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What is Global Warming?

• Earth's surface temperatures has increased by about 2.12 
Fahrenheit (1.18 degrees Celsius) since the baseline 
period of 30 years (1951-80) based on historical 
observations over oceans and land (NASA and NOAA 
2019 Announcement)

• Change driven largely by increased carbon dioxide 
emissions into the atmosphere and other human activities.
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2018 global temperature data: higher than average
(temperatures are shown in red, lower than normal
temperatures are in blue.

Change in global surface temperature relative to 
baseline



Impact of Aviation on Climate Change*
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• Aviation responsible for 13% of
transportation-related fossil fuel
consumption and 2.0% of all
anthropogenic CO2 emissions

• Direct emissions: CO2 and water 
vapor are greenhouse gases (GHG) 
resulting in a positive Radiative 
Forcing (RF); Because of its

2abundance and long lifetime, CO
has a long-term effect on climate
change

• Indirect effects: NOx affecting 
distributions of Ozone and Methane 
has a short-term effect on climate 
change.

• Condensation trails (Contrails) are 
clouds that are visible trails of water 
vapor made by the exhaust of aircraft 
engines.

*D.S. Lee et al, Atmospheric Environment, 2021



International Civil Aviation Organization (ICAO) 
Strategies for Reducing Impact

• ICAO established global aspirational goals in 2010
– 2% annual fuel efficiency improvements through 2050
– Carbon neutral growth from 2020 onwards.

• Three-pronged approach
– Improvements in aircraft technology,
– Improvements in operations and
– Development and market-based approach to the use of 

alternative aviation fuels.
4Figure Credit: "Beginner’s Guide to Aviation Efficiency", Air Transport Action Group, Nov 2010, ATAG_EfficiencyGuide_Reprint_web.pdf



Why is it hard?
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• Analysis of concepts to reduce the impact of aviation 
and climate requires models of aviation operations, 
emissions, climate models and metrics
– Time variation from minutes to decades, spatial variation from 

local to global
– Uncertainties in climate models and atmospheric variations
– Appropriate level of modeling and computationally efficient 

algorithms to support operations and policy

• Review of AF Traffic Flow Management Research 
(2010-2016) on Green Aviation
– Efficient aircraft operations under constraints

• Wind optimal routes for different operating costs including airspace 
charges for oceanic and intercontinentall flights

– Development of aircraft trajectory designs minimizing the 
combined effects CO2,NOX and contrails



Outline
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• Method of approach to build a global air traffic and 
climate impact simulation capability

• Emissions and contrails models
• Strategies for reducing contrail formation
• Aircraft Trajectory Design Based on Reducing the Combined 

Effects of Carbon-di-oxide, Nitrogen and Contrails
• Lessons learned
• Going forward
• Concluding remarks
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Fuel and Emission Models

• Eurocontrol’s Base of Aircraft Data (BADA)
• FAA Aviation Environmental Design Tool (AEDT)

Emissions per kg of aviation fuel
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Fuel Consumption Model (BADA)

• Eurocontrol’s Base of Aircraft Data (BADA)
• Fuel burn during cruise:

Fuel burn in kg

Altitude in 100 ft
Fuel burn for a typical jet from Chicago to Newark
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Variation of Emissions with Altitude

e(HC) = EIHC × σ
e(CO) = EICO × σ
e(NOx ) = EINOx ×σ
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Air Traffic Simulation: CO2 emissions



Contrails

• Occur when warm engine exhaust gases and cold ambient air 
interact under favorable temperature and humidity conditions

12Image Credit: NASA/Eddie Winstead
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Persistent Contrail Formation Model 
(PCFM)

• Contribution of contrails to global warming may be larger 
than contribution from CO2 emissions

• Contrails form if relative humidity with respect to water 
(RHw) is greater than a temperature dependent threshold

• In mid-latitudes, Contrails generally occur around 
30,000ft,but rarely below 25,000ft

• Contrails persist if the relative humidity with respect to ice 
(RHi) is high (RHi > 100 %)

• RHi can be calculated from the RHw and the environmental
temperature which are provided by the Rapid Update Cycle
(RUC)

• Information available to compute PCFM on an aircraft except 
RHw; some aircraft have humidity sensors
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Persistent Contrail Formation Model
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Potential Contrail Regions at 31,000 Feet
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Daily Variation of Contrails

• Mean: 238 minutes
• Standard deviation: 125 minutes
• May 24 – Low (34 minutes)
• May 4 – Medium (307 minutes)
• May 27 – High (494 minutes)
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Strategies for Avoiding Contrails
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• Strategic
– Models for predicting contrails
– How to extend current models?
– Validation using satellite data

• Tactical
– Requires on-board sensors to detect super-saturated air
– Air Traffic Service Provider (ATSP) needs to accommodate 

changes to the flight plans
• Both strategies may result in extra fuel burn

– How much extra fuel burn (depends on avoidance technique)
– Some estimates in Europe put this at 5% (No wind conditions). No 

US estimates!
• Research question: How to trade off the extra fuel burn 

with the environmental impact of going through contrails?



Contrail Reduction Concepts
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Contrail reduction using 
altitude changes is 
highly effective in 
reducing climate impact 
even in the presence of 
uncertainties*

*Sridhar, B., Chen, N. Y., and Ng, H. K., “Energy Efficient Contrail Mitigation Strategies for Reducing the 
Environmental Impact of Aviation,” Tenth USA/Europe Air Traffic Management Research and Development Seminar 
(ATM2013), Chicago, IL, June 2013.



Lateral Contrail Reducing (LCR) Concept

Wind Optimal

Complete Contrail 
Reduction

Partial Contrail 
Reduction

• 3-Dimensional Contrail Reducing (3DR) Concept : Best LCR 
for a range of altitudes
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Reduction of Contrail Formation by Altitude 
Changes

• Baseline: Traffic and weather data at 8.00AM on April 
23, 2010
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Simulation Details
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• Baseline Traffic: Hourly departure from 12 city-pairs 
with aircraft flying great circle routes at nominal 
cruise altitude and cruise speeds

• Generation of family of trajectories for each flight 
using both 2D and 3D contrail reduction strategies
– Each trade-off curve requires approximately 73,000 aircraft 

trajectory calculations

• Atmospheric data for May 2007



Integrated Example: Optimal Trajectories for 
12 City Pairs
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• April 12, 2010; 287 flights; Cruise altitude 26,000-41,000 feet; 
Air speed 434-463 knots
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Tradeoff between Contrail Reduction and Extra 
Fuel Consumption: Results for 12 City-pairs

One day’s simulation is just the beginning!

Total (2D)

Total (3D)
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Aircraft Trajectory Design Trade-off for Reducing the 
Combined Effects of Carbon-Dioxide, Oxides of Nitrogen

and Contrails
• How are the results influenced by atmospheric 

variations, unknowns and emission goals?
• Some of the uncertainties

– Aircraft parameters: thrust, weights (variation of 15%), fuel 
flow

– Daily variation of traffic and atmospheric conditions
• Temperature, relative humidity, winds

– Quantity, location and lifetime of emissions
– Climate impact: Large uncertainty over contrail formation 

regions and the radiative forcing associated with contrails
• Emission goals

– Decision-making Interval (H):10/20/50/100 years
– Carbon neutral/reduce?
– How much can we afford?



Linear Climate Response Models and Metrics

• CO2 emissions: Most pervasive and best understood
• Radiative Forcing (RF): Radiation flux change induced by the concentration 

change of a greenhouse gas or an aerosol, or by cloud changes related to human 
activity

• Absolute Global Change Potential (AGTP): Surface temperature change at the 
end of H years due to a gas, aerosol or contrails
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AGTP: Results for 12 City-pairs

• AGTP due to CO2 increases linearly with fuel
• AGTP due to contrails shows greater reduction initially
• Combined AGTP shows a minimum and cannot be reduced with 

more fuel usage
• Contrail reduction by altitude changes is more effective
• 2-3% additional fuel usage over the baseline (X) reduces surface 

temperature change to its lowest value 26
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U.S. Airspace Analysis
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• 100 times more 
aircraft than in 12 city-
pairs.

• Analysis done by 
altitude optimization 
of optimal baseline 
horizontal route
– Contrail reduction 

achieved with 
significant reduction 
in computation time



Typical Daily Aircraft Fuel Consumption and CO2, 
NOX and Contrails Production in US
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Contrails and Emissions Distributions

Contrails:  
white

CO2 Emissions:
red: > 10000kg 

yellow: > 7000kg 
green: > 4000kg 
blue: > 1000kg



Variation of Fuel and AGTP

• Baseline (X): 43,215 x 103 kg fuel; Contrails 2875 hours
• Contrails reduced to 915 hours using additional 991 x 103 kg fuel 

(68% reduction using additional 2.3% fuel)
• Breakdown of reduction: Short (9.6%), Medium (33.3%), Long 

(20.8%) and Transcontinental (36.3%)
• Environmental benefit not significant after using 550 x 103 kg fuel
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AGTP for CO2 and NOX

• Three components to the NOX AGTP
– Short-lived ozone perturbation
– Methane perturbation
– Methane-induced ozone perturbation
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Key Findings from the Analysis
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• Changing altitude is an efficient way of achieving contrail reduction
• Contrail reduction more efficient on high-contrail days
• Short flights (less than 500 miles), although half the number of 

flights in the National Air Space, contribute a small amount of 
contrails (about 7%) due to their altitude profile

• Contrail reduction beyond a certain amount may not be 
environmentally friendly due to the use of extra fuel and the 
emission of additional amount of CO2

• Effect of contrails becomes less important as the decision-making 
horizon is increased

• Effect of NOX negligible except for a small impact around 25 years
• Findings true even in the presence of uncertainty relating to 

contrails



Summary

33

• Research on environmentally friendly en route traffic 
flow concepts incorporating models developed by basic 
climate research

• Integrated linear dynamic emission and climate models 
in a national level airspace simulation

• Contrail reduction using altitude changes on high 
contrail days is effective in reducing climate impact even 
in the presence of uncertainties

• Capability to conduct system level analysis of Air
Traffic Management concepts with environmental
impact
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