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Venus clouds: why the astrobiology interest?

Early history favorable for life?
I Early planetary history believed to be similar to Earth’s

I Surface water (ground water, lakes, or oceans) [1] &
geological activity

I By analogy, potential for an Earth-like biochemistry
(water, carbon, etc.)

I Could life have persisted in the remaining water, i.e., in
the sulfuric acid cloud layer?

Some currently unexplained observations:
I absorption properties [2]

I phosphine [3]

I sulfur & other chemical cycling [4]
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Earth’s atmosphere is full of life (part 1)
The troposphere is clement and cloudy

I 104–108 cell
m3 recovered viable above ground [5]

I 101–106 cell
m3 recovered viable above ocean [6]

I ∼ 25 % of other particulates are bioaerosols (incl. dead cells,
fragments) [7]

I 103–105 cell
mL observed in ground-level cloud water

I at least some are metabolically active [8–10]

I biodiversity may approach that of soil [11], despite much lower biomass
I viable microbes are transported globally as dust [12]

I many measurable geochemical and physical effects:
I carbon, nitrogen, and sulfur cycling [13]

I surface [14] and cloud albedo [15]

I cloud formation and precipitation [16;17]

I fog and rain water chemistry [18;19]
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Earth’s atmosphere is full of life (part 2)
The stratosphere is a better Venus cloud layer analogue

I Relatively isolated from the surface (exceptions: volcanic, extreme
weather, anthropogenic)

I Residence time can be weeks to months
I Overall very low water content (ψ = −1.5× 109 Pa)
I Significantly more irradiated (UV-B, UV-C) as partially or wholly above

ozone layer
I Has a sulfate aerosol layer (18–23 km) [20]:

I supercooled sulfuric acid and water
I acid weight fraction 0.6–0.85 [21]

I aerosol size 0.1–1 µm

I < 102–105 cell
m3 recovered viable, up to 40 km [22]

I Viable cells are inactive: hardy, dormant surface survivors of
desiccation, irradiation, etc.
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What we don’t see is also important

I most viable airborne microbes
recovered are dormant (including all
stratospheric samples)

I metabolic activity appears limited to
warmest and wettest regimes (clouds
a.k.a. mobile water ‘hot spots’)

I reproduction while airborne not yet
observed in situ

I stratosphere is extremely understudied
I platform (aircraft, balloon) limitations
I detection and analysis challenges for

sparse, patchy, spore-like forms
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Microbial Concentration vs. Altitude

Reported high-altitude bioaerosol concentrations.
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What are the requirements for a self-sustaining aerobiosphere?

I “hard” habitability requirements:
I solvent (water)
I nutrients (CHNOPS+)

I energy (chem, light)
I environment (rad, temp)

I “soft” habitability constraints:
I biosphere stability requires that population growth outpace

population loss in the long run
I sporadic growth, low biomass: think “desert bloom”

I uniquely for aerobiology, residence time limitations convert
the latter into the former: tr > tg

I tr: gravity, density, viscosity, thermal lofting, gravity waves,
precipitation, turbulence...

I tg: slow growth or periods of inactivity: low water, nutrients, or
energy, or high stress
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Solvent availability (water)

I Earth’s atmosphere is dry compared to most surface habitats→ dependence on
clouds

I rapid desiccation is the main driver of Earth’s airborne microbial population loss [30]

I tropospheric cloud lifetimes are on par with microbial generation times→ too
transient for continuous habitation and/or adaptation?

Earth
Phenomenon aw
Microbial growth media 0.996
NaCl solubility 0.74
Microbial growth ≤0.6
Earth’s atmosphere (mean) 0.4
Atacama desert soils 0.01–0.52

Venus
I What is the water activity of

Venus’s aerosols?
I How variable is that water

(e.g., influx from volcanism)?
I How does this compare to

residence times?
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Nutrients & energy
I bioavailable CHNOPS (+Fe, others) are required for terrestrial-like biochemistry
I atmospheric levels typically governed by surface fluxes and mixing dynamics
I on Earth, fog/cloud water nutrient levels are similar to oligotrophic lakes (limiting!)
I energy available to autotrophs can be photonic, chemical, or both
I Earth airborne life not limited by photonic energy (more likely to have too much)

Earth
Species Cloud Water ( g

L ) Lake Water ( g
L )

DOC 0.3 – 6×10−3 1 – 5×10−3

NH+
4 0.3 – 2×10−2 2×10−5

NO−2 0.03 – 2×10−3 6×10−6

NO−3 2 – 6×10−3 0.7 – 3×10−5

P−3 0.02 – 1×10−4 2 – 7×10−5

SO−2
4 6×10−2 1×10−3

Venus
I What is the composition of

Venus’s aerosols (C, N, P)?
I How does this change (daily,

seasonally, long-term)?
I What are typical growth rates

for potential analogue species
under similar limits?
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Environment (stress)
I non-optimal environments may cause slower microbial growth
I alternating between survival and growth ranges may cause periods of inactivity→

short-term cycles of inactivity can be particularly challenging!
I on Earth, limited by temperature (too cold) and radiation (especially UV-C)
I on Venus, acidity (acid activity, beyond pH) is a major potential constraint [31]; closest

natural analogues are uninhabited, but are also hot and saline [32;33]

Earth
Microbial Microbial

Stressor Growth Limits Activity Limits
T (°C) −12 – 121 < −40 – 121

p (kPa) 5 – 1× 105 ∼ 2.5 – 1.3× 105

pH ∼ 0 – 12 −0.06 – 12.5
aw 0.6 – ∼ 1 ≤ 0.6 – ∼ 1

UV A/B ( W
m2 ) 0 – < 30–50 0 – ≥ 50

Venus
I What is the acid activity of

Venus’s aerosols?
I How does this change (daily,

seasonally, long-term)?
I What are the limiting

combinations of stressors?
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All of these constraints interact!
I cloud formation affected by

temperature, pressure, nucleation, etc.
I microbes that tolerate aerosolization are

often condensation nuclei [34]

I very high acid activity = low water
activity

I longer residence times (less vertical
cycling) may mean lower nutrients

I lower temperatures reduce both
damage accumulation and growth rates

I on Earth, the warmest and wettest
regimes are also the shortest-lived
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What would we like to see going forward?

Earth aerobiology science targets

I Determine if microbial reproduction occurs while airborne
I Characterize the stratosphere as a potential analogue environment – is microbial

activity limited to clouds and/or the troposphere?
I Characterize life cycles, growth rates, and limiting combinations of stressors for

potential analogue microbes (dry, acid, hot...)
I Improve in situ analysis instruments for “rare and tough” microbial forms

Venus in situ science targets

I Measure detailed aerosol composition and differentiate by particle size
I Determine water activity and acid activity (and/or major factors affecting it)
I Characterize mixing and lofting dynamics→ understand particle ’life cycles’
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Questions?
or e-mail diana.gentry@nasa.gov

(supplementary & reference slides following)
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Water activity, part 1

Water availability goes beyond molarity, pH, or salinity

I gravitational potential
I internal and external physical

pressures
I partial molar water volume

I matric effects (adsorption and
capillary effects from surfaces)

I osmotic balance

Combined metric: water potential (ψ) or water activity (aw)

I Related by ψVw = µw − µ◦w = RT ln aw

I Pure water has a ψ of 0 Pa and an aw of 1.
I Osmotic and matric effects dominate on microbial scales. [35;36]

I At low matric potentials, gas phase interactions become limiting before osmotic
potentials. [36;37]
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Water activity, part 2

ψVw = µw − µ◦w = RT ln aw

ψ = water potential, J
m3 or Pa

Vw = partial molar volume of water in the system, m3

mol
µw = free energy of water in the system, J

mol
µ◦w = free energy of reference water quantity, J

mol
R = ideal gas constant, 8.315 J

mol·K
T = temperature, K

aw = water activity, dimensionless ratio

Water spontaneously flows from an area of higher water potential to an area of lower
water potential [38].
Maintaining a ψ differential costs energy, so microbes counterbalance one source of ψ
difference with another to achieve equilibrium.
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Some characteristic water activities

Venus’s aerosols (assuming ≥ 75 % sulfuric acid) are akin to Earth’s most barren deserts
in aw.

Phenomenon ψ (Pa) aw Cite
Microbial growth media ∼ −2×105 0.996 [35;39]

Non-xerophile growth −5×106 [37]

Bacterial growth(?) −1.7×107 [37]

NaCl solubility −4.1×107 0.74 [40]

Archean growth(?) 0.5–0.7 [41]

Don Juan Pond 0.45 [39]

MgCl2 solubility 0.3 [41]

Atacama desert soils < −1.5×108 0.01–0.52 [40;42]

75% H2SO4 solution 0.02 [43]
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Some characteristic rainwater nutrient levels

Typical Earth rain and fog water is akin to some oligotrophic lakes, meaning that
nutrients would be limiting over time.

Species Cloud Water ( g
L ) Cite Lake Water ( g

L ) Cite
DOC 0.3 – 6×10−3 [44;45] a 1 – 5×10−3 [46;47] b

NH+
4 0.3 – 2×10−2 [44;48] 2×10−5 [49]

NO−2 0.03 – 2×10−3 [44;48] 6×10−6 [49]

NO−3 2 – 6×10−3 [44;48] 0.7 – 3×10−5 [49;50]

P−3 0.02 – 1×10−4 [51] c 2 – 7×10−5 [47;50]

SO−2
4 6×10−2 [48] 1×10−3 [52]

a Dissolved organic carbon; continental > marine precipitation.
b Inhabited subsurface aquifers are < 0.1 mg

L
[36].

c Typically occurs as phosphates.
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Some characteristic microbial growth and reproduction limits

Microbial Microbial
Stressor Growth Limits Cite Activity Limits Cite

temperature (°C) −12 – 121 [53;54] < −40 – 121 [54]

pressure (kPa) 5 – 1× 105 [55;56] ∼ 2.5 – 1.3× 105 [54;55]

pH ∼ 0 – 12 [57;58] −0.06 – 12.5 [53;58]

water activity (aw) 0.6 – ∼ 1 [39;41] ≤ 0.6 – ∼ 1 [39;41]

UV A&B ( W
m2 ) 0 – < 30–50 [59] a 0 – ≥ 50 [59] a

PAR ( µmolγ

m2 · s ) ≥ 1× 10−2 – 8× 103 [60] ∼ 1× 10−2 – 8× 103 [60]

a Empirical value for a typical high-altitude terrestrial habitat.
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The state of aerobiological knowledge is coarse

Platform limitations are significant.

I ground (< 10 m) is dominated by
transient bioaerosols

I towers (< 100 m) yields single
points

I higher-altitude sampling with
aircraft gives 1D transects

I higher-altitude samples are
extremely scarce and ad hoc

I questions about metabolic activity,
stress responses, and potential life
cycles require fine-scale, 4D
samples
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Microbial Concentration vs. Altitude

Reported high-altitude bioaerosol concentrations
(arithmetic mean). Square markers indicate airplane
sampling, circles balloons, and triangles sounding
rockets. Open markers indicate culture-dependent

analyses, solids culture-independent counts.
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Stratospheric sampling lessons

I Nearly all biomass is dead/dormant:
different signatures, ‘tough to crack’

I Low biomass & very patchy
distributions→ need to concentrate
sample in time and space

I Passive platforms (balloons) follow the
same airmass→may miss hotspots

I Sample starts changing immediately
after capture (temp, ionization, phase...)

I Spectral measurements require very
good a priori baselines

I Most reliable measurements come from
sample return (e.g., sequencing)
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