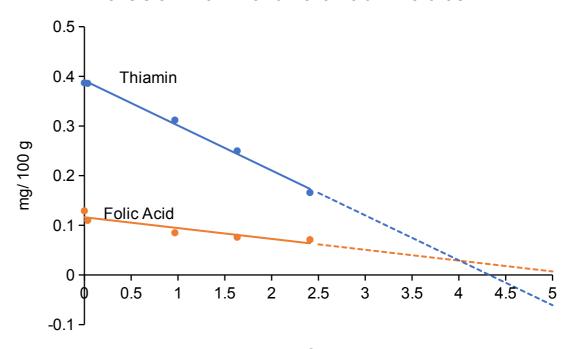


National Aeronautics and Space Administration

BioNutrients: Microbial on-demand production of short shelf-life micronutrients in space

A. Mark Settles NASA Ames Research Center Moon to Mars: Human exploration of deep space will require some resources to be produced during missions

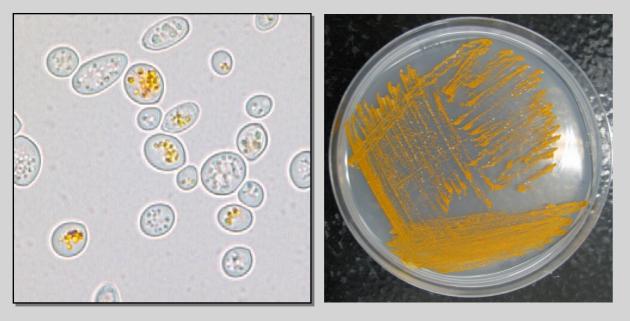


Essential nutrients degrade in long-duration storage

Studies of pre-packaged food in the NASA system have found declines in:

- Folic acid/Folate
- Vitamin A
- Thiamin (Vitamin B₁)
- Riboflavin (Vitamin B₂)
- Vitamin B₆
- Vitamin B₁₂
- Vitamin C
- Vitamin E
- Vitamin K

Need to produce some foods in situ


Levels of Thiamin and Folic Acid in Tortillas

Years in Storage

Space Synthetic Biology: BioNutrients

Microbially fermented foods to produce essential nutrients

S. boulardii producing β -carotene

Rationale: Engineer yeast and/or bacteria to produce essential nutrients when grown for a short period of time in edible media.

- Rapid, on-demand production
- Room temperature storage of organisms
- Enriches pre-packaged foods with labile nutrients

Carotenoids selected as initial nutrient:

- Light sensitive and degrades in packaged foods
- Important to protect from macular degeneration
- Antioxidant activity to protect against DNA damage

BioNutrients: Future implementation concept

Premixed dry media and microbes Ambient temperature storage Hydrate and dissolve media Incubate to grow microbes Deactivate microorganisms Consume as a supplement

BioNutrients Flight Missions

Mission	Objectives	Launch
BN-1	5-year flight test Engineer yeast strains to produce carotenoids Test media and related packaging Develop Gen-0 bioreactor Test other microorganisms for long-duration storage	NG-11, April 2019
BN-2	<1-year flight test Expand products to yogurt and kefir Engineer medical countermeasure product Develop Gen-1 bioreactor to decrease system mass Develop HACCP food safety plan	Target SPX-25, May 2022
BN-3	Engineer system to produce multiple nutrients Develop Gen-2 bioreactor Demonstrate reliability of HACCP plan	FY24

BioNutrients-1 On-orbit Operations

Clumping Check Media should be a fine, free-floating powder with no clumps

BioNutrients-1 Effects of Microgravity

Microgravity increases the surface area of the culture media potentially allowing more gas exchange. Microgravity improves biomass production compared to stationary cultures on the ground. Active aeration further improves biomass production on the ground.

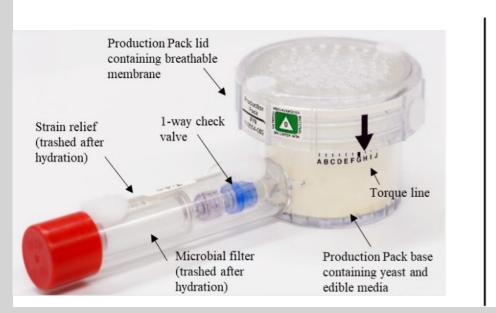
BioNutrients-1 Stasis Packs

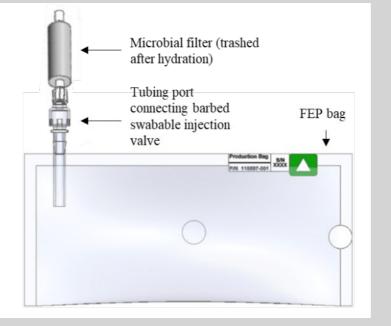
Stasis packs seek to identify species and conditions that will provide 5-year shelf life in ambient temperature storage.

- 9 microbe species investigated
 - Baker's yeast and probiotics
 - Species for yogurt
 - Species that can metabolize diverse carbon sources
- 21 treatments
 - vary storage preparation
 - mutagenize for genetic screens
- 3 media formulations

Compare ground control to ISS storage Assay for viability at 3- to 6-month intervals over 5 years.

Variation in viability observed by 2 years of storage.


Santa Maria et al (2020) found yeast to be stable for 2 years at room temperature storage. Santa Maria et al (2020) Astrobiology. <u>https://doi.org/10.1089/ast.2019.2073</u>



BioNutrients-2 Reduced Mass Hardware

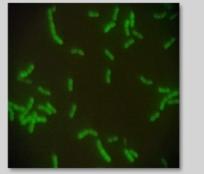
117 g Bioreactor

Change to a Fluorinated Ethylene Propylene (FEP) bag bioreactor.

FEP is gas permeable.

10 g Bioreactor

Ball et al. (2021) Proc. Int. Conf. Envir. Systems. ICES-2021-331. https://ttu-ir.tdl.org/handle/2346/87260


BioNutrients-2 Products

Microbe	GM Product	Purpose	Food Product
Saccharomyces cerevisiae	Zeaxanthin	Prevent macular degeneration	Nutrient broth
Saccharomyces cerevisiae var. boulardii	-carotene	Vitamin A precursor	Nutrient broth
Kluyveromyces lactis	Follistatin	Promote muscle formation to counteract microgravity effects	Nutrient broth
Streptococcus thermophilus	Green Florescent Protein	Demonstrate genetic engineering of species	Yogurt
YO-MIX 151 <i>Streptococcus thermophilus</i> <i>Lactobacillus bulgaricus</i>	None	Increase menu options	Yogurt
C-FIR – proprietary mix	None	Increase menu options	Kefir

S. boulardii (β-carotene)

S. thermophilus (GFP)

S. thermophilus and L. bulgaricus

BioNutrients-2

Bag bioreactors are loaded with sterile media/milk powder and microbe pellets.

Luer lock port is used to attach a sterile water filter for hydrating the culture.

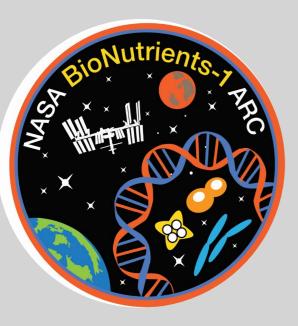
Carotenoids are produced similarly to BioNutrients-1 with a 48 hour incubation at 30°C.

BioNutrients-2 Products

Yogurt and kefir are produced by lactic acid fermentation. pH should be <5 when the product is ready. Will be monitored with bromocresol purple on-orbit

Summary

Fermented foods provide an additional strategy to produce essential nutrients for extended shelf life


- Microbes can be engineered to produce multiple nutrients or countermeasures
- Media and microbes need to be shelf stable for 5 years
- Growth cycles are short, on the order of a few days instead of weeks to months

Development needed for full implementation

- More comprehensive microbe engineering
- Continue to improve flight hardware
- Engineering food safety process controls in space: cooking or other methods

Space Synthetic Biology

BioNutrients Authors

Natalie Ball Aditya Hindupur Hiromi Kagawa Aphrodite Kostakis Amy Gresser Julie Levri **Kevin Sims** Sean Sharif Alyssa Villanueva Frances Donovan A. Mark Settles John Hogan

Acknowledgements

Michael Dougherty Jon Galazka Harry Jones Jessica Kong Paul Milazzo Marilyn Murakami Satro Narayan Matthew Paddock Mathangi Soundararajan Daniel Varnum-Lowry

Astronauts

David Saint-Jacques Drew Morgan Shannon Walker

