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Supplementary Table 1: Effect of temperature on dengue transmission dynamics from prior 

studies. This table provides information used in Figure 5 of the main text to visualize the relationship 

between temperature and dengue risk compared with the relative basic reproductive number derived from 

the trait-based model. Asterisks indicate that the mean temperature was calculated as the average value of 

the minimum and maximum temperatures provided in the text (measured or estimated from temperature 

plots). Coefficient values are the values calculated in regression models in the sourced references, they 

indicate the estimated effect on dengue cases given a one-unit change in the temperature metric. 

 

Study 

location 
Dengue metric 

Mean 

temperature 

Temperature 

metric 

Temperature 

metric time 

lag 

Coefficient 

value 
Source 

Mexico Weekly cases 14* Weekly 

minimum 

None 0.44 [1] 

Mexico Weekly cases 15* Weekly 

minimum 

None 0.58 [1] 

Mexico Monthly cases 16.5* Monthly 

minimum 

4-8 weeks 0.03-0.15 [2] 

China Monthly cases 19.5 Minimum  4 weeks 0.732 [3] 

Guadeloupe Yearly or seasonal 

cases 

22* Minimum 5 weeks 0.108 [4] 

Vietnam Monthly cases 22.5* Monthly mean 8 weeks 0.23 [5] 

Thailand Monthly cases 23 Monthly 

minimum 

None 0.99 [6] 

Bangladesh Monthly cases 23* Mean 4 weeks 6.07 [7] 

Mexico Weekly incidence 

per 100,000 

people 

25 Mean weekly 

Sea Surface 

Temperature 

5 weeks 0.2 [8] 

Guadeloupe Yearly or seasonal 

cases 

26.5* Mean 11 weeks 0.228 [4] 

Taiwan Monthly cases 29* Deviation 

between 

monthly 

maximum and 

mean 

None -0.126 [9] 

Bangladesh Monthly cases 30* Monthly 

maximum 

None 0.0105 [10] 

Vietnam Monthly cases 33.5* Monthly mean 8 weeks -1.94 [5] 

Colombia Monthly or Epi-

period cases 

32 Monthly mean None 0.001 [11] 

Thailand Monthly cases 35* Monthly 

maximum 

4 weeks -0.609 [12] 

 

 

 

 

 

 

 



Supplementary Table 2: Number of days with interpolated temperature, rainfall, and humidity by 

site within study period. There were 1,918 days in total for sites within Ecuador and 2,069 days in total 

for sites within Kenya. Interpolated rainfall values indicate days where there was one or more missing 

days with a rainfall value in the prior 14 days (inclusive of measurement date).  

 

Country Site Days with interpolated 

temperature 

Days with interpolated 

monthly rainfall 

Days with 

interpolated humidity 

Ecuador Huaquillas 331 443  331 

Ecuador Machala 6 78 306 

Ecuador Portovelo 490 601 489 

Ecuador Zaruma 974 434 322 

Kenya Chulaimbo 289 511 288 

Kenya Kisumu 325 506 305 

Kenya Msambweni 142 602 142 

Kenya Ukunda 443 623 867 

 

  



 
Supplementary Figure 1: Mosquito predictions are not affected by critical thermal minimum, 

maximum, and rate constants used in Aedes aegypti life history traits. To determine the extent to 

which variations in Aedes aegypti life history traits affect model predictions, we conducted a sensitivity 

analysis. For the sensitivity analysis, we randomly sampled 50 different c, T0, and Tm estimates for 

temperature-dependent traits from the posterior distributions found in [13] and ran the SEI-SEIR model 

with those estimates. This plot shows the total predicted mosquitoes (Nm) for each site through time. The 

results for each model run are shown as a different colored line.  

 



 
 

Supplementary Figure 2: Trajectories of predicted arboviral cases are not affected by critical thermal 

minimum, maximum, and rate constants used in Aedes aegypti life history traits. To determine the 

extent to which variations in Aedes aegypti life history traits affected model predictions, we conducted a 

sensitivity analysis. For the sensitivity analysis, we randomly sampled 50 different c, T0, and Tm estimates 

for temperature-dependent traits from the posterior distributions found in [13] and ran the SEI-SEIR model  

with those estimates (same models as shown in Figure S1). This plot shows predicted cases (Ih) for each  

site through time. The results for each model run are shown as a different colored line. The different trait  

values varied the magnitude of predicted cases in many settings, but not the temporal dynamics. Many  

simulations overlap for Portovelo and Zaruma.  

 

 

 

 

 



 
Supplementary Figure 3: Hypothesized functional forms for effects of rainfall on mosquito carrying 

capacity. We tested three hypothesized functional relationships between 14-day cumulative rainfall 

values (following [14]) and mosquito carrying capacity: (a) Brière, in which carrying capacity increases 

with increasing rainfall until a threshold where flushing occurs; (b) quadratic, in which carrying capacity 

peaks at intermediate rainfall values, similar to [15]; and (c) inverse, in which mosquito abundance is 

greatest during periods of drought, similar to [14]. In these plots, temperature, maximum rainfall, and the 

human population are held constant at 29°C, 123 mm, and 20,000 people, respectively. See Methods for 

functional form equations. 

 

 

 



 
Supplementary Figure 4: Scatterplot comparing ambient temperatures measured at study sites with 

datasets used for interpolation. For Ecuador, we used the nearest study site values when possible or else 

the long term mean temperature values for the corresponding Julien day. For Kenya, we used NOAA 

Global Surface Summary of the Day datasets from Kisumu Airport for Kisumu and Chulaimbo and from 

Mombasa Airport for Msambweni and Ukunda. Dashed lines indicate the y = x line and solid lines 

indicate the linear regression line used to interpolate data. 



 
Supplementary Figure 5: Scatterplot comparing daily values for cumulative rainfall in the prior 14 

days measured at study sites with datasets used for interpolation. For Ecuador, we used the nearest 

study site values when possible or else the long term mean 14-day cumulative rainfall values for the 

corresponding Julien day. For Kenya, we used NOAA Global Surface Summary of the Day datasets from 

Kisumu Airport for Kisumu and Chulaimbo and from Mombasa Airport for Msambweni and Ukunda. 

Dashed lines indicate the y = x line and solid lines indicate the linear regression line used to interpolate 

data. 

 



  
Supplementary Figure 6: Daily temperatures across sites within study period. Kenya sites are on the 

left and Ecuador sites are on the right. 

 



 
Supplementary Figure 7: Daily values of cumulative 14-day rainfall across sites within study 

period. Kenya sites are on the left and Ecuador sites are on the right. 

 

 

 



 
Supplementary Figure 8: Daily saturation vapor pressure deficit across sites within study period. 

Kenya sites are on the left and Ecuador sites are on the right. 

 

 

 

 

 



 
Supplementary Figure 9: Mosquito mortality rate as a function of saturation vapor pressure deficit 

(SVPD). This relationship is a step function where the slope of the linear relationship is steeper for SVPD 

≤ 1 compared with SVPD > 1. The step function is also scaled differently for SVPD ≤ 1 and SVPD > 1 to 

restrict the mortality rate within the range of mortality rates observed in other studies; these scaling 

factors make the function appear nonlinear between 1.0 and 1.2 in the plot.  

 

 



 
Supplementary Figure 10: Models converge after ~90 days regardless of initial conditions. To 

determine how the model’s initial conditions affected the magnitude and trajectories of each compartment 

and across sites, we conducted a sensitivity analysis. We randomly sampled 50 different proportions of 

starting conditions for each compartment where 𝑆𝑉 +  𝐸𝑉 + 𝐼𝑉 = 1 and 𝑆𝐻 +  𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻 = 1 using Latin hypercube 

sampling. Latin hypercube sampling is a statistical method for generating a random sample of values from 

a multidimensional distribution. We used the optimumLHS function in the lhs package in R to generate 

the random sample of initial proportions for each compartment. This plot shows the initial trajectories of 

predicted cases for each study site. All other model compartments also converged after ~90 days. 
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