX, USA.
He is currently pursuing his Ph.D degree at the
Department of Aerospace Engineering and En-
gineering Mechanics at the University of Texas
at Austin. His research interests include the
intersection of formal methods, reinforcement

learning, and control with a focus on provable safety guarantees.

Steven Carr is currently pursing his Ph.D.
degree from the University of Texas at Austin
in the Department of Aerospace Engineering.
He received the B.Eng./B.Sc. in aerospace and
mathematics from the University of Sydney in
2014 and the M.Sc in aerospace engineering
in 2018. His research interests include the
intersection of control and learning in au-
tonomous systems with a focus on aerospace
applications.

Natasha Neogi is currently a Subproject Man-
ager of NASA’s System-Wide Safety Project.
She is a also a Senior Researcher at the NASA
Langley Research Center where she serves
as the Certification Technical Lead on the
Advanced Air Mobility Project. Her primary
research interests are in the verification and
validation of software-intensive safety-critical
infrastructure systems, as well as certifica-
tion issues concerning airworthiness of non-
conventionally piloted vehicles. Previously, she

was a staff scientist in the Office of the Chief Scientist, NASA Head-
quarters. She received her Ph.D in Aeronautical and Astronautical
Engineering from the Massachusetts Institute of Technology. She is
an associate fellow of the AIAA and was the recipient of the AIAA
Robert A. Mitcheltree and PEC Doug P. Ensor Young Engineer
awards. She has numerous awards and publications in AIAA, IEEE
and ACM conferences and journals.

12 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2021

Ufuk Topcu is an associate professor at The
University of Texas at Austin. He holds the
W.A. “Tex” Moncrief, Jr. Professorship in
Computational Engineering and Sciences I. He
received his B.S. from Bogazici University in
2003, his M.S. from the University of Cal-
ifornia, Irvine in 2005, and his Ph.D. from
the University of California, Berkeley in 2008.
Ufuk held a postdoctoral research position
at California Institute of Technology until
2012 and was a research assistant professor

at the University of Pennsylvania until 2015. His honors include the
recipient of the Antonio Ruberti Young Researcher Prize, the NSF
CAREER Award and the Air Force Young Investigator Award. His
research focuses on the theoretical, algorithmic and computational
aspects of design and verification of autonomous systems through
novel connections between formal methods, learning theory and
controls.

	Introduction
	Urban air mobility setting
	Challenges in air traffic management for UAM
	UAM ATM architecture
	Related work
	Contributions of the paper

	Problem Setting and Preliminaries
	UAM ATM Architecture
	Controller models
	Controller composition
	Specifications
	Synthesis Problem

	Decentralized Controller Synthesis Framework
	Assume-guarantee contracts
	Controller synthesis
	Correctness

	Case Study Simulation
	Simulation setting
	Qualitative Results
	Synthesis time

	Conclusion
	References
	Biographies
	Suda Bharadwaj
	Steven Carr
	Natasha Neogi
	Ufuk Topcu

