

# The Use of High Energy Heavy Ion Facilities for Single Event Effects (SEE) Testing: A Perspective on Return on Investment (ROI)

Kenneth A. LaBel, SSAI, Inc. work performed for NASA-GSFC <u>kenneth.a.label@nasa.gov</u>

Jonathan A. Pellish, NASA-GSFC

Thomas L. Turflinger, The Aerospace Corporation

Submission Type: SEE

### Acronyms



- Atomic Mass Unit (amu)
- Brookhaven National Laboratories (BNL)
- Complementary Metal Oxide Semiconductor (CMOS)
- Device Under Test (DUT)
- Figure Of Merit (FOM)
- Integrated Circuits (ICs)
- Lawrence Berkeley National Laboratories (LBNL)
- Linear Energy Transfer (LET)
- Minutes (min)

- NASA Space Radiation Laboratory (NSRL)
- Printed Circuit Board (pcb)
- Return on Investment (ROI)
- Single Event Effects (SEE)
- Texas A&M University (TAMU)

### **Abstract**



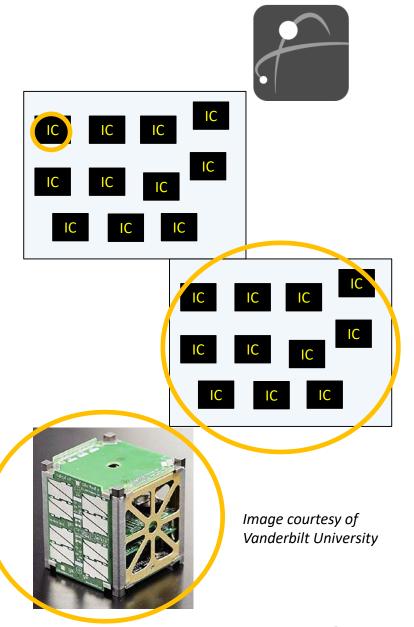
- With challenges related to testing highly complex integrated circuits as well as entire systems continuing to grow, the use of higher energy heavy ions for single-event effects (SEE) testing becomes a critical technical need.
- This presentation, however, focuses only partially on the technical side with the main emphasis on the economics of using a high-energy heavy ion beam and comparing via notional cost models for testing.

#### Outline

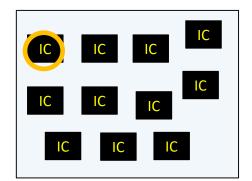


- Assumptions: description of high energy heavy ion beams (energy/irradiation area)
- SEE test scenarios
- Test metrics and thoughts
  - Additional resource considerations: travel and workforce
  - Unique circumstance
- Summary

# Assumptions: "High Energy" Heavy Ion SEE Test Facility




- For the purposes of this presentation, a high energy heavy ion SEE test facility is defined as having kinetic energy for ions of interest of >100 MeV/amu
  - There's nothing magical about this definition, but simply something to use as a figure of merit (FOM)
- In addition and using a facility such as NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL) as an example, the beam diameter for irradiation is variable from individual integrated circuits (ICs) to moderate-sized assemblies.
- This is a SIMPLIFIED comparison: no specific discussion, for example, on test system design or device under test (DUT) board constraints, etc...


#### **SEE Test Scenarios**

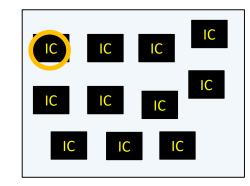
- Baseline: traditional IC test
- Board-level test: testing of large amounts of individual ICs on a single test board
  - 2 sub-scenarios: using traditional one part at a time irradiation, then all samples at the same time
- Board-level test: functional purpose board (e.g., space computer)
- Board-level test: SEE mitigation validation
- Assembly or stacked board test

Caveat: all scenarios are notional in that the results are meant to viewed on a relative basis for comparison and not as hard and fast results for an actual specific device, board, or assembly.



#### Scenario 1: Traditional IC Test






- This is the traditional test for an individual IC to use as frame of reference
- Assumptions:
  - 3 samples of the same device on the test board being irradiated in turn
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

| Standard single IC test              | Value | ~  |
|--------------------------------------|-------|----|
| # of samples on the same board       |       | 3  |
| # of ions                            |       | 4  |
| # of energies per ion                |       | 2  |
| # of test runs (per ion/energy/angle |       | 3  |
| # of angles (per ion/energy)         |       | 3  |
| Avg time per test run - min          |       | 2  |
| Avg time between test runs - min     |       | 1  |
| Ion change time - min                |       | 30 |

| 216  | # of test runs              |
|------|-----------------------------|
| 648  | Beam run time in minutes    |
| 12.3 | Total hours needed for test |

### Scenario 2a: Traditional IC Test w/ Sample Size of 15 devices





- This is the traditional test for an individual IC to use as frame of reference
- Assumptions:
  - 15 samples of the same device on the test board being irradiated in turn
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

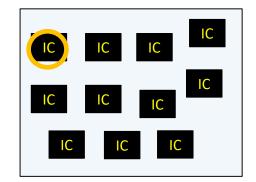
| Irradiate each device in turn       | Value | _  |
|-------------------------------------|-------|----|
| # of test parts on the board        |       | 15 |
| # of boards                         |       | 1  |
| # of ions                           |       | 4  |
| # of energies per ion               |       | 2  |
| # of test runs (per ion/energy/angl | (     | 3  |
| # of angles (per ion/energy)        |       | 3  |
| Avg time per test run - min         |       | 2  |
| Avg time between test runs - min    |       | 1  |
| Board change time in minutes        |       | 45 |
| Ion change time - min               |       | 30 |

| 1080 | # of test runs              |
|------|-----------------------------|
| 3240 | Beam run time in minutes    |
| 55.5 | Total hours needed for test |

# Scenario 2b: Irradiate Sample Size of 15 Devices Simultaneously

IC IC IC IC IC IC




- This is a board level irradiation of entire board
- Assumptions:
  - 15 samples of the same\* device on the test board being irradiated simultaneously
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - Assumes lower flux for larger beam: 4x longer test run needed
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

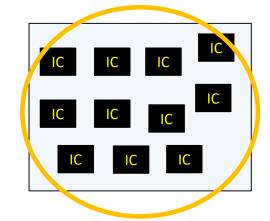
| Irradiate all devices simultaneously  | Value | <b>*</b>  |
|---------------------------------------|-------|-----------|
| # of test parts on the board          |       | <b>15</b> |
| # of boards                           |       | 1         |
| # of ions                             |       | 4         |
| # of energies per ion                 |       | 2         |
| # of test runs (per ion/energy/angle) |       | 3         |
| # of angles (per ion/energy)          |       | 3         |
| Avg time per test run - min           |       | 8         |
| Avg time between test runs - min      |       | 1         |
| Board change time in minutes          |       | 45        |
| Ion change time - min                 |       | 30        |
|                                       |       |           |

| 72   | # of test runs              |
|------|-----------------------------|
| 648  | Beam run time in minutes    |
| 12.3 | Total hours needed for test |

<sup>\* =</sup> can be different devices (increases test system complexity)

## Scenario 2c: Traditional IC Test w/ Sample Size of 45 devices






- This is the traditional test for an individual IC to use as frame of reference
- Assumptions:
  - 15 samples of the same device on the test board being irradiated in turn
  - 3 boards
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

| Irradiate each device in turn        | Value 🔼 |
|--------------------------------------|---------|
| # of test parts on the board         | 15      |
| # of boards                          | 3       |
| # of ions                            | 4       |
| # of energies per ion                | 2       |
| # of test runs (per ion/energy/angle | 3       |
| # of angles (per ion/energy)         | 3       |
| Avg time per test run - min          | 2       |
| Avg time between test runs - min     | 1       |
| Board change time in minutes         | 45      |
| Ion change time - min                | 30      |

| 3240 | # of test runs              |
|------|-----------------------------|
| 9720 | Beam run time in minutes    |
| 168  | Total hours needed for test |

# Scenario 2d: Irradiate Sample Size of 45 Devices w/ One Board at a Time





- This is a board level irradiation of entire board
- Assumptions:
  - 15 samples of the same device on the test board being irradiated **simultaneously**
  - 3 boards
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - Assumes lower flux for larger beam: 4x longer test run needed
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

| Irradiate all devices simultaneously  | Value 🔼 |
|---------------------------------------|---------|
| # of test parts on the board          | 15      |
| # of boards                           | 3       |
| # of ions                             | 4       |
| # of energies per ion                 | 2       |
| # of test runs (per ion/energy/angle) | 3       |
| # of angles (per ion/energy)          | 3       |
| Avg time per test run - min           | 8       |
| Avg time between test runs - min      | 1       |
| Board change time in minutes          | 45      |
| Ion change time - min                 | 30      |

| 216  | # of test runs              |
|------|-----------------------------|
| 1944 | Beam run time in minutes    |
| 38.4 | Total hours needed for test |

# Scenario 3: Irradiate a Functional Board

IC IC IC IC IC IC



- This is a board level irradiation of entire board
- Assumptions:
  - DUT is entire board
  - 4 ions used with 2 energies and 3 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - Assumes lower flux for larger beam: 4x longer test run needed
  - Assumes additional test runs needed for statistics
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

| Irradiate all devices simultaneously  | Value | ~  |
|---------------------------------------|-------|----|
| # of test parts on the board          |       |    |
| # of boards                           |       | 1  |
| # of ions                             |       | 4  |
| # of energies per ion                 |       | 2  |
| # of test runs (per ion/energy/angle) |       | 12 |
| # of angles (per ion/energy)          |       | 3  |
| Avg time per test run - min           |       | 8  |
| Avg time between test runs - min      |       | 1  |
| Board change time in minutes          |       | 45 |
| Ion change time - min                 |       | 30 |

| 288  | # of test runs              |
|------|-----------------------------|
| 2592 | Beam run time in minutes    |
| 44.7 | Total hours needed for test |

# Scenario 4: Irradiate a Board w/SEE Mitigation (aka, *validation test*)



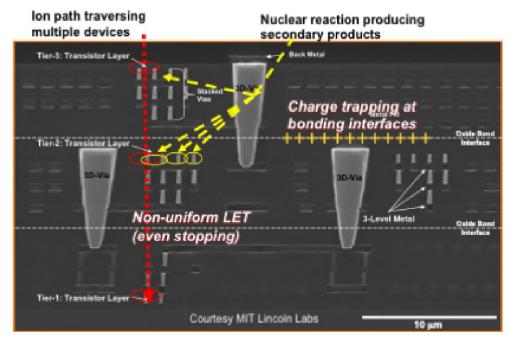


- This is a board level irradiation of entire board
- Assumptions:
  - DUT is entire board
  - 2 ions used with 1 energy and 2 angles (no board rotation)
  - 3 test runs per ion/energy/angle combination
  - Assumes lower flux for larger beam: 4x longer test run needed
  - Assumes additional test runs needed for statistics
  - No changes of power supply voltage or temperature
  - Setup and teardown time not included

| Irradiate all devices simultaneously  | Value | _  |
|---------------------------------------|-------|----|
| # of test parts on the board          |       |    |
| # of boards                           |       | 1  |
| # of ions                             |       | 2  |
| # of energies per ion                 |       | 1  |
| # of test runs (per ion/energy/angle) |       | 12 |
| # of angles (per ion/energy)          |       | 2  |
| Avg time per test run - min           |       | 8  |
| Avg time between test runs - min      |       | 1  |
| Board change time in minutes          |       | 45 |
| Ion change time - min                 |       | 30 |

- 48 # of test runs
- 432 Beam run time in minutes
- 7.7 Total hours needed for test

# Scenario 5: Irradiate an Assembly or Board Stack


- This is notionally the same as Scenario 3 – Functional Board Test
  - Numbers (hours/runs) should be similar, but may vary depending on statistics and physics

#### Caveat

- Detailed transport analyses should be considered for both test design and analysis
- Modeling highly recommended



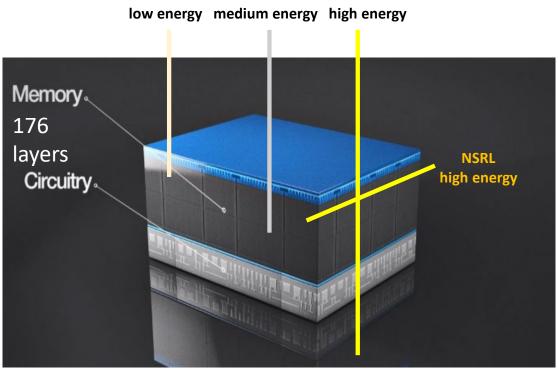




*Image courtesy of Vanderbilt University* 

## Test Metrics and Thoughts - 1




- Beam hour ratio of 4:1 (traditional to large beam)
  - Total beam costs are approximately the same (based on notional facility hour costs), however,
  - Travel and workforce hours for test performance is significantly higher for a traditional test version
    - If a large beam test takes 1 day, you'd save 3 days of test performance time needed versus a traditional part level test (4 days)
    - Test workforce may also be smaller if sufficiently lower amount of test time is needed
      - 8 hours and one shift versus 32 hours and "2" painful shifts with overtime
- Device Deprocessing
  - Not needed for high energy (typically), but often needed for traditional testing
    - \$\$\$ at risk due to deprocessing failures

To be clear, these are notional "relative" comparisons

### Test Metrics and Thoughts - 2



- Example capabilities not available elsewhere
  - Large field beam tests (system) require a unique facility and high energy
    - Do you really want to deprocess expensive parts already mounted on an expensive printed circuit board (pcb)?
  - Full 3D part test capability
  - Oblique angle testing
  - Backside testing



**TAMU** 

**NSRL** 

LBNL

Micron's proprietary CMOS-under-Array technique constructs the multilayered stack over the chip's logic, packing more memory into a tighter space and shrinking 176-layer NAND's die size, yielding more gigabytes per wafer.

Courtesy of Micron, https://www.eetimes.com/micron-leapfrogs-to-176-layer-3d-nand-flash-memory/#

#### Conclusions



- The bottom line is that both standard piece part level testing and highenergy heavy ion testing will be needed in the future
- This presentation made the argument that there are scenarios where the ROI for high-energy makes sense for large field tests and large sample size tests
- There are also unique capabilities where a high energy source is required to sufficiently test complex devices

#### **Opinion**

Guidelines should be developed on best practices for high energy SEE testing