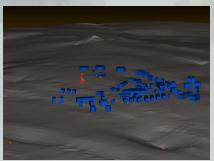


Lunar Wi-Fi Mapping and Design with Terrestrial Comparisons: Executive Summary

Compass Study to Assess Wi-Fi Communications

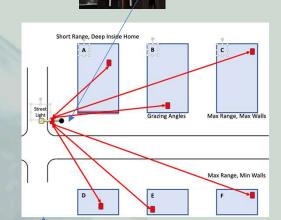
- Space Act Agreement with two design objectives: Lunar and Terrestrial WiFi Networks
- The GRC Compass team is uniquely skilled in driving towards solution sets and it was determined that the Compass approach could be applied in designing a representative Wi-Fi network over both designated lunar and terrestrial areas.
- NASA's interest in the study:
 - Compass to Contrast/Compare a representative Terrestrial 'outdoor/neighborhood' Wifi (Cleveland an example) with Lunar/Mars Wifi (Lunar South Pole an example)
 - 2. Compass team to gather lessons learned, new methodologies and innovative approaches in real time in order to ensure they can be applied to or enable future Compass designs.
 - 3. Provide Compass insight into additional best practices for distance collaboration / atypical designs that will be extensible to future Compass work as well as other NASA teams.



Approach

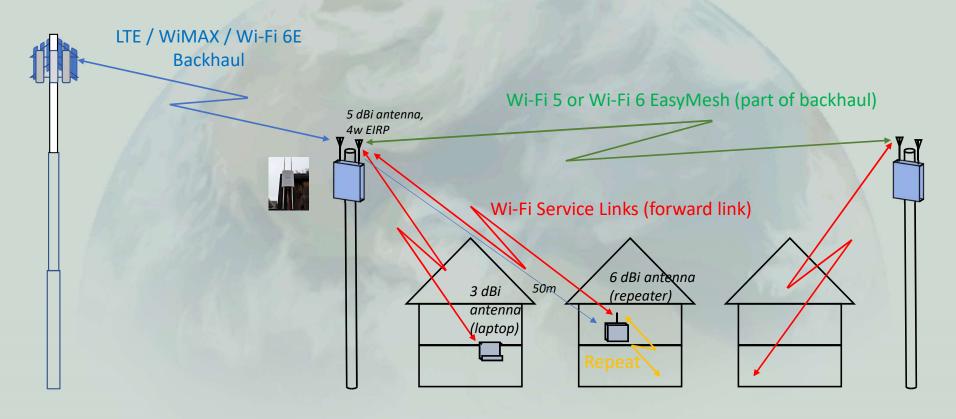
- Investigate Wi-Fi for a Terrestrial
 'Neighborhood' and a 2030's Lunar Base
- What common approaches and technologies can be applied to both?
- How are they unique?
- Investigated a terrestrial network first then applied to notional 2030's Lunar base

NASA Compass Team


- Lead Steve Oleson
- Communications Engineers
 - Robert Jones
 - Dr. Ryan Toonen
 - Mike Cauley
- Systems Engineer Betsy Turnbull
- Simulations: Mike Bur

Customer Representative – Jim Free

Terrestrial Wi-Fi: Executive Summary


- Developed models for service link: street light pole units to/from homes
 - Recommend Wi-Fi-6 to provide dual band (2.4GHz/5 GHz) to/from home using mesh networks (automatic network setups)
 - Should provide ~7.5 Mbps service for four people in each home (good enough for school, email, teleconference, video – NOT for 4K streaming or gaming)
 - FCC 4W transmitter limit may require repeaters in some households due to losses through walls
 - Estimated density of transceivers ~ every 100m on lightpoles
 - Spacing closer (50 m to 75 m) will allow 5 GHz (and more bandwidth!) to all households
 - Developed models and options for Backhaul: street light pole RF back to central Internet hub
 - Several options exist including 6 GHz RF, 60 GHz microwave, CBRS, Commercial

Example Link Performance of Notional Architecture

Terrestrial Design Summary

- Recommend 2.4/5 GHz frequencies to capture legacy user equipment (laptops, etc.)
- Recommend Wi-Fi 6 format, meshed networks, MIMO
- Rough link analyses show outdoor Transceivers installed ~ 100 m apart on lampposts (which provide power) can provide
 - · Ample service for outdoor users
 - Sufficient service for indoor residential users
 - May require an indoor repeater to makeup for low performing user devices (laptops, tablets, smart phones)
 - OR
- Recommended RF (not wired) Backhaul which can be provided in various ways (non-technical considerations needed for downselect)
 - 6 GHz
 - CBRS
 - 60 GHz microwave
 - Commercial SAS
- For City of Cleveland Primary investment installation of ~ 20,000 lightpole access points (self networking), backhaul sites, Network oversight

Forward Link

Image Source: Google Earth Pro

12 Access Points (AP) cover approximately 230 Residential Homes.

Approximately 19 Homes are 'served' per Access Point (The RF coverage must be greater)

Backhaul

Image Source: Google Earth Pro

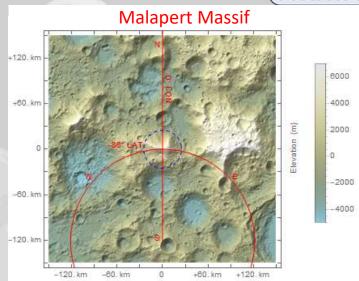
Things to look for when selecting Outdoor Access Points:

- 1. Wi-Fi 6 The new technologies built into Wi-Fi 6 (a 'friendly' name for 802.11ax) will make the user experience more reliable and fluid especially in highly congested frequency bands. (Wi-Fi 6 devices were first introduced in Early 2019.)
- 2. Mesh Enabled Mesh networks are designed to efficiently 'hop' (or relay) traffic through a network of access points. Mesh devices automatically form a fabric of 'self organizing' and 'self healing' networks.
- 3. 'Managed' Device is designed to be part of a large remotely managed network (status, logs/events, configuration, remote reboot). Also allows network policies to be implemented.
- **4. Dual Band (2.4 & 5 GHz)** With concurrent connectivity. (6 GHz "Wi-Fi 6E" would be perfect for backhauls.)
- 5. High Output Power As close to 1-Watt (+30 dBm) as possible and /or 4-Watts EIRP. This is the max allowed by the FCC.
- **6. MIMO** Multiple Input Multiple Output. Using multiple 'spatial streams' (Exploiting multiple RF paths between two devices). Many outdoor units are 2x2, but Wi-Fi 6 devices can go up to 8x8.
- 7. Outdoor Rating IP67 rated devices are available and a good choice. Don't forget EDS protection
- 8. PoE (Power-over Ethernet) Creates a single cable connection. Simplifies connection to other devices (Backhaul radios) (802.3at and/or 802.3af)
- **9. Detachable Antennas** Allows custom installation / coverage (e.g. sector antennas or remoting of antennas)

Representative Access Point (on Light pole)

Wi-Fi Range Extender (in-home)

Backup Slides

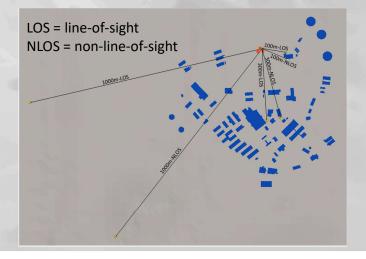

Lunar Applications

Lunar Base Wi-Fi: Executive Summary

- Used same Frequencies as Terrestrial
- Permanent 2030s Moonbase on Malapert Massif:
 - Excellent annual Sun exposure
 - Excellent line-of-sight communication with DSN
 - Relatively close proximity to Shackleton crater (116 km)
- Performed multipath fade loss analysis to gauge link budget:
 - Quasi-Optical Shoot-and-Bounce Ray-Tracing Engine (ANSYS Savant)
 - Lunar Digital Elevation Map (from LRO LOLA mission)
 - 3-D Moonbase Model (McMurdo Station + Signal Tower)
- Assumed Lunar users are mobile or external to main habs/facilities (which are supplied by wire with power)
 - Recommend Wi-Fi-6 to provide dual band (2.4GHz/5 GHz) to/from mobile users using mesh networks (automatic network setups)
 - 8-m high transceivers mounted on wired infrastructure (habs, landers, etc) better than a central 32-m tower for local reception
 - Assuming FCC 4W ERIP limit 2.4 GHz could service non-line of sight users out to 400 m (5 GHz only to 100 m)
 - Assuming ~600 Mbps transceiver: Could provide live video link from 10-12 users
 - Adding more transceivers could add more bandwidth/users
- Results have provided direction to the newly formed Lunar Architecture Team

Compass Study Overview

- Models will be developed for a south pole lunar landing site, and for comparison the city of Cleveland in order to answer how terrestrial equipment and networks compare (and can be used on the moon/Mars) and how these extraterrestrial sites are unique.
- Given specifications for signal strength, data rates, maximum elevation and other parameters, NASA GRC will perform
 - A Compass session to develop a potential configuration, and Wi-Fi coverage map with hardware locations
 - Applicable for a south pole lunar base as well as (for comparison and contrasting) the city of Cleveland, and perform a trade on the use of standard equipment to provide functionality.
 - Show the similarities and differences between terrestrial and moon/Mars Wi-Fi applications based on this work
- The Compass team will consist of system engineers (LSM) and communication engineers (LC), and simulation and graphics.
- Compass remote work and an atypical design (comm system only, terrestrial application) will assessed.



2030s 'Moon Base'

- McMurdo and Scott 3 km apart
- Rough Estimated Needs:
 - Speeds, # users (~200 people, 100 robotic platforms, density of users)
 - McMurdo 1200/5600 people /mi^2, CLE 5000 people / mi^2
 - Assume a McMurdo station and Scott Stations Malpert
 - Assume 'lamppost' style transmitters 100-300 m apart?
 - No atmospheric losses, less building obstructions
 - Spectrum allocation
 - Will the Wi-Fi be able to tie back into Earth Internet? (albeit delayed)

Quasi-Optical Shoot-and-Bounce Ray Tracing for Simulating RF Scattering

Quasi-Optical *Shoot-and-Bounce* Ray Tracing for Simulating RF Scattering

Router Ht. {m}	2D Range {m}	LOS/NLOS	Rice Factor, K	Fade Loss† {dB}
8 (Rooftop)	100	LOS	4.495 ± 0.192	10.601
		NLOS	2.065 ± 0.115	16.042
	300	LOS	2.488 ± 0.096	14.889
		NLOS	1.265 ± 0.058	17.963
	1000	NLOS	13.63 ± 0.42	5.003
		NLOS	12.032 ± 0.82	5.372
32 (Tower)	100	LOS	51.31 ± 2.03	2.269
		NLOS	1.729 ± 0.095	16.866
	300	LOS	0 (Rayleigh)	20.141
		NLOS	0.465 ± 0.193	19.448
	1000	LOS	2.756 ± 0.16	14.279
		NLOS	1.243 ± 0.096	18.477

Notice: For a range of 100 m, the fade loss is comparable to the 8.93 dB computed for rooftop communication in a neighborhood (ITU-R P.1411-10). †Fade Loss determined from a Rician/Rayleigh cumulative distribution function using 99% level of confidence.

Based on preliminary results the use of multiple rooftop routers

– spaced 100 m apart - just as good as a single tall tower

Lunar Service Link Analysis Summation

- Preliminary Analyses trades distance between Service link transceivers (on wired facilities) to provide
- Signal strength using terrestrial bands with FCC limitations
 - 2.4 GHz: Sufficient signal (-70 dBm) to outdoor users up to 400 m away (non-line of sight: NLOS)
 - 5 GHz: Distance reduced to ~100m away (NLOS)
- Solutions to signal strength deficit
 - Explore using higher power allowable frequencies (like HLS 5.8 GHz)
- Assuming 50 Mbps for live video would limit service to 10-12 mobile users assuming the same terrestrial units limit of ~600 Mbps in total for all users within a 400 m distance
 - Placing transceivers ~200 m apart could allow more bandwidth and use of 5 GHz

Terrestrial Vs Lunar (2030 moonbase) Wi-Fi Summary

	Terrestrial	Lunar Base	
FCC rules	RF Spectrum and power limitations, <4 W EIRP	For now, the terrestrial RF Spectrum and power limitations are baselined for the moon	
Frequency	Service link: 2.4GHz/5 GHz Backhaul: RF 6 GHz	Service Link: 2.4 GHz/5 GHz Backhaul: wired (for fixed users), satellite thru Wi-Fi 'towers'	
User Density	$^{\sim}19$ households serviced by each transceiver (50 m from unit): $^{\sim}75$ users	~ 100 mobile users in 1 km diameter area	
Wi-Fi Stations	Every 100m, existing street light poles (provides power)	On infrastructure elements, ~8m tall, powered by base power (wired)	
Tie-in to WWW	RF Backhaul to main trunk	Limited Backhaul to earth through relay sats and or DTE: Lunar Internet to WWW (w appropriate firewalls)— up to 6 second delay?	
Users	Outdoor and family dwellings (indoor)	Mobile and temporary users (fixed users with power should have data access using wired connections)	
Equipment	COTS, rain/water proof (spec), temp limits, atmospheric cooling, terrestrial power, atmospheric losses	Different equipment: vacuum/space rated, radiation (boards different than terrestrial), dust, lunar environment wide temp extremes (impacts RF link noise at high temps). Possibly a Space Rated Software Defined Radio programmed to perform Wi-Fi	